Chemical synthesis of a library of natural product-like derivatives based on pinnaic acid and initial evaluation of their anti-cancer activity.

Alex Fudger, Okan M. Cakir, Yousaf Khan, Alex Sinclair, Adam Le Gresley*

Supplementary Information

Undeca-1,10-dien-6-one (4)

4

To a solution of undeca-1,10-dien-6-ol (20.9 g, 124 mmol) in anhydrous DCM (200 mL) was added pyridinium chlorochromate ($36.2 \mathrm{~g}, 168 \mathrm{mmol}$) and silica gel (50 g). The resulting dark brown solution was left to stir at r.t for 24 hours followed by the addition of a further portion of silica gel (25.0 g) and left to stir at r.t for a further 30 minutes. The mixture was concentrated, diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and filtered through a pad of celite and silica gel which was washed with $\mathrm{Et}_{2} \mathrm{O}$ successively until the filtrate ran clear. The filtrate was concentrated to give 4 as a yellow oil $16.4 \mathrm{~g}, 79 \%$. IR $\mathrm{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1} 2932,1712,1640,1440$, 1370; NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.77-5.67(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.00-4.91(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.36(4 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $7.40,2-H), 2.04-1.98(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.62(4 \mathrm{H}, \mathrm{p}, \mathrm{J} 7.40,3-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 210.8(1-\mathrm{C})$, 138.0 ($5-\mathrm{C}$), 115.1 (6-C), 41.9 (2-C), 33.1 (4-C), 22.8 (3-C); MS m/z (EI) 166 (${ }^{+}$1), 125 (10), 97 (64), 84 (48), 69 (100).

Diethyl (2E,11E)-7-oxotrideca-2,11-dienedioate (5a)

A solution of $4(5.0 \mathrm{~g}, 30 \mathrm{mmol})$ in anhydrous DCM (150 mL) and ethyl acrylate ($21 \mathrm{~g}, 20 \mathrm{~mL}$, 181 mmol) were added to Hoveyda Grubbs II catalyst ($0.47 \mathrm{~g}, 2.5 \mathrm{~mol} \%$) and the resulting mixture left to stir at r.t for 24 hours. A further portion of Hoveyda Grubbs II catalyst (0.47 g , $2.5 \mathrm{~mol} \%$) was added and the mixture continued to stir until TLC analysis confirmed complete consumption of the starting material (2 days). The reaction was stopped and the solvent evaporated to give 5a as a viscous brown oil. The crude product was purified via flash chromatography eluting with hexane/EtOAc 4:1 to give diethyl (2E,11E)-7-oxotrideca-2,11-
dienedioate as a brown oil ($4.3 \mathrm{~g}, 83 \%$). $\mathbf{I R} \mathrm{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1} 2937,1712,1652,1265,1179$; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.83(2 \mathrm{H}, \mathrm{dtd}, \mathrm{J} 15.6,6.96,5-\mathrm{H}), 5.73(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.6,1.56,6-\mathrm{H}), 4.09$ ($4 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.14,8-\mathrm{H}_{2}$), $2.36\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.30,2-\mathrm{H}_{2}\right), 2.16-2.11\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.67\left(4 \mathrm{H}, \mathrm{p}, \mathrm{J} 7.33,3-\mathrm{H}_{2}\right)$, 1.21 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.14,9-\mathrm{H}_{3}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 209.3$ (1-C), 166.3 (7-C), 147.9 ($\left.5-\mathrm{C}\right), 121.9$ ($6-\mathrm{C}$), 60.1 (8-C), 41.6 (2-C), 31.3 (4-C), 21.8 (3-C), 14.2 (9-C); MS m/z (EI) 310 (M+), 123 (51), 95 (100), 81 (82).

Dimethyl (2E,11E)-7-oxotrideca-2,11-dienedioate (5b)

$\mathbf{5 b}$ was obtained by following the synthesis for $\mathbf{5 a}$ resulting in a yellow oil $2.7 \mathrm{~g}, 72 \%$. $\mathbf{I R} \mathbf{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1} 2951,1713,1658,1436,1315,1201 ;$ NMR $\delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.83(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.6$, $6.97,5-\mathrm{H}), 5.74(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.6,1.57,6-\mathrm{H}), 3.64\left(6 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}_{3}\right), 2.34\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.30,2-\mathrm{H}_{2}\right), 2.13(4 \mathrm{H}$, qd, J 14.5, 7.25, 4-H2), 1.67 (4H, p, J 14.6, 7.30, 3-H2); $\delta_{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.3(1-\mathrm{C}), 166.8$ (7C), 148.3 ($5-\mathrm{C}$), 121.5 ($6-\mathrm{C}$), 51.4 ($8-\mathrm{C}$), 41.6 (2-C), 31.3 ($4-\mathrm{C}$), 21.8 (3-C); MS m/z (EI) 282 (M^{+} 1), 155 (25).

Ethyl (2E)-7-oxododeca-2,11-dienoate (5d)

5d was obtained as a by-product from the synthesis of 5a resulting in a brown oil ($0.63 \mathrm{~g}, 22$ \%). IR $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2936,1712,1654,1267,1179$; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.84(1 \mathrm{H}$, dddd, J 15.6, 6.96, 10-H), 5.77-5.63 (2H, m, 2-H, 11-H), 4.96-4.87 (2H, m, 1-H2), $4.10(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 7.14, $13-\mathrm{H}_{2}$), 2.37-2.31 ($4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}, 7-\mathrm{H}_{2}$), 2.16-2.10 ($2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}$), 2.00-1.94 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), 1.70-1.56 ($4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 8-\mathrm{H}_{2}$), $1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.14,14-\mathrm{H}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.1(6-\mathrm{C}), 166.5$ (12-C), 148.1 (10-C), 137.9 (2-C), 122.0 (11-C), 115.2 (1-C), 60.2 (13-C), 41.9 (5-C), 41.7 (7-C),
33.1 (3-C), 31.4 ($9-C), 22.7$ (8-C), 21.9 (4-C), 14.2 (14-C); MS m/z (EI) 238 (${ }^{+}$), 95 (100), 81 (71).

Methyl (2E)-7-oxododeca-2,11-dienoate (5e)

$\mathbf{5 e}$ was obtained as a by-product from the synthesis of $\mathbf{5 b}$, resulting in a yellow oil $1.1 \mathrm{~g}, 17 \%$. IR $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2949,1717,1657,1270,1197$; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.84$ (1H, dddd, J $15.6,6.96,10-H), 5.75(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.6,1.58,11-\mathrm{H}), 5.71-5.63$ (1H, m, 2-H), 4.95-4.87 (2H, m, 1H), $3.64\left(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}_{3}\right), 2.39-2.31\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}, 7-\mathrm{H}_{2}\right), 2.17-2.11\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.00-1.94(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{2}$), 1.70-1.52 ($4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}, 4-\mathrm{H}_{2}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 210.0(6-\mathrm{C}), 166.8(12-\mathrm{C}), 148.4$ (10C), 137.8 ($2-C$), 121.4 ($11-C$), 115.1 (11-C), 51.3 ($13-C$), 41.8 ($7-C$), 41.6 ($5-C$), 33.0 ($3-C$), 31.3 (9-C), 22.6 (8-C), 21.8 (4-C); MS m/z (EI) 224 (M+1), 81 (76), 69 (100), 55 (95)

Ethyl (3aS,4S,7S,10aS)-7-(2-ethoxy-2-oxoethyl)octahydro-1H-yclopenta[3,4][1,2]oxazolo[2,3-a]pyridine-4-carboxylate (5c)

To a solution of Hoveyda Grubbs II catalyst (0.094 g , $5 \mathrm{~mol} \%$) in anhydrous DCM (20 mL) was added a solution of $4(0.50 \mathrm{~g}, 3.0 \mathrm{mmol})$ in anhydrous DCM (15 mL), followed by phenyl vinyl sulfone ($3.0 \mathrm{~g}, 18 \mathrm{mmol}$) and the resulting mixture left to stir @ $50^{\circ} \mathrm{C}$. At 24 hours a second portion of Hoveyda Grubbs II catalyst ($0.094 \mathrm{~g}, 5 \mathrm{~mol} \%$) was added to the reaction mixture which was then left to stir for a further 7 days. The reaction was stopped and the solvent
evaporated in vacuo to give a brown oil. The crude product was purified via flash chromatography eluting with hexane/EtOAc $1: 1$ to give $\mathbf{5 c}$ as a brown oil, $1.2 \mathrm{~g}, 88 \%$. IR $\mathbf{v}_{\text {max }}$ (thin film)/ cm^{-1}) 2941, 1709, 1625, 1305, 1143; NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87-7.84(4 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}_{2}$), 7.62-7.58 (2H, m, 10-H), 7.55-7.50 (4H, m, 9-H2), $6.91(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.1,6.79,5-\mathrm{H}), 6.31$ $(2 \mathrm{H}, \mathrm{dt}, J 15.1,1.55,6-\mathrm{H}), 2.38\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.17,2-\mathrm{H}_{2}\right), 2.25-2.19\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.71(4 \mathrm{H}, \mathrm{p}, \mathrm{J} 14.9$, $\left.3-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 208.7$ (1-C), 145.9 ($5-\mathrm{C}$), 140.5 ($7-\mathrm{C}$), 133.4 (10-C), 131.1 (6-C), 129.3 (9-C), 127.6 (8-C), 41.5 (2-C), 30.6 (4-C), 21.3 (3-C); MS m/z (EI) 446 (${ }^{+}$), 144 (100).

2-[(3aS,4S, 7S,10aS)-4-(hydroxymethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]ethan-1-ol (6a)

6a

To a solution of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.36 \mathrm{~g}, 5.8 \mathrm{mmol})$ and $\mathrm{NaOAc}(1.0 \mathrm{~g}, 12 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(50 \mathrm{~mL})$ and anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ was added a solution of $5 \mathrm{a}(0.80 \mathrm{~g}, 0.26 \mathrm{mmol})$ in anhydrous MeCN (5 mL) and the resulting mixture left to stir at r.t. Upon complete consumption of the starting material $\mathbf{5 a}$ the reaction was stopped, and the solvent evaporated. The resulting orange solid was diluted with DCM (50 mL), filtered under suction and washed continuously with DCM until the solid became white in colour. The filtrate was concentrated, and the oil obtained dissolved in MeCN (50 mL). This solution was stirred at r.t and upon complete consumption of the intermediate nitrone the reaction was stopped, concentrated in vacuo, refluxed in hexane for 20 minutes, filtered hot and concentrated to give 6a as a yellow oil, $1.4 \mathrm{~g}, 87 \%$. $\mathbf{R} \mathbf{v}_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2939,1731,1445,1262,1184$; NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.25-4.08\left(5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}_{2}, 16-\mathrm{H}_{2}\right), 3.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.8,12.3,2_{\mathrm{B}}-\mathrm{H}\right), 3.05-$ 3.02 (1H, m, 8-H), 2.90-2.85 (1H, m, 3-H), 2.29 ($1 \mathrm{H}, \mathrm{dd}, J .9 .96,5.77,2_{\mathrm{A}}-\mathrm{H}$), 2.05-1.35 (12H, m,
$\left.9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}\right), 1.28-1.22\left(6 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{3}, 17-\mathrm{H}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 173.0 (1-C), 172.2 ($5-\mathrm{C}$), 83.4 ($4-\mathrm{C}$), 77.5 (15-C), 61.4 (16-C), 60.5 (3-C), 60.1 ($6-\mathrm{C}), 51.0$ ($8-\mathrm{C}$), 39.2 (14-C), 39.1 (2-C), 33.0, 29.9, 29.2, 21.1, 20.6 (9-C to 14-C), 14.3 (17-C), 14.0 (7-C); MS m/z (EI) 325 ($\mathrm{M}^{+}, 13$), 252 (29), 238 (100), 210 (86).

Methyl [(4S, 7S, 7aS,10aS)-7-hydroxy-6-oxodecahydrocyclopenta[i]indolizin-4-yl]acetate (6b)

6b
$\mathbf{6 b}$ was obtained by reacting $\mathbf{5 b}$ as described in the synthesis for $\mathbf{6 a}$, resulting in a yellow oil $1.9 \mathrm{~g}, 68 \%$. IR $\mathrm{v}_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2948,1730,1436,1262,1163 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.12$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.42,4-\mathrm{H}), 3.72\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{3}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}_{3}\right), 3.13\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.6,12.3,3.20,2_{\mathrm{A}^{-}}\right.$ H), 3.02-2.99 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 2.88-2.82 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $2.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.86,2_{\mathrm{B}}-\mathrm{H}\right), 1.95-1.21(12 \mathrm{H}$, $\left.\mathrm{m}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 171.5$ (1-C), 170.7 (5-C), 81.4 ($4-\mathrm{C}$), 75.7 (14-C), 58.6 (3-C), 50.5 ($6-\mathrm{C}$), 49.5 (15-C), 49.2 ($7-\mathrm{C}$), 37.3 (13-C), 37.0 (2-C), 31.0, 28.1, 27.3, 19.2, 18.7 ($8-\mathrm{C}$ to 12-C); MS m / z (EI) 297 (M+ 16), 266 (5), 238 (25); HRMS: Found $373.2208 \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N},[\mathrm{M}+\mathrm{H}]^{+}$Requires 373.2203 .
(3aS, 7S,10aS)-4-(benzenesulfonyl)-7-[(benzenesulfonyl)methyl]octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridine (6c)

To a solution of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.037 \mathrm{~g}, 0.54 \mathrm{mmol})$ and $\mathrm{NaOAc}(0.092 \mathrm{~g}, 1.1 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(9 \mathrm{~mL})$ and anhydrous $\mathrm{MeOH}(7 \mathrm{~mL})$ was added a solution of $5 \mathrm{c}(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in anhydrous MeCN (1 mL) and the resulting mixture left to stir at r.t. overnight. Upon complete consumption of the starting material the solvent was evaporated and the resulting brown solid diluted with DCM (50 mL), filtered under suction and washed continuously with DCM until the solid became white in colour. The filtrate was concentrated, dissolved in MeCN (20 mL) and stirred at $50^{\circ} \mathrm{C}$ for 3 hours. The crude mixture was concentrated and purified via flash chromatography eluting with hexane/EtOAc 1:2 to give 6 c as a yellow oil, $0.077 \mathrm{~g}, 37 \%$. IR $v_{\max }($ thin film $\left.) / \mathrm{cm}^{-1}\right) 2927,1629,1305,1146,1085 ; \mathbf{N M R} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95-7.87$ $\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}, 17-\mathrm{H}_{2}\right), 7.68-7.59(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 19-\mathrm{H}), 7.56-7.52\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}, 18-\mathrm{H}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{d}$, J 7.41, 3-H), 3.85-3.80 (1H, m, 2-H), $3.53\left(1 \mathrm{H}, \mathrm{dd}, J 14.2,2.61,1_{\mathrm{B}}-\mathrm{H}\right), 3.32(1 \mathrm{H}, \mathrm{t}, J 6.62,8-\mathrm{H})$, $3.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2,9.41,1_{\mathrm{A}}-\mathrm{H}\right), 2.35-2.30\left(1 \mathrm{H}, \mathrm{m}, 14_{\mathrm{B}}-\mathrm{H}\right), 1.97-1.39\left(11 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\right.$ $\left.\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14_{\mathrm{A}}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 141.0(4-\mathrm{C}) 137.6$ (16-C), 134.2 (7-C), 133.6 (19-C), 129.3 (6-C), 129.2 (18-C), 129.0 (5-C), 127.8 (17-C), 99.7 (3-C), 77.3 (15-C), 60.4 (1-C), 60.3 (2C), $48.6(8-\mathrm{C}), 38.5,32.0,29.7,28.0,20.3,19.4$ ($9-\mathrm{C}$ to $14-\mathrm{C})$; MS m/z (FT) $462\left([\mathrm{M}+\mathrm{H}]^{+} 100\right)$, 320 (100), HRMS Found 462.1396. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$, requires 462.1403.

Ethyl [(3aS,7S,10aS)-octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]acetate (6d)

To a solution of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.070 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{NaOAc}(0.17 \mathrm{~g}, 2.1 \mathrm{mmol})$ in absolute EtOH (25 mL) was added a solution of $5 \mathbf{d}$ in absolute $\mathrm{EtOH}(10 \mathrm{~mL})$ and the resulting solution was refluxed for 4 hours. The reaction was stopped and the solvent evaporated to give $\mathbf{6 d}$ as a yellow oil, $0.20 \mathrm{~g}, 94 \%$. IR $\mathrm{v}_{\text {max }}($ (thin film $\left.) / \mathrm{cm}^{-1}\right)$ 2936, 1730, 1184, 1120; NMR $\delta_{H}(400 \mathrm{MHz}$, CDCl_{3}) $4.22\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.83,4_{A}-\mathrm{H}\right), 4.05\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.13,13-\mathrm{H}_{2}\right), 3.34\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.39,4_{\mathrm{B}}-\mathrm{H}\right), 2.96-$ $2.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3,5.88,2_{\mathrm{A}}-\mathrm{H}\right.$), 2.64-2.60(1H, m, 5-H), 2.16(1H, dd, J 15.3, 4.78, $\left.2_{B}-\mathrm{H}\right), 1.93-1.24\left(12 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.13,14-\mathrm{H}_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.8(1-\mathrm{C}), 77.2(12-\mathrm{C}), 71.8(4-\mathrm{C}), 60.3$ (13-C), 57.4 (3-C), 47.1 (5-C), 41.6 (6-C), 40.6 (2-C), 33.9, 31.5, 30.4, 22.7, 21.3 (7-C to 11-C), 14.2 (14-C); MS m/z (EI) 253 (M+, 9), 224 (10), 208 (11), 166 (100).

Methyl [(3aS,7S,10aS)-octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]acetate (6e)

$\mathbf{6 e}$ was obtained by reacting $\mathbf{5 e}$ in the synthesis described for $\mathbf{6 d}$ resulting in a yellow oil 0.37 g, 37%. IR $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$) 2944, 1733, 1435, 1249, 1159; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.21$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.34,4_{A}-\mathrm{H}\right), 3.59\left(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}_{3}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.9,8.39,4.08,4_{\mathrm{B}}-\mathrm{H}\right), 2.96-2.90(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}) .2 .72\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,5.74,2_{\mathrm{B}}-\mathrm{H}\right.$). 2.64-2.60 (1H, m, 5-H), 2.18 ($1 \mathrm{H}, \mathrm{dd}, J 15.2,6.55,2_{\mathrm{A}}{ }^{-}$ $-\mathrm{H})$, 1.92-1.19 (12H, m, 6- $\left.\mathrm{H}_{2}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.1(1-\mathrm{C})$,
77.1 (12-C), 71.7 (4-C), 57.4 (3-C), 51.5 (13-C), 47.0 (5-C), 41.5, 40.3, 33.8, 31.4, 30.4, 22.6, 21.3 (2-C and 6C to 11-C); MS, m/z (EI), 239 ($\mathrm{M}^{+} 10$), 166 (100).

2-[(3aS,7S,10aS)-octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]ethan-1-ol (7)

To a solution of $\mathbf{6 d}(0.051 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous DCM (5 mL) pre-cooled to $0{ }^{\circ} \mathrm{C}$ was added DIBAL-H ($0.23 \mathrm{~mL}, 0.22 \mathrm{mmol}$) in one portion and the resulting mixture left to stir at 0 ${ }^{\circ} \mathrm{C}$ for 2.5 hours. The reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$, diluted with $\mathrm{dH}_{2} \mathrm{O}(5 \mathrm{~mL})$ and left to stir for 10 minutes. The solution was added to $\mathrm{HCl}(5 \mathrm{~mL}, 10 \%$ sol' n) and the pH raised to 10 with the addition of $\mathrm{NaOH}(1 \mathrm{M})$. The mixture was diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$, extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), organic fractions combined, dried over MgSO_{4}, filtered and concentrated to give $\mathbf{7}$ as a brown oil $0.025 \mathrm{~g}, 59 \%$. IR $\mathrm{v}_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1}$) $3360-\mathrm{OH}, 2932$, 2863, 1444, 1054; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.25\left(1 \mathrm{H}, \mathrm{t} J 8.80,4_{\mathrm{A}}-\mathrm{H}\right), 3.92-3.86\left(1 \mathrm{H}, \mathrm{m}, 1_{\mathrm{A}}-\mathrm{H}\right)$,
 $m, 5-H), 2.10-2.02\left(1 H, m, 2_{A}-H\right) .1 .97-1.83\left(2 H, m, 6_{B}-H, 11-H\right), 1.77-1.30\left(12 H, m, 2_{B}-H, 6_{A}-\right.$ $\left.\mathrm{H}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 76.7(12-\mathrm{C}), 71.5(4-\mathrm{C}), 60.4(1-\mathrm{C}), 58.9$ (3-C), 47.8 (5-C), 41.8 (6-C), 35.6 (2-C), 33.8 (11-C), 31.5, 28.9, 22.9, 21.1 (7-C to 10-C); MS m/z (EI) $211\left(\mathrm{M}^{+}, 8\right), 166$ (100); HRMS Found 212.1642, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 212.1645.

Methyl [(3aS,4S,7S,10aS)-4-(hydroxymethyl)octahydro-1H-yclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]acetate (8)

8

A solution of $6 \mathrm{a}(0.53 \mathrm{~g}, 1.9 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(40 \mathrm{~mL})$ was added to $\mathrm{Pd} / \mathrm{C}(0.53 \mathrm{~g}$, $100 \% \mathrm{wt}$) and left to stir under an atmosphere of H_{2} at r.t for 18 hours. The catalyst was filtered off and the solvent evaporated under reduced pressure. The crude was purified via flash chromatography eluting with $\mathrm{DCM} / \mathrm{MeOH} 9: 1$ to give 8 as a colourless oil, $0.085 \mathrm{~g}, 20 \%$. IR $v_{\text {max }}($ thin film $\left.) / \mathrm{cm}^{-1}\right) 3436-\mathrm{OH}, 2937,1732,1436,1195,1114 ;$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $4.60(1 \mathrm{H}, \mathrm{s}(\mathrm{br}), 15-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.80,5_{\mathrm{A}}-\mathrm{H}\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.90,5_{B}-\mathrm{H}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}_{3}\right)$, 3.54-3.48 (1H, m, 4-H), 3.32-3.28 (1H, m, 3-H), 2.48 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.3,9.86,2-\mathrm{H}$), 2.34 (1 H , dd, J 14.3, 8.85, 2-H), 2.14-2.07 (1H, m, 12 ${ }_{A}-\mathrm{H}$), 1.85-1.38 (12H, m, 6-H, 7-H2, 8- $\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-$ $\mathrm{H}_{2}, 12_{\mathrm{B}}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.9$ (1-C), 78.5 (4-C), 77.2 (5-C), 77.1 (13-C), 52.7 (3-C), 51.7 (13-C), 40.7 (6-C), 37.7 (2-C), 36.1, 30.8, 28.2, 23.7, 19.9, 17.6 (7-C to 12-C); MS m/z (EI) 252 (24), 224 (19), 210 (69), 196 (31); HRMS Found 270.1698, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{4},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 270.1700.

Methyl \{(1S,5S,7S)-1-[(1S)-1,2-dihydroxyethyl]-6-azaspiro[4.5]decan-7-yl\}acetate (9)

9

A solution of $8(0.76 \mathrm{~g}, 2.7 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(40 \mathrm{~mL})$ followed by $\mathrm{Pd} / \mathrm{C}(0.76 \mathrm{~g}, 100$ $\% \mathrm{wt}$) was added to a pressure reactor and stirred at r.t for 18 hours under an atmosphere of H_{2} at 5 bar pressure. The catalyst was filtered off and the solvent evaporated under reduced pressure. The crude mixture was purified via flash chromatography eluting with $\mathrm{DCM} / \mathrm{MeOH}$ $7: 3$ to give 9 as a white residue $0.13 \mathrm{~g}, 17 \%$. IR $\mathrm{v}_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1}$) $3311,2931,1728,1195$, $1173,1116,1070 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right), 3.71-3.67\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5_{\mathrm{B}}-\mathrm{H}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}_{3}\right)$, 3.46-3.42 (1H, m, $\left.5_{A}-\mathrm{H}\right), 3.32-3.26\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{3}\right), 2.46-2.42\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.13-2.09(1 \mathrm{H}, \mathrm{m}, 6-$ H), 1.87-1.29 ($\left.12 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.1(1-\mathrm{C})$, 77.3 (13-C), 74.0 ($4-\mathrm{C}$), 65.3 (5-C), 51.8 (14-C), 50.3 (3-C), 41.0 (6-C), 40.3 (2-C), 38.6, 36.0, 30.9, 26.6, 20.0, 19.6 (7-C to 12-C); MS (EI), 271 (M+ 3), 254 (34), 240 (67), 224 (13), 198 (40); HRMS Found 272.1858 $\mathrm{C}_{4} \mathrm{H}_{25} \mathrm{NO}_{4},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 272.1856.

10

A solution of $6 \mathbf{b}(0.11 \mathrm{~g}, 0.36 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(8 \mathrm{~mL})$ was added to $\mathrm{Pd} / \mathrm{C}(0.11 \mathrm{~g}$, $100 \% \mathrm{wt}$) and the solution was left to stir at r.t under an atmosphere of H_{2} for 18 hours. The catalyst was filtered off and the solvent evaporated under reduced pressure to give 10 as a colourless residue $0.071 \mathrm{~g}, 73 \%$. IR $\mathrm{v}_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1}$) 3307-OH, 2945, 1733, 1663; NMR δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), 4.74-4.68 (1H, m, 3-H), 4.61 (1H, S-br, 15-H), 4.32 (1H, d, J 9.83, 5-H), 3.65 $\left(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}_{3}\right), 2.61(2 \mathrm{H}$, ddd, J 15.1, 2-H2), 2.39-2.33 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.01-1.95 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$), 1.82-1.28 (11H, m, 7-H $\left., 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{1}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.2(1-\mathrm{C}), 171.2$ (4-C), 69.4 (13-C), 69.1 ($5-C), 51.8$ (14-C), 48.3 ($6-C), 45.7$ (3-C), 38.8, 37.3, 36.8, 27.8, 25.9, 23.8, 17.3 (2-C and 7-C to 12-C), MS (EI) 267 (M+36).

Ethyl [(3aS,4S,7S,10aS)-4-(hydroxymethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]acetate (11)

11

To solution of $6 \mathrm{a}(1.1 \mathrm{~g}, 3.7 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(30 \mathrm{~mL})$ pre-cooled to $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.43 \mathrm{~g}, 11 \mathrm{mmol})$ in one portion. The reaction mixture was warmed to r.t and left to stir for 48 hours. The reaction was quenched with acetone (30 mL) and left to stir at r.t for 1 hour. The solvent was evaporated, and the resulting white solid dissolved in $\mathrm{dH}_{2} \mathrm{O}(30 \mathrm{~mL})$. The crude was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated to give a yellow oil. The crude was purified via flash chromatography eluting with hexane/EtOAc 1:1 to give $\mathbf{1 1}$ as a colourless oil $0.60 \mathrm{~g}, 63 \%$. $\mathbf{I R} \mathrm{v}_{\text {max }}\left(\right.$ (thin film) $\left./ \mathrm{cm}^{-1}\right) 3435-\mathrm{OH}$, $2934,1730,1299,1170,1130 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.16-4.03\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{2}\right), 3.73-3.64$ ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5_{A}-\mathrm{H}$), 3.57-3.51 (1H, m, $5_{B}-\mathrm{H}$), 3.21-3.15 (1H, m, 3-H), 2.66-2.60 (2H, m, 2 $\mathrm{B}_{\mathrm{B}}-\mathrm{H}, 6-$ H), $2.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.9,3.90,2_{A}-\mathrm{H}\right.$), 2.03-1.95 (1H, m, 12 ${ }_{\mathrm{B}}-\mathrm{H}$), 1.66-1.23 ($11 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-$ $\left.\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12_{\mathrm{A}}-\mathrm{H}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.15,15-\mathrm{H}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.9(1-\mathrm{C}), 88.0(4-\mathrm{C})$, 76.7 (13-C), 62.1 ($5-\mathrm{C}), 61.8$ (3-C), 61.0 (14-C), 46.1 (6-C), 42.0 (2-C), 38.0 (12-C), 31.9, 31.1, 26.6, 20.3, 20.2 (7-C to 11-C), 14.0 (15-C); MS m/z (EI) 283 (M+14), 210 (40), 196 (100).

A solution of 11 ($0.62 \mathrm{~g}, 2.2 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(40 \mathrm{~mL})$ was added to $\mathrm{Pd} / \mathrm{C}(0.25 \mathrm{~g}, 40$ $\% \mathrm{wt}$) and the reaction mixture left to stir under an atmosphere of H_{2} at r.t. Upon complete consumption of the starting material the reaction was stopped, and the mixture filtered to remove the catalyst. The solvent was evaporated to give 12 as a viscous opaque oil, 0.61 g , 99% IR $v_{\max }($ thin film $\left.) / \mathrm{cm}^{-1}\right) 3304,2934,1731,1253,1185 ; \mathbf{N M R} \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.15-$ $4.09\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{2}\right), 3.90-3.86(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.78-3.72(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 5-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$, $5.305-H), 2.92-2.85\left(1 H, m, 2_{B}-H\right) 2.68\left(1 H, d d, J 16.0,8.60,2_{A}-H\right), 2.24-2.20(1 H, m, 6-H)$, 2.14-2.08 (1H, m, 12 $\left.{ }_{B}-H\right), 1.90-1.45\left(11 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12_{\mathrm{A}}-\mathrm{H}\right), 1.23(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 7.15,15-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 170.5(1-\mathrm{C}), 72.7$ (4-C), 66.8 (13-C), 65.5 (5-C), 60.9 (14-C), 51.5 (3-C), 42.2 (6-C), 38.3 (2-C), 36.5 (12-C), 34.3, 28.5, 26.1, 19.5, 19.0 (7-C to 11-C), 14.2 (15-C); MS m/z (EI) 285 (M+ 6), 268 (38), 254 (84).

13

To a stirring solution of DMSO ($0.16 \mathrm{~g}, 0.41 \mathrm{~mL}, 5.7 \mathrm{mmol})$ in anhydrous DCM (2 mL), precooled to $-84^{\circ} \mathrm{C}$ was added oxalyl chloride ($0.22 \mathrm{~g}, 0.50 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in one portion. After stirring at $-84^{\circ} \mathrm{C}$ for one hour $12(0.20 \mathrm{~g}, 0.70 \mathrm{mmol})$ was added dropwise over 30 minutes and the mixture left to stir at $-15^{\circ} \mathrm{C}$ for one hour. The reaction temperature was lowered to $-84^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.43 \mathrm{~g}, 0.60 \mathrm{~mL}, 4.2 \mathrm{mmol})$ dropwise over 30 minutes. Upon complete addition the reaction temperature was raised to r.t and the mixture was left to stir for a further 45 minutes. The reaction was quenched with $\mathrm{dH}_{2} \mathrm{O}(8 \mathrm{~mL})$ and left to stir for 1 hour, followed by dilution with DCM (15 mL). The crude product was extracted with DCM ($2 \times 25 \mathrm{~mL}$), washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated to give 13 as an orange oil. The crude product was purified via flash chromatography eluting with hexane/EtOAc 4:1 to give a yellow oil, $0.027 \mathrm{~g}, 27 \%$. IR $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$) 2934, 2870, 1758, $1728,1703,1448,1174 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.02-4.96(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.17-4.05(2 \mathrm{H}, \mathrm{m}$, 14- H_{2}), 2.75-2.61 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$), $2.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.54,4.90,6-\mathrm{H}\right.$), 2.04-1.57 ($12 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}$, $\left.9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.14,15-\mathrm{H}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.0(5-\mathrm{C}), 170.2(1-$ C), 158.8 ($4-C), 66.3$ ($13-C$), 61.1 ($14-C), 55.0$ ($6-C), 46.4(3-C), 37.9(2-C), 37.6,37.3,28.1,27.6$, 26.3, 16.7 (7C to 12-C), 14.2 (15-C); MS m/z (EI) 279 (M+ 82).

14

To a solution of $\mathbf{1 1}(0.10 \mathrm{~g}, 0.39 \mathrm{mmol})$ in anhydrous DCM (6 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.051 \mathrm{~g}$, $0.07 \mathrm{~mL}, 0.51 \mathrm{mmol}$) and the resulting mixture was left to stir at r.t for 30 minutes. The temperature was lowered to $0^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{TsCl}(0.071 \mathrm{~g}, 0.37 \mathrm{mmol})$ and the mixture left to stir at the same temperature for 5 minutes, then warmed to r.t and left to stir for 2 weeks. The reaction was stopped and quenched with brine $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, extracted with DCM ($2 \times 30 \mathrm{~mL}$), organics combined, dried over MgSO_{4}, filtered and concentrated to give a yellow residue. The crude was purified via flash chromatography eluting with hexane / EtOAc 1:1 to give 14 as a colourless oil, $0.60 \mathrm{~g}, 41 \%$. $\mathbf{I R} \mathrm{v}_{\text {max }}($ thin film $\left.) / \mathrm{cm}^{-1}\right) 2938,1728,1364$, 1189, 1175, 1096; NMR $\delta_{H}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right), 7.81-7.78\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 7.35-7.32\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right)$, $4.16\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.08,5-\mathrm{H}_{2}\right), 4.08\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.14,19-\mathrm{H}_{2}\right), 3.81-3.76(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.95-2.88(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 2.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.1,2_{\mathrm{A}}-\mathrm{H}\right), 2.46-2.41\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right), 2.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.1,8.30,2_{\mathrm{B}}\right.$ H), 1.96-1.45 (12H, m, 12- $\left.\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.14,20-\mathrm{H}_{3}\right) ; \delta_{\mathrm{c}}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.2 (1-C), 144.9 (6-C), 133.0 (9-C), 129.9 ($8-\mathrm{C}$), 128.0 (7-C), 82.5 (4-C), 76.7 (18-C), 71.6 (5-C), 61.4 (3-C), 60.3 (19-C), 51.2 (11-C), 40.1 (2-C), 38.3, 31.6, 29.2, 27.7, 21.7, 21.3, 19.6 (10-C and 12-C to 14-C), 14.2 (20-C); MS m/z (EI) 237 (M+ 12), 208 (14), 194 (100), HRMS Found 438.1938, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$Requires 438.1945.

2-[(3aS,4S, 7S,10aS)-4-(hydroxymethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]ethan-1-ol (15)

15

To a solution of 6 a ($0.90 \mathrm{~g}, 2.8 \mathrm{mmol}$) in anhydrous DCM (25 mL) pre-cooled to $0^{\circ} \mathrm{C}$ was added a solution of Red-Al in PhMe (60 \% wt, $1.6 \mathrm{~mL}, 8.3 \mathrm{mmol}$) dropwise. Upon complete addition, the cooling bath was removed and the mixture left to stir for 10 minutes. The mixture was quenched with Rochelle's salt (10% sol'n, 40 mL) and left to stir overnight. The organic phase was extracted with DCM ($7 \times 50 \mathrm{~mL}$), combined, dried over MgSO_{4}, filtered and concentrated to give a yellow oil. The crude mixture was purified via flash chromatography, eluting with DCM/MeOH 8:2 to give 15 as an opaque oil, $0.40 \mathrm{~g}, 55 \%$. IR $\mathrm{v}_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$), $3330-\mathrm{OH}$, 2929, 2868, 1445, 1124, 1056; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.95-3.90\left(1 \mathrm{H}, \mathrm{m}, 1_{\mathrm{A}}-\mathrm{H}\right)$, 3.82-3.79 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.51,3.81,5_{B}-\mathrm{H}$), 3.74-3.70 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.66-3.57 ($2 \mathrm{H}, \mathrm{m}, 1_{B}-\mathrm{H}, 5_{A}-\mathrm{H}$), 3.05-2.99 (1H, m, 3-H), 2.53-2.50 (1H, m, 6-H), 2.04-1.97 (1H, m, 12 ${ }_{\mathrm{A}}-\mathrm{H}$), 1.94-1.34 ($13 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 7 \mathrm{H}_{2}$, $8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12 \mathrm{~B}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 86.1(4-\mathrm{C}), 76.6$ (13-C), 62.9, (5-C) 60.9 (3C), 60.3 (1-C), 49.6 ($6-C$), 38.3 (12-C), 37.0 (2-C), 31.2, 28.5, 27.5, 21.8, 19.4 ($7-\mathrm{C}$ to 11-C), HRMS Found 264.1567 $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$, Requires 264.1570.

Synthesis for compounds 17a-I
To a solution of $15(1 \mathrm{eq})$ in anhydrous $\mathrm{DCM}(4 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (2 eq) followed by a solution of acid chloride (see each compound below for equivalents of acid chloride) in anhydrous DCM (2 mL) dropwise. Once the addition was complete the cooling
bath was removed, and the mixture left to stir at r.t. Upon complete consumption of the starting material the reaction was quenched with $\mathrm{dH}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with $\mathrm{dH}_{2} \mathrm{O}(3 \mathrm{x}$ $20 \mathrm{~mL})$. The crude was extracted with DCM ($3 \times 20 \mathrm{~mL}$), the organic fractions combined, dried over MgSO_{4}, filtered and concentrated. The crude mixture was purified via flash chromatography eluting with hexane/EtOAc 1:1.
\{(3aS,4S,7S,10aS)-7-[2-(benzoyloxy)ethyl]octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl\}methyl benzoate (17a)

15 (1 eq) was treated with benzoyl chloride (1.1 eq) to give 17 a as an opaque oil, $0.18 \mathrm{~g}, 54$ \%. IR $\mathrm{v}_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$), 2938, 2866, 1714, 1601, 1450, 1176, 1111; NMR $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8.05-7.99 (4H, m, 9-H, 21-H), 7.55-7.47 (2H, m, 1-H, 23-H), 7.43-7.36 (4H, m, 8-H, 22H), 4.55-4.37 (4H, m, 6-H2, 2-H2), 4.00-3.95 (1H, m, 5-H), 2.97-2.90 (1H, m, 4-H), 2.52-2.48 (1H, $m, 12-H), 2.31-2.23\left(1 H, m, 18_{A}-H\right), 1.97-1.33\left(13 H, m, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18_{\mathrm{B}}{ }^{-}\right.$ H),); $\delta_{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 196.6$ (1-C), 166.6 ($7-\mathrm{C}$), 133.1 (11-C), 132.7 (23-C), 130.5 ($\left.8-\mathrm{C}\right), 129.9$ (20-C), 129.7 ($9-\mathrm{C}$), 129.5 (21-C), 128.4 (10-C), 128.3 (22-C), 82.6 (5-C), 76.3 (19-C), 66.9 ($6-\mathrm{C})$, 62.8 (2-C), 60.8 (4-C), 52.6 (12-C), 38.6, 34.4, 31.5, 28.1, 22.3, 19.5 ($13-\mathrm{C}$ to $18-\mathrm{C}$); MS m / z (FT) 472 ([M + Na] ${ }^{+} 13$), 450 (100), 328 (100); HRMS Found $450.2269 \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 450.2275 .
[(3aS,4S, 7S,10aS)-7-\{2-[(4-methoxybenzoyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 4-methoxybenzoate (17b)

17b

15 (1 eq) was treated with 4-methoxybenzoyl chloride (1.1 eq) to give 17b as a colourless oil $0.013 \mathrm{~g}, 6.0 \%$. IR $\mathrm{v}_{\text {max }}$ (thin film)/ cm^{-1}), 2924, 2850, 1711, 1606, 1511, 1460, 1257, 1167; NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.01-7.95 (4H, m, 9-H, 13-H), 6.93-6.96 (4H, m, 10-H, 23-H), 4.51 (1 H , dd, J 4.80, $\left.6_{A}-H\right), 4.47-4.35\left(3 H, m, 2-H, 6_{B}-H\right), 4.00-3.95(1 H, m, 5-H), 3.85\left(3 H, s, 12-H_{3}\right), 3.83(3 H$, s, 25-H3). 2.95-2.89 (1H, m, 4-H), 2.53-2.49 (1H, 13-H), 2.32-2.24 (1H, m, 19 ${ }_{A}-\mathrm{H}$), 2.05-1.29 ($13 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2} 17-\mathrm{H}_{2},-18-\mathrm{H}_{2}, 19_{\mathrm{B}}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.4$ (7-C), 166.0 (1-C), 163.5 (24-C), 163.2 (11-C), 131.7 (22-C), 131.5 ($9-C), 122.9$ (21-C), 122.3 (8-C), 113.7 (23C), 113.6 ($10-\mathrm{C}$), 82.8 ($5-\mathrm{C}$), 76.3 ($20-\mathrm{C}$), 66.7 ($6-\mathrm{C}$), 62.5 ($2-\mathrm{C}$), 60.9 ($4-\mathrm{C}$), 55.4 ($25-\mathrm{C}$), 55.3 (12C), 52.3 ($13-\mathrm{C}$), $38.6,34.0,31.5,28.2,28.0,22.1,19.6$ ($3-\mathrm{C}$ and $17-\mathrm{C}$ to $22-\mathrm{C}$); LCMS m / z (EI) 510 ([M+H] ${ }^{+} 100$), 358 (17); HRMS Found 510.2474 $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{7},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 510.2486.
[(3aS,4S, 7S,10aS)-7-\{2-[(4-fluorobenzoyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 4-fluorobenzoate (17c)

17c

15 (1 eq) was treated with 4-fluorobenzoyl chloride (1.1 eq) to give 17 c as a white residue, $0.022 \mathrm{~g}, 9.4 \%$. IR $\mathrm{v}_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$), 2937, 2867, 1716, 1602, 1507, 1270, 1238, 1152; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07-8.00(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 21-\mathrm{H}), 7.14-7.04(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 22-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{dd}$, $\left.J 11.6,4.58,6_{A}-H\right), 4.47-4.43\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,6.90,6_{B}-\mathrm{H}\right), 3.99-3.98(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.93-2.92(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.50-2.47(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.26-2.23\left(1 \mathrm{H}, \mathrm{m}, 18{ }_{\mathrm{B}}-\mathrm{H}\right), 2.01-1.28(13 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18 \mathrm{~A}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7(1-\mathrm{C}), 165.3$ ($7-\mathrm{C}$), 164.6 (23-C), 164.4 (11-C), 132.2 ($9-C), 132.1$ (21-C), 126.7 (20-C), 126.1 ($8-C), 115.7$ (22-C), 115.4 (10-C), 82.6 ($5-\mathrm{C}$), 76.3 (19-C), 67.1 ($6-\mathrm{C}), 63.0$ (2-C), 60.8 ($4-\mathrm{C}), 52.6$ (12-C), 34.1, 31.9, 31.4, 29.4, 28.1, 22.7, 19.4 (3-C and 13-C to 18-C); MS m/z (EI) 486 (M+100), 346 (17), 318 (58), HRMS Requires $486.2073 \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{NO}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Found 486.2087.
[(3aS,4S, 7S,10aS)-7-\{2-[(cyclohexanecarbonyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl cyclohexanecarboxylate (17d)

17d

15 (1 eq) was treated with cyclohexane carbonoyl chloride (1.1 eq) to give 17d as a colourless oil, $0.11 \mathrm{~g}, 50 \%$. No further purification was required. IR $\mathrm{v}_{\text {max }}\left(\right.$ thin film)/cm ${ }^{-1}$), 2929, 2854, $1728,1450,1225,1168 ;$ NMR $\delta_{\text {H }}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right)$ 4.26-4.21 (1H, dd, J 4.97, $6_{B}-\mathrm{H}$), 4.17-4.11 $\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6_{A}-\mathrm{H}\right), 3.83-3.78(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.79-2.73(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.40-2.37(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H})$, 2.35-2.22 (2H, m, 8-H, 22-H), 2.11-2.04 (1H, m, 20 ${ }_{A}-\mathrm{H}$), 1.98-1.19 (33H, m, 3- $\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}$, $11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}, 2 \mathrm{O}_{\mathrm{B}}-\mathrm{H}, 23-\mathrm{H}_{2}, 24-\mathrm{H}_{2}, 25-\mathrm{H}_{2}, 26-\mathrm{H}_{2}, 27-$ $\left.\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.1$ (1-C), 175.8 (7-C), 82.7 ($5-\mathrm{C}$), 76.3 (21-C), 66.4 ($\left.6-\mathrm{C}\right), 61.9$ (2-C), 60.8 (4-C), 52.3 (14-C), 43.2 (22-C), 43.1 ($8-C), 38.5,34.5,33.9,31.5,29.1,29.0,29.0,28.2$, $28.1,27.7,25.8,25.7,25.5,25.4,25.4,22.1,19.6$ (3-C, $9-\mathrm{C}$ to $13-\mathrm{C}, 15-\mathrm{C}$ to $20-\mathrm{C}$ and $23-\mathrm{C}$ to 27-C); LCMS m/z (EI) $462[\mathrm{M}+\mathrm{H}]^{+} 100$), 334 (100); HRMS Found $462.3209 \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NO}_{5},[\mathrm{M}+$ H $]^{+}$, Requires 462.3214.
[(3aS, 4S, 7S,10aS)-7-(2-chloroethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 4-nitrobenzene-1-sulfonate (17e)

15 (1 eq) was treated with 3-nitrobenzene sulfonoyl chloride (3.3 eq) to give 17e as a brown oil, $0.025 \mathrm{~g}, 12 \%$. IR $v_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1}$) 2936, 2872, 1607, 1532, 1447, 1372, 1351, 1189, 733; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.77-8.74(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 8.53-8.50(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 8.27-8.25(1 \mathrm{H}$, $\mathrm{m}, 11-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.05,10-\mathrm{H}), 4.34\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 4.64,5_{\mathrm{A}}-\mathrm{H}\right), 4.25\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 6.28,5_{\mathrm{B}}-\mathrm{H}\right)$, 3.86-3.82 (1H, m, 4-H), 3.66-3.48 (2H, m, 1-H2), 2.72-2.65 (1H, m, 3-H), 2.43-2.40 (1H, m, 12H), 2.15-2.06 ($1 \mathrm{H}, \mathrm{m}, 18_{\mathrm{A}}-\mathrm{H}$), 1.93-1.32 ($13 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18_{\mathrm{B}}-$ H); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 148.3$ ($8-\mathrm{C}$), 138.2 ($6-\mathrm{C}$), 133.4 ($11-\mathrm{C}$), 130.8 ($10-\mathrm{C}$), 128.4 ($9-\mathrm{C}$), 123.2 (7-C), 81.9 ($4-\mathrm{C}$), 76.5 (19-C), 72.5 ($5-\mathrm{C}$), 60.7 (3-C), 51.9 (12-C), 42.5 (1-C), 38.3 (2-C), 38.0 (18C), 31.2, 29.7, 27.8, 22.0, 19.3 (13-C to 17-C); MS m/z (EI) 445 ([M + H]+ 100), 242 (18), HRMS Found $445.1195 \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 445.1200.
[(3aS, 4S, 7S,10aS)-7-(2-chloroethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 4-nitrobenzene-1-sulfonate (17f)

$17 f$

15 (1 eq) was treated with 4-nitrobenzene sulfonoyl chloride (2.2 eq) to give $\mathbf{1 7 f}$ as a white residue, $0.046 \mathrm{~g}, 26 \%$ IR $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$) 2938, 2871, 1604, 1532, 1446, 1403, 1370, 1185,$640 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.42-8.39(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 8.14-8.11(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.28(2 \mathrm{H}$, ddd, J 6.34, 5- H_{2}), 3.85-3.81 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.64-3.49 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}$), 2.72-2.65 (1H, m, 3-H), 2.41$2.38(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 2.15-2.06(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.92-1.19\left(13 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}\right.$, $\left.15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.8(9-\mathrm{C}), 141.7(6-\mathrm{C}), 129.3(7-\mathrm{C}), 124.5(8-\mathrm{C}), 81.9$ ($4-\mathrm{C}$), 76.5 (17-C), 72.6 ($5-C), 60.7$ (3-C), 51.8 (10-C), 42.5 (1-C), 38.3, 38.0, 31.2, 27.8, 27.7, 21.9, 19.3 (2-C and 11-C to 16-C); HRMS (TOF MS) 445 ([M + H] ${ }^{+} 100$).

2-[(3aS,4S, 7S,10aS)-4-(hydroxymethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]ethyl thiophene-2-sulfonate (17ga)

17ga

15 (1 eq) was treated with 2-thiophenesulfonoyl chloride (2.2 eq) to give $\mathbf{1 7 g a}$ as a colourless oil, $0.048 \mathrm{~g}, 22 \%$. IR $v_{\max }$ (thin film)/ cm^{-1}) 3383-OH, 2936, 2871, 1403, 1445, 1368, 1227, 1177; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.74-7.73 (1H, m, 15-H), 7.71-7.70 (1H, m, 17-H), 7.15-7.14 (1H, m, $16-H), 4.24-4.23\left(2 H, m, 1-H_{2}\right), 3.84-3.75\left(2 H, m, 4-H, 5_{B}-H\right), 3.66-3.62\left(1 H, m, 5_{A}-H\right), 2.94-2.90$ (1H, m, 3-H), 2.42-2.38 (1H, m, 6-H), 1.97-1.45 (2-H2, 7-H2, 8-H $\left., 9-H_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}\right) ; \delta_{c}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 135.6 (14-C), 134.5 (15-C), 133.1 (17-C), 128.2 (16-C), 80.8 ($\left.4-\mathrm{C}\right), 76.3$ (13-C), 71.1 (1-C), 60.9 (3-C), 60.4 (5-C), 52.6 ($6-C), 37.9,35.5,34.7,30.9,27.3,23.7,18.9$ (2-C and 7-C to 12-C); MS (EI) 388 ([M + H] 100), 370 (60), HRMS Found 388.1240, $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}_{2}[\mathrm{M}+$ H $]^{+}$, Requires 388.1247.
[7-(2-chloroethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl thiophene-2-sulfonate (17gb)

17gb

15 (1 eq) was treated with 2-thiophenesulfonoyl chloride (2.2 eq) to give 17gb as a colourless oil, $0.051 \mathrm{~g}, 24 \%$. IR $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$) 2938, 2870, 1445, 1368, 1228, 1177, 727; NMR δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.73 (1H, dd, J 3.79, 1.36, 7-H), 7.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.02,1.35,9-\mathrm{H}$), 7.16 , (1 H , dd, J 5.01, 3.80, 8-H), 4.28-4.21 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 3.84-3.80 (1H, M, 4-H), 3.65-3.65-3.52 (2H, m, 1H_{2}), 2.71-2.65 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.44-2.41 ($1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$), 2.19-2.11 ($1 \mathrm{H}, \mathrm{m}, 16_{\mathrm{A}}-\mathrm{H}$), 1.95-1.36 (13H, $\left.\mathrm{m}, 2-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16_{\mathrm{B}}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.4(6-\mathrm{C}), 134.5(9-\mathrm{C})$, 133.9 (7-C), 127.6 (8-C), 82.0 ($4-C), 76.6$ (17-C), 72.0 ($5-C$), 61.1 (3-C), 51.5 (10-C), 42.5 (1-C), 38.3, 38.2, 31.4, 28.3, 27.8, 21.7, 19.5 (2-C and 11-C to 16-C); MS (EI) 428 ([M + Na] ${ }^{+} 100$), 406 ([M + H]+ 85), 370 (43); HRMS Found $406.0904 \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{CINO}_{4} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 406.0908.
[(3aS, 4S, 7S, 1OaS)-7-\{2-[(2H-1,3-benzodioxole-5-carbonyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 2H-1,3-benzodioxole-5-carboxylate (17h)

17h

15 (1 eq) was treated with piperonyloyl chloride (1.8 eq) to give 17 h as an opaque oil, 0.071 g, 29\%. IR $v_{\text {max }}($ thin film $\left.) / \mathrm{cm}^{-1}\right) 2929,2250,1709,1505,1442,1277 ;$ NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.63 (1H, dd, J 14.8, 1.64, 14-H), 7.60 (1H, dd, J 14.8, 1.62, 29-H), 7.43 (1H, d, J 15.74, 1.74,13H), 7.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.74,1.74,28-\mathrm{H}$), 6.81-6.77 ($2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}, 24-\mathrm{H}$), $6.01(2 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 5.99(2 \mathrm{H}$, $\mathrm{s}, 26-\mathrm{H}), 4.48\left(1 \mathrm{H}, \mathrm{dd}, J 11.6,4.63,6_{\mathrm{B}}-\mathrm{H}\right), 4.41-4.38\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 4.32(1 \mathrm{H}, \mathrm{dd}, J 11.6,6.67$, $\left.6_{A}-H\right)$, 3.97-3.92 (1H, m, 5-H), 2.92-2.88 (1H, m, 4-H), 2.49-2.46 (1H, m, 15-H), 2.25-2.20 (1H, $\mathrm{m}, 3-\mathrm{H}), 2.01-1.50\left(13 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}, 20-\mathrm{H}_{2}, 21-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 165.9 (1-C), 165.6 ($7-\mathrm{C}$), 151.7 (12-C), 151.4 (27-C), 147.7 ($10-\mathrm{C}$), 147.6 ($25-\mathrm{C}$), 125.5 (14-C), 125.2 (29-C), 124.5 (8-C), 123.9 (23-C), 109.5 ($13-C$), 109.4 (28-C), 108.0 ($9-C), 107.9$ (24-C), 101.8 (11-C), 101.7 ($26-\mathrm{C}$), 82.7 ($5-\mathrm{C}$), 76.3 (22-C), 66.8 ($6-\mathrm{C}$), 62.7 (2-C), 60.8 ($4-\mathrm{C}$), 52.4 (15C), $38.6,34.1,31.5,29.8,28.1,22.2,19.5$ ($3-\mathrm{C}$ and $16-\mathrm{C}$ to $21-\mathrm{C}$); MS m / z (FT) 538 ($[\mathrm{M}+\mathrm{H}]^{+}$ 100), 372 (13), HRMS Found 538.2065, $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, requires 538.2072.
[(3aS,4S,7S,10aS)-7-\{2-[(4-methylbenzoyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl 4-methylbenzoate (17i)

17i

15 (1 eq) was treated with p-toluoyl chloride (4 eq) to give 17 i as a brown oil, $0.076 \mathrm{~g}, 38 \%$. IR $\mathrm{v}_{\text {max }}($ thin film $\left.) / \mathrm{cm}^{-1}\right) 2937,1713,1611,1447,1271,1209,1177$; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.91 ($4 \mathrm{H}, \mathrm{dd}, J 15.1,8.21,9-\mathrm{H}, 22-\mathrm{H}$), 7.20 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5,8.21,10-\mathrm{H}, 23-\mathrm{H}$), 4.52 (1H, dd, J 11.6, 4.79, $\left.6_{B}-H\right), 4.48-4.36\left(3 H, m, 2-H_{2}, 6_{A}-H\right), 4.01-3.96(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.94-2.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 2.53-2.50 ($1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$), $2.39\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}_{3}\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, 25-\mathrm{H}_{3}\right), 2.32-2.24\left(1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{B}}-\mathrm{H}\right), 2.03-$ $1.33\left(13 \mathrm{H}, \mathrm{m}, 3_{\mathrm{A}}-\mathrm{H}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.7(1-\mathrm{C})$, 166.2 ($7-\mathrm{C}$), 143.8 (11-C), 143.3 (24-C), 129.7 (22-C), 129.5 ($9-C), 129.1$ (23-C), 129.0 (10-C), 127.7 (21-C), 127.1 ($8-\mathrm{C}$), 82.7 ($5-\mathrm{C}$), 76.3 (20-C), 66.7 ($6-\mathrm{C}$), 62.6 (2-C), 60.9 ($4-\mathrm{C}$), 52.3 ($13-\mathrm{C}$), $38.5,33.9,31.5,28.2,28.0,22.1,21.7,21.6,19.5$ (3-C, 12-C, $14-\mathrm{C}$ to $19-\mathrm{C}$ and $25-\mathrm{C}$); MS (EI) $500\left([\mathrm{M}+\mathrm{Na}]^{+} 14\right), 478$ (100), 342 (12), HRMS Requires $478.2581 \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Found 478.2588.
[(3aS,4S,7S,10aS)-7-\{2-[(pyridine-4-carbonyl)oxy]ethyl\}octahydro-1H-
cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl pyridine-4-carboxylate (17j)

17j

15 (1 eq) was treated with isonicotinoyl chloride (3 eq) to give $\mathbf{1 7 j}$ as a yellow oil, $0.067 \mathrm{~g}, 36$ $\%$. No further purification was required. $\mathbf{I R} \mathrm{v}_{\max }\left(\right.$ thin film)/ cm^{-1}) 2931, 2361, 1727, 1597, 1446, 1124; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.76-8.71(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 21-\mathrm{H}), 7.81-7.76(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$, $20-\mathrm{H}), 4.54-4.46\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 6_{A}-\mathrm{H}\right), 4.37\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6,7.11,6_{B}-\mathrm{H}\right), 3.97-3.92(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 2.91-2.88 (1H, m, 4-H), 2.45-2.42 (1H, m, 11-H), 2.21-2.13 ($1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{B}}-\mathrm{H}$), 1.97-1.32 ($13 \mathrm{H}, \mathrm{m}$, $\left.3_{\mathrm{A}}-\mathrm{H}, 12-\mathrm{H}_{2}, 13-\mathrm{H}_{2}, 14-\mathrm{H}_{2}, 15-\mathrm{H}_{2}, 16-\mathrm{H}_{2}, 17-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.1(1-\mathrm{C}), 164.8(7-\mathrm{C})$, 150.7 (21-C), 150.6 ($10-\mathrm{C}$), 137.5 (19-C), 137.0 ($8-\mathrm{C}$), 122.9 ($9-\mathrm{C}$), 122.8 (20-C), 82.1 ($5-\mathrm{C}$), 76.2 (18-C), 67.6 (6-C), 63.7 (2-C), 60.4 (3-C), 52.7 (11-C), 38.6, 34.2, 31.1, 28.1, 27.9, 22.4, 19.3 (3-C and 12-C to 17-C); MS (EI) 474 ($[\mathrm{M}+\mathrm{Na}]^{+} 12$), 452 (100), 329 (15); HRMS Found $452.2172 \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 452.2180 .
[(3aS,4S,7S,10aS)-7-(2-hydroxyethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl naphthalene-1-carboxylate (17ka)

15 (1 eq) was treated with 1-napthoyl chloride (1.5 eq) to give $\mathbf{1 7} \mathbf{k a}$ as a white residue, 0.023 $\mathrm{g}, 7.0 \%$. IR $\mathrm{v}_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$) 3397-OH, 2936, 2867, 1714, 1593, 1510, 1445, 1245, 1196, 1134; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.66,9-\mathrm{H}), 8.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.28,1.19,16-\mathrm{H})$, 8.04-8.02 ($1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}$), 7.90-7.88 (1H, m, 12-H), 7.65-7.60 (1H, m, 10-H), 7.56-7.49 (2H, m, $11-\mathrm{H}, 15-\mathrm{H}), 4.62-4.51\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 4.03-3.99(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.96-3.90\left(1 \mathrm{H}, \mathrm{m}, 1_{\mathrm{B}}-\mathrm{H}\right), 3.75-3.70$ (1H, m, $1_{A}-H$), 3.18-3.13 (1H, m, 3-H), 2.52-2.48 (1H, m, 17-H), 2.09-1.49 (14H, m, 2-H2, 18-H2, $\left.19-\mathrm{H}_{2}, 20-\mathrm{H}_{2}, 21-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.3(6-\mathrm{C}), 133.8(13-\mathrm{C}), 133.6(14-\mathrm{C})$, 131.4 ($7-\mathrm{C}$), 130.5 ($16-\mathrm{C}$), 128.6 ($12-\mathrm{C}$), 127.9 ($10-\mathrm{C}$), 126.7 ($8-\mathrm{C}$), 126.3 ($11-\mathrm{C}$), 125.8 ($9-\mathrm{C}$), 124.5 (15-C), 81.9 ($4-\mathrm{C}$), 76.0 (24-C), 66.2 ($5-\mathrm{C}$), 61.3 (3-C), 60.5 (1-C), 54.0 (17-C), 38.7, 35.5, 30.7, 28.4, 26.2, 23.1, 18.8 (2-C and 18-C to 23-C); MS 418 ([M+Na] ${ }^{+} 100$), 396 (14); HRMS Found $396.2161 \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 396.2169.
[(3aS,4S, 7S,10aS)-7-\{2-[(naphthalene-1-carbonyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl naphthalene-1-carboxylate (17kb)

17kb

15 (1 eq) was treated with 1-napthoyl chloride (1.5 eq) to give $\mathbf{1 7 k b}$ as a white residue, 0.14 g, 32%. IR $\mathbf{v}_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1}$) 2924, 2855, 1711, 1593, 1510, 1455, 1241, 1195, 1133; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.30,10-\mathrm{H}, 28-\mathrm{H}), 8.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.28,17-\mathrm{H}), 8.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $7.26,33-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.20,15-\mathrm{H}), 7.94$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.20,35-\mathrm{H}$), 7.87-7.82 ($2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}, 31-\mathrm{H}$), 7.61-7.41 (6H, m, 11-H, 12-H, 16-H, 29-H. 30-H, 34-H), 4.62 (1H, m, 6 - H), 4.58 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.81$, 2-H2), $4.50\left(1 \mathrm{H}, \mathrm{dd}, J 6.85,6_{A}-\mathrm{H}\right), 4.09-4.04(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.05-3.00(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.57-2.53(1 \mathrm{H}$, $\mathrm{m}, 18-\mathrm{H}), 2.40-2.33\left(1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{B}}-\mathrm{H}\right), 2.08-1.38$ ($13 \mathrm{H}, \mathrm{m}, 3_{\mathrm{A}}-\mathrm{H}, 19-\mathrm{H}_{2}, 20-\mathrm{H}_{2}, 21-\mathrm{H}_{2}, 22-\mathrm{H}_{2}, 23-\mathrm{H}_{2}$, $\left.24-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.6$ (1-C), 167.2 ($7-\mathrm{C}$), 133.8 ($14-\mathrm{C}$), 133.7 (32-C), 133.5 ($15-\mathrm{C}$), 133.1 ($35-\mathrm{C}$), 131.4 ($8-\mathrm{C}$), 131.3 ($26-\mathrm{C}$), 130.5 ($17-\mathrm{C}$), 130.1 ($33-\mathrm{C}), 128.5$ ($13-\mathrm{C}), 128.4$ (31-C), 127.8 (11-C), 127.6 (29-C), 127.4 ($9-C), 126.7$ (27-C), 126.2 (12-C), 126.1 (30-C), 125.8 (10-C), 125.7 ($28-\mathrm{C}$), 124.5 ($16-\mathrm{C}, 34-\mathrm{C}$), 82.5 ($5-\mathrm{C}$), 76.3 ($25-\mathrm{C}$), 67.0 ($6-\mathrm{C}$), 62.9 (2-C), 60.7 (4-C), 52.7 (18-C), 38.6 (3-C), 34.2, 31.3, 28.2, 22.4, 28.0, 19.4 (19-C to 24-C); MS (EI) 572 ([M+Na] ${ }^{+} 10$), 550 (100), 378 (22); HRMS Found $550.2587 \mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 550.2588.
[(3aS,4S, 7S,10aS)-7-\{2-[(isoquinoline-3-carbonyl)oxy]ethyl\}octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl isoquinoline-3-carboxylate (18la)

171a

15 (1 eq) was treated with quinaldoyl chloride (1.3 eq) to give 17la as a yellow oil. The crude mixture was purified via flash chromatography, eluting with DCM/MeOH 9:1 to give a yellow oil, $0.13 \mathrm{~g}, 39 \%$. IR $\mathrm{v}_{\text {max }}\left(\right.$ (hin film)/cm $\left.{ }^{-1}\right) 2937,2236,1721,1593,1564,1504,1462,1243,1136$, 1106; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.26-8.19 (4H, m, $\left.9-\mathrm{H}, 16-\mathrm{H}, 26-\mathrm{H}, 33-\mathrm{H}\right), 8.12-8.08(2 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}, 28-\mathrm{H}), 7.90-7.56$ (6H, m, 13-H, 13-H, 14-H, 29-H, 30-H, 31-H), 4.70 (1H, dd, J 7.47, 4.25, $6-\mathrm{H}), 4.66-4.57\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 6-\mathrm{H}\right), 4.10-4.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.15-3.08(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.64-2.60$ (1H, m, 17-H), 2.41-2.33 (1H, m, 3-H), 2.01-1.37 (13H, m, 3-H, 18-H2, 19-H2, 20-H2, 21-H2, 22$\left.\mathrm{H}_{2}, 23-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.3$ ($7-\mathrm{C}$), 164.9 (1-C), 148.2 (8-C), 147.6 ($\left.25-\mathrm{C}\right), 147.6$ (15-C), 147.5 (32-C), 137.2, 137.1, 130.7, 130.2, 130.1, 129.3 (10-C), 129.2 (17-C), 128.6, 128.4, 127.5, 127.4, 121.1, 121.0, 82.7 (5-C), 76.4 (24-C), 67.4 (6-C), 64.1 (2-C), 60.7 (4-C), 51.9 (17-C), 38.5, 34.0, 31.6, 28.5, 27.9, 22.1, 19.6 (3-C and 18-C to 23-C); MS (EI) 552 ([M+H] ${ }^{+} 100$), 379 (85), 365 (17), 351 (36); HRMS Found $552.2481 \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 552.2493.
[7-(2-hydroxyethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-4-yl]methyl isoquinoline-3-carboxylate and 2-[4-(hydroxymethyl)octahydro-1H-cyclopenta[3,4][1,2]oxazolo[2,3-a]pyridin-7-yl]ethyl isoquinoline-3-carboxylate (17|b) and (171c)

15 was treated with quinaldoyl chloride (1.3 eq) to give a mixture of $\mathbf{1 7 1 \mathrm { lb } \text { and } \mathbf { 1 7 l c } \text { as an } , ~}$ opaque residue, $0.027 \mathrm{~g}, 11 \%$. IR $v_{\max }\left(\right.$ thin film) $\left./ \mathrm{cm}^{-1}\right) 3374,2934,2867,1720,1657,1593$, $1564,1505,1463,1293,1243,1139,1107$; NMR $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.39-3.19(6 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$, $18-\mathrm{H}, 23-\mathrm{H}, 31-\mathrm{H}, 33-\mathrm{H}, 38-\mathrm{H}$), 7.90-7.64 (6H, m, 19-H, $30-\mathrm{H}, 21-\mathrm{H}, 34-\mathrm{H}, 35-\mathrm{H}, 36-\mathrm{H}$), 5.34 (1 H , Br s, O-H), 4.79-4.74 (1H, m, 28-H), 4.65 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.05,2-\mathrm{H}_{2}$), 4.59-4.53 (1H, m, 28-H), 4.094.05 ($1 \mathrm{H}, \mathrm{m}, 27-\mathrm{H}$), 3.99-3.90 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 24-\mathrm{H}$), 3.84-3.81 (1H, m, 5-H), 3.77-3.68 (2-H, m, 6H, 24-H), 3.41-3.34 (1H, m, 4-H), 3.24-3.20 (1H, m, 26-H), 2.85-2.82 (1H, m, 39-H), 2.57-2.53 (1H, m, 7-H), 2.35-2.27 (1H, m, 3-H), 2.11-1.41 (27H, m, 3-H, 8-H ${ }_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}, 11-\mathrm{H}_{2}, 12-\mathrm{H}_{2}$, $13-\mathrm{H}_{2}, 25-\mathrm{H}_{2}, 40-\mathrm{H}_{2}, 41-\mathrm{H}_{2}, 42-\mathrm{H}_{2}, 43-\mathrm{H}_{2}, 44-\mathrm{H}_{2}, 45-\mathrm{H}_{2} ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.5$ (29-C), 165.1 (1-C), 148.1 (30-C), 147.6 (15-C), 147.5 (37-C), 147.1 (22-C), 137.8, 137.4, 130.6, 130.4, 129.8, 129.5 (32-C), 129.4 (17-C), 128.7, 127.6, 121.2, 121.1, 87.5 (5-C), 82.3 (27-C), 77.0 (14-C), 76.2 ($46-\mathrm{C}$), 66.8 (2-C), 64.1 (28-C), 61.4 ($6-C), 61.3$ (26-C), 60.4 (24-C), 59.9 (4-C), 52.5 (7-C), 46.2 (39-C), $38.6,38.3,36.0,35.6,32.1,31.2,30.5,28.1,27.2,27.1,22.5,20.7,20.0,19.2$ (3-C, 8-C to $13-\mathrm{C}, 25-\mathrm{C}$ and $40-\mathrm{C}$ to $45-\mathrm{C}$); MS (EI) 419 ([M+Na] 100), 397 (13), 224 (10), HRMS Found $397.2119 \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+}$, Requires 397.2122.

Current NanE	Data Paramotera ARF 185
Expmo	10
procno	1
F2 - Acquisition Parameters	
Date_	20190417
Tine	19.12 h
INSTRUM	KU_ Avance [III_4
Probid	z108618_0245 !
pulproc	zg30
TD	65536
solvent	c.del3
NS	16
${ }_{\text {SWH }}$	8223.685 Hz
FIDRES	0.250967 Hz
nQ	3. 98458899 sec
${ }^{\text {RG }}$	144
${ }^{\text {D }}$	60.800 uso
DE	16.30
${ }_{\text {L1 }}^{\text {IE }}$	1.00000000 ${ }^{29}$
IDO	$1.00000{ }^{1}$
sFor	399. 7324685 MHz
nuc1	1 1
${ }^{\text {P1 }}$	16.47699.75 usec
F2 - Procassing parameters	
${ }_{\text {SI }}^{\text {SI }}$	399. 73000976
WDW	
ssb	0 0.
${ }_{\text {LB }}^{\text {L }}$	0.20 Hz
PC	1.00

$\begin{array}{lllllllllllllllll}85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & \mathrm{ppm}\end{array}$

ARF267 Pure

$\begin{array}{llllllllllllllll}90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & \mathrm{ppm}\end{array}$

COSY NMR spectrum for compound 17a

HSQC NMR spectrum for compound 17a

NOESY NMR spectrum for compound 17a

COSY NMR spectrum for compound 17b

HSQC NMR spectrum for compound 17b

NOESY NMR spectrum for compound 17b

COSY NMR spectrum for compound 17c

HSQC NMR spectrum for compound 17c

COSY NMR spectrum for compound 17d

HSQC NMR spectrum for compound 17d

NOESY NMR spectrum for compound 17d

COSY NMR spectrum for compound 17e

HSQC NMR spectrum for compound 17e

NOESY NMR spectrum for compound 17e

COSY NMR spectrum for compound 17f

HSQC NMR spectrum for compound 17f

NOESY NMR spectrum for compound 17f

COSY NMR spectrum for compound 17ga

HSQC NMR spectrum for compound 17ga

NOESY NMR spectrum for compound 17ga

COSY NMR spectrum for compound 17gb

HSQC NMR spectrum for compound 17gb

NOESY NMR spectrum for compound 17gb

COSY spectrum for compound 17h

HSQC NMR spectrum for compound 17h

NOESY NMR spectrum for compound 17h

COSY NMR spectrum for compound 17i

HSQC NMR spectrum for compound $\mathbf{1 7} \mathbf{i}$

NOESY NMR spectrum for compound 17i

COSY NMR spectrum for compound 17j

HSQC NMR spectrum for compound 17j

NOESY NMR spectrum for compound (242)

COSY NMR spectrum for compound 17ka

HSQC NMR spectrum for compound 17ka

NOESY NMR spectrum for compound 17ka

COSY NMR spectrum for compound 17kb

HSQC NMR spectrum for compound $\mathbf{1 7 k b}$

NOESY NMR spectrum for compound $\mathbf{1 7 k b}$

COSY NMR spectrum for compound 171a

HSQC NMR spectrum for compound 17la

NOESY NMR spectrum for compound 17la

COSY NMR spectrum for mixture of compounds 17lc and 17lb

HSQC NMR spectrum for mixture of compounds 17lc and 17lb

NOESY NMR spectrum for mixture of compounds 17lc and 17lb

