Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Chemoselective, Osmium-Free, Dihydroxylation / Oxidative Cleavage of Heteroaryl Isoprenes by a Contemporary Malaprade Reaction

Zachary Z. Gulledge, Connor C. Pinson, Alexander M. Stovall, Fortune O. Dzeagu, and Jesse D. Carrick*

Department of Chemistry, Tennessee Technological University, Laboratory Science Commons, 803 Stadium Drive Cookeville, TN 38505-0001

Supporting Information

Table of Contents	S1–S2
Experimental Procedures	S3–S21
Compound 6 ¹ H NMR	S22
Compound 6 ¹³ C NMR	S23
Compound S7 ¹ H NMR	S24
Compound S7 ¹³ C NMR	S25
Compound S8 ¹ H NMR	S26
Compound S8 ¹³ C NMR	S27
Compound S9 ¹ H NMR	S28
Compound S9 ¹³ C NMR	S29
Compound S9 ¹⁹ F NMR	S30
Compound S10 ¹ H NMR	\$31
Compound S10 ¹³ C NMR	\$32
Compound S11 ¹ H NMR	\$33
Compound S11 ¹³ C NMR	S34
Compound S13 ¹ H NMR	\$35
Compound S13 ¹³ C NMR	S36
Compound S15 ¹ H NMR	S37
Compound S15 ¹³ C NMR	S38
Compound S16 ¹ H NMR	S39
Compound S16 ¹³ C NMR	S40
Compound S17 ¹ H NMR	S41
Compound S17 ¹³ C NMR	S42
Compound S18 ¹ H NMR	S43
Compound S18 ¹³ C NMR	S44
Compound S19 ¹ H NMR	S45
Compound S19 ¹³ C NMR	S46
Compound S19 ¹⁹ F NMR	S47
Compound S20 ¹ H NMR	S48
Compound S20 ¹³ C NMR	S49
Compound S21 ¹ H NMR	S50
Compound S21 ¹³ C NMR	S51
Compound S22 ¹ H NMR	S52
Compound S22 ¹³ C NMR	853
Compound S23 ¹ H NMR	S54

<u>Table of Contents</u> , continued	
Compound S23 ¹³ C NMR	S55
Compound S24 ¹ H NMR	S56
Compound S24 ¹³ C NMR	S57
Compound S25 ¹ H NMR	S58
Compound S25 ¹³ C NMR	S59
Compound S26 ¹ H NMR	S60
Compound S26 ¹³ C NMR	S61
Compound S31 ¹ H NMR	S62
Compound S31 ¹³ C NMR	S63
Compound S32 ¹ H NMR	S64
Compound S32 ¹³ C NMR	S65
Compound 2 ¹ H NMR	S66
Compound 2 ¹³ C NMR	S67
Compound 10 ¹ H NMR	S68
Compound 10 ¹³ C NMR	S69
Compound 11 ¹ H NMR	S70
Compound 11 ¹³ C NMR	S71
Compound 12 ¹ H NMR	S72
Compound 12 ¹³ C NMR	S73
Compound 12 ¹⁹ F NMR	S74
Compound 13 ¹ H NMR	S75
Compound 13 ¹³ C NMR	S76
Compound 14 ¹ H NMR	S77
Compound 14 ¹³ C NMR	S78
Compound 25 ¹ H NMR	S79
Compound 25 ¹³ C NMR	S80
Automated Flash Chromatogram of 6	S81
Automated Flash Chromatogram of S7	S82
Automated Flash Chromatogram of S8	S83
Automated Flash Chromatogram of S9	S84
Automated Flash Chromatogram of S10	S85
Automated Flash Chromatogram of S11	S86
Automated Flash Chromatogram of S13	S87
Automated Flash Chromatogram of S15	S88
Automated Flash Chromatogram of S16	S89
Automated Flash Chromatogram of S17	S90
Automated Flash Chromatogram of S18	S91
Automated Flash Chromatogram of S19	S92
Automated Flash Chromatogram of S20	S93
Automated Flash Chromatogram of S21	S94
Automated Flash Chromatogram of S22	S95
Automated Flash Chromatogram of S23	S96
Automated Flash Chromatogram of S24	S97
Automated Flash Chromatogram of S25	S98
Automated Flash Chromatogram of S31	S99
Automated Flash Chromatogram of S32	S100
-	

Experimental Section

General Considerations: All reagents were purchased from U.S. chemical suppliers, stored according to published protocols, and used as received unless indicated otherwise. All experiments were performed in oven-dried glassware. Reaction progress was monitored using thin-layer chromatography on glass-backed silica gel plates and/or ¹H NMR analysis of crude reaction mixtures. R_f values for compounds that resulted in a concentrically observed spot on normal phase silica gel, or alumina are reported using the conditions listed. Melting point data listed is for a single, uncorrected experiment. All reported yields listed are for pure compounds and corrected for residual solvent, if applicable, from ¹H NMR spectroscopy. Infrared spectral data was acquired from the (form) listed. All ¹H and ¹³C NMR data was acquired from a 500 MHz multinuclear spectrometer with broad-band N₂ cryoprobe. Chemical shifts are reported using the δ scale and are referenced to the residual solvent signal: CDCl₃ (δ 7.26), (CD₃)₂C=O (δ 2.05), and (CD₃)₂S=O (δ 2.50) for ¹H NMR and CDCl₃ (δ 77.15), (CD₃)₂C=O (δ 29.84), (CD₃)₂S=O (δ 39.52), and CD₃CN (δ 1.32) for ¹³C NMR.¹ Splittings are reported as follows: (br) = broad, (s) = singlet, (d) = doublet, (t) = triplet, (dd) = doublet of doublets, and (m) = multiplet. ¹³C NMR spectra were corrected for ring down using linear back prediction. High resolution mass spectrometry (HRMS) data was obtained utilizing electron impact ionization (EI) with a magnetic sector (EBE trisector), double focusing-geometry mass analyzer. In regards to analysis of samples via Qtof in positive ion mode, the following parameters were utilized: Capillary voltage 0.5-1.5 KV, Sampling cone 40 V, Source offset 60, Source temperature 80 °C, Desolvation 350 °C, Cone gas 30 L/h, Desolvation gas 600 L/h, lock spray capillary voltage 0.2KV, lock mass: 556.2771 in positive mode (leucine enkephalin).

General Procedure for the Synthesis of Methyl MTPhen Derivatives

$ \begin{array}{c} N \\ 1 \\ N \\ 1 \\ N \\ 1 \\ N \\ N$						
En	try NBS	(equiv)	Solvent	Temp (^o C)	Time (h)	Conversion (%) ^a
1	1 1	1.2	EtOAc (10:1)	75	18	56 (38) ^b
2	<u>2</u> 1	1.2	THF (10:1)	66	18	0
3	3 1	1.2	MeCN (10:1)	82	18	31
4	i 1	1.2	MeOH (10:1)	65	18	0
5	5 1	1.2	CHCI ₃ (10:1)	62	18	trace
6	S^C 1	1.2	EtOAc (10:1)	75	18	50
7	, d 1	1.2	EtOAc (10:1)	75	18	81 (42) ^b

Table S1. Summary of NBS-mediated Oxidation Conditions

^aDetermined via integration of crude 1H-NMR spectrum without internal standard

^bPurified, isolated yield (average of 3 experiments)

^cDrop-wise addition of NBS over 2 hours as a solution in MeCN

^dBrand-new NBS utilized

Table S2. Summary of Au-mediated Alkyne Hydration Strategies

^aTip of spatula amount used

^bDetermined via integration of crude ¹H-NMR spectrum without internal standard

^cReaction performed in a tightly sealed vessel

^dPurified, isolated yield

Scheme S1. Preparation of Br-MTP Starting Materials

For a general procedure for the construction of S1-S6 above, an adaptation of a literature procedure was employed.² The requisite Suzuki-Miyaura cross-coupling of 4,4'-dibromobenzil with potassium butyltrifluoroborate afforded the 4,4'-dibutylbenzyl used in the condensation sequence described above for accessing S3.

Scheme S2. General procedure for the Suzuki-Miyaura Cross-Coupling of Scaffolds

An adaptation of a literature procedure was employed.³ To a 100 mL round-bottom flask equipped with a magnetic stirring bar at ambient temperature was charged the requisite functionalized bromopyridine (2.0000 g, 5.144 mmol, 1.00 equiv), followed by palladium(II) acetate (0.0577 g, 0.257 mmol, 0.05 equiv), 2-dicyclohxylphosphino-2',6'-diisopropoxybiphenyl (RuPhos) (0.2400 g, 0.514 mmol, 0.10 equiv), and Cs₂CO₃ (5.0280 g, 15.432 mmol, 3.00 equiv). The flask was then fitted with a rubber septum and purged with dry nitrogen for five minutes using a gas bubbler. After purging with inert atmosphere, the solids were slurried in a 4:1 (v:v) mixture of toluene:H₂O (25.72 mL, 0.20 M final concentration) and stirred for 10 minutes at ambient temperature. 2-Isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, or analogous coupling reagent, (1.037 g, 6.172 mmol, 1.20 equiv) was then added under a stream of nitrogen and the contents heated to 110 °C for 16 hours. TLC results indicating consumption of starting material were subsequently benchmarked by ¹H NMR spectroscopy to determine relative ratios of starting material to product, as well as to assess the relevant impurity profile for purification. The crude reaction mixtures were directly adsorbed on silica gel (following removal of aqueous phase) under reduced pressure and purified using automated flash column chromatography with normal phase silica gel columns to afford the title compounds in the morphologies indicated after concentration in vacuo at ambient temperature.

3-(6-Isopropenyl-pyridin-2-yl)-6-(1-methylene-but-2-enyl)-5phenyl-[1,2,4]triazine (6). Prepared according to the general procedure discussed above input of S1 (2.0080 g, 5.165 mmol, 1.00 equiv), Pd(OAc)₂ (0.0579 g, 0.2585 mmol, 0.05 equiv), RuPhos (0.2410 g, 0.5165 mmol, 0.10 equiv), Cs₂CO₃ (5.0486 g, 15.495 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2dioxaborolane (1.0414 g, 6.198 mmol, 1.20 equiv), $R_f = 0.35$, 20%

ethylacetate:hexanes; purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether:hexanes gradient mobile phase; isolated yield 1.7180 g, 95%; yellow solid; melting point = 165.9–177.3 °C; ¹H NMR (500 MHz, (CD₃)₂CO): δ = 8.50 (d, *J* = 7.7 Hz, 1H), 8.04 (t, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.76–7.72 (m, 2H), 7.70–7.66 (m, 2H), 7.53–7.48 (m, 2H), 7.47–7.41 (m, 4H), 6.14 (s, 1H), 5.44–5.41 (m, 1H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 162.0, 159.2, 157.4, 156.6, 153.4, 144.2, 138.4, 137.1, 137.0, 131.5, 130.9, 130.5, 130.4, 129.4, 129.3, 123.3, 121.9, 116.5, 20.6; IR (ATR-solid):

 $\bar{v}_{max} = 3048, 2976, 2955, 2921, 1581, 1565, 1491, 1440, 1358, 775, 763, 697 \text{ cm}^{-1}$; HRMS (EI): m/z: [M]⁺ Calcd for C₂₃H₁₈N₄ 350.1531; Found: 350.1519.

3-(6-Isopropenyl-pyridin-2-yl)-5,6-di-p-tolyl-[1,2,4]triazine (S7). Prepared according to the general procedure discussed above input of S2 (1.1080 g, 2.663 mmol, 1.00 equiv), Pd(OAc)₂ (0.0299 g, 0.1331 mmol, 0.05 equiv), RuPhos (0.1243 g, 0.2663 mmol, 0.10 equiv), Cs₂CO₃ (2.6030 g, 7.989 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0414 g, 3.1956 mmol, 1.20 equiv), $R_f = 0.40, 20\%$

ethylacetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:hexanes gradient mobile phase ; isolated yield 0.5640 g, 56%; peach colored solid ; melting point = 154,2–155.6 °C; ¹H NMR (500 MHz, (CD₃)₂CO): δ = 8.49 (d, *J* = 7.7 Hz, 1H), 8.03 (t, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 6.14 (s, 1H), 5.42 (s, 1H), 2.40 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H), ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 161.7, 159.1, 157.1, 156.3, 153.5, 144.2, 141.9, 140.5, 138.3, 134.27, 134.25, 130.8, 130.3, 130.1, 130.0, 123.2, 121.8, 116.5, 21.4, 21.3, 20.6 ; IR (ATR-solid): \bar{v}_{max} = 3032, 2921, 1699, 1609, 1583, 1493, 1384, 1360, 1241, 1185, 1091, 911, 820, 733, 592, 538 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₂₅H₂₂N₄ 378.1844; Found: 378.1847.

5,6-Bis-(4-butyl-phenyl)-3-(6-isopropenyl-pyridin-2yl)-[1,2,4]triazine (S8). Prepared according to the general procedure discussed above input of S3 (0.6169 g, 1.233 mmol, 1.00 equiv), Pd(OAc)₂ (0.0138 g, 0.0616 mmol, 0.05 equiv), RuPhos (0.0575 g, 0.1233 mmol, 0.10 equiv), Cs₂CO₃ (1.2052 g, 3.699 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (0.2487 g, 1.480 mmol, 1.20 equiv), $R_f = 0.53$, 20% ethyl acetate:hexanes; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:methyl-*tert*-butyl ether (1:1):hexanes gradient mobile phase ; isolated yield 0.302 g g, 53%; yellow crystalline solid; melting point = 50.1–51.7 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.53$ (d, J = 7.8 Hz, 1H), 7.88 (t, J = 7.8 Hz, 1H), 7.69–7.64 (m, 3H), 7.58 (d, J = 7.5 Hz, 2H), 7.21 (d, J = 7.5 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 6.10 (s, 1H), 5.42 (s, 1H), 2.66 (t, J = 8.8 Hz, 2H), 2.64 (t, J = 8.8 Hz, 2H), 2.36 (s, 3H), 1.67–1.56 (m, 4H), 0.98–0.86 (m, 6H); ¹³C {¹H} NMR (125 MHz, CDCl₃): $\delta = 160.7$, 158.9, 156.2, 155.8, 152.3, 146.3, 145.0, 143.1, 137.4, 133.3, 133.0, 130.0, 129.5, 128.8, 128.7, 122.5, 121.3, 116.7, 35.67, 35.63, 33.44, 33.35, 22.47, 22.42, 20.6, 14.08, 14.06; IR (ATR-solid): $\bar{v}_{max} = 2956$, 2929, 2858, 1609, 1582, 1492, 1382, 1360, 831, 733 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₃₁H₃AN₄ 462.2783; Found: 462.2795.

5,6-Bis-(4-fluoro-phenyl)-3-(6-isopropenyl-pyridin-2-yl)-[1,2,4]triazine (**S9**). Prepared according to the general procedure discussed above input of **S4** (0.6906 g, 1.629 mmol, 1.00 equiv), Pd(OAc)₂ (0.0183 g, 0.0814 mmol, 0.05 equiv), RuPhos (0.0760 g, 0.163 mmol, 0.10 equiv), Cs₂CO₃ (1.5923 g, 4.887 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5tetramethyl-1,3,2-dioxaborolane (0.3285 g, 1.955 mmol, 1.20 equiv), $R_f = 0.33$, 20% ethyl acetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:methyl-*tert*-butyl ether (1:1):hexanes gradient mobile phase ; isolated yield 0.192 g, 64%; yellow solid; melting point = 163.5–164.9 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.55$ (d, J = 7.8 Hz, 1H), 7.93 (t, J = 7.8 Hz, 1H), 7.78–7.73 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.69–7.64 (m, 2H), 7.15–7.06 (m, 4H), 6.11 (s, 1H), 5.44 (m, 1H), 2.36 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 165.3$ (J = 330.6 Hz), 163.3, 160.9, 159.0, 155.2, 154.9, 151.8, 142.9, 137.7, 132.3 (J = 34.3 Hz), 131.7 (J = 12.9 Hz), 131.6 (J = 34.5 Hz), 131.5 (J = 13.7 Hz), 122.7, 121.7, 117.1, 116.1, 20.6 ; ¹⁹F NMR (471 MHz, (CD₃)₂SO): $\delta = -109.9 - -110.0$ (m, 1F), -111.8 - -111.9 (m, 1F) ; IR (ATR-solid): $\bar{v}_{max} = 3072$, 2922, 2863, 1603, 1583, 1514, 1492, 1383, 1362, 1236, 1160, 841, 728, 668 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₂₃H₁₆F₂N₄ 386.1343; Found: 386.1333.

5,6-Bis-(4-cyclopropyl-phenyl)-3-(6-isopropenyl-pyridin-2yl)-[1,2,4]triazine (S10). Prepared according to the general procedure discussed above input of S5 (0.0981 g, 0.210 mmol, 1.00 equiv), Pd(OAc)₂ (0.0024 g, 0.001 mmol, 0.05 equiv), RuPhos (0.0098 g, 0.002 mmol, 0.10 equiv), Cs₂CO₃ (0.205 g, 0.629 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0414 g, 6.198 mmol, 1.20 equiv), R_f = 0.38, 20% ethyl acetate:hexanes ; purified using automated flash column chromatography on a

normal phase silica gel column with an ethyl acetate:methyl-*tert*-butyl ether (1:1):hexanes gradient mobile phase ; isolated yield 0.0514 g, 57%; yellow crystalline solid; melting point = 112.3–113.7 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.52 (d, *J* = 7.7 Hz, 1H), 7.88 (t, *J* = 7.8 Hz, 1H), 7.68–7.63 (m, 3H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 2H), 7.05 (d, *J* = 7.7 Hz, 2H), 6.10 (s, 1H), 5.41 (s, 1H), 2.35 (s, 3H0, 1.97–1.87 (m, 2H), 1.07–1.00 (m, 4H), 0.79–0.73 (m, 4H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 160.6, 158.9, 155.9, 155.6, 152.3, 147.9, 146.3, 143.2, 137.4, 133.0, 132.7, 130.1, 129.5, 125.9, 125.7, 122.5, 121.3, 116.6, 20.6, 15.7, 15.6, 10.3, 10.0 ; IR (ATR-solid): \bar{v}_{max} = 3081, 3004, 1699, 1609, 1492, 1384, 1362, 902, 826, 733 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₂₉H₂₇N₄ 431.2236 ; Found: 431.2233.

3-(6-Isopropenyl-pyridin-2-yl)-5,6-bis-(3-methoxy-phenyl)-[1,2,4]triazine (S11). Prepared according to the general procedure discussed above input of S6 (0.5151 g, 1.1500 mmol, 1.00 equiv), Pd(OAc)₂ (0.0129 g, 0.0575 mmol, 0.05 equiv), RuPhos (0.0537 g, 0.115 mmol, 0.10 equiv), Cs₂CO₃ (1.1241 g, 3.450 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2dioxaborolane (1.0414 g, 6.198 mmol, 1.20 equiv) $R_f = 0.18$, 20% ethyl acetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:methyl-tert-butyl ether (1:1):hexanes gradient mobile

phase ; isolated yield 0.3442 g, 73%; yellow solid; melting point = 99.5–100.8 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.56 (dd, *J* = 0.7, 7.8 Hz, 1H), 7.91 (t, *J* = 7.9 Hz, 1H), 7.68 (dd, *J* = 0.8, 7.9 Hz, 1H), 7.37 (br-s, 1H), 7.31–7.30 (m, 1H), 7.27–7.24 (m, 3H), 7.17–7.14 (m, 1H), 7.02–6.96 (m, 2H), 6.10 (br-s, 1H), 5.44–5.41 (m, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 2.36 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 161.0, 159.9, 159.7, 158.9, 156.1, 155.8, 152.0, 143.1, 137.5, 137.0, 136.8, 129.8, 129.7, 122.6, 122.2, 121.5, 117.5, 116.7X (overlaps with 116.7), 116.7, 116.3, 114.7, 114.4,

55.5, 55.4, 20.6; IR (ATR-solid): $\bar{v}_{max} = 3073$, 3002, 2939, 2835, 1599, 1582, 1504, 1487, 1463, 1381, 1290, 1249, 1044, 817, 790, 703 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₂₅H₂₂N₄O₂ 410.1743; Found: 410.1731.

Scheme S3. Suzuki-Miyaura Cross-Coupling of Functionalized Pyridines Utilized

2-Isoprenyl-6-methylpyridine (S12). Prepared according to the general procedure discussed above input of 2-bromo-6-methylpyridine (1.427 g, 8.346 mmol). Spectroscopic data obtained was commensurate with that previously reported.⁴

2-Isopropenyl-6-methoxypyridine (S13). Prepared according to the general procedure discussed above via input of 2-bromo-6-methoxypyridine (0.2510 g, 1.343 mmol, 1.00 equiv), $Pd(OAc)_2$ (0.0150 g, 0.067 mmol, 0.05 equiv), RuPhos (0.0630 g, 0.135 mmol, 0.10 equiv), Cs_2CO_3 (1.312 g, 4.027 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.271

g, 1.613 mmol, 1.20 equiv), $R_f = 0.70$, 20% methyl *tert*-butyl ether:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether:hexanes gradient mobile phase ; isolated yield 0.0852 g, 43%; colorless oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 7.64$ (dd, J = 7.6, 7.9 Hz, 1H), 7.13 (d, J = 7.4 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 6.01–5.99 (m, 1H), 5.25–5.23 (m, 1H), 3.91 (s, 3H), 2.16 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 163.1$, 155.5, 142.6, 139.0, 115.5, 112.5, 109.5, 53.2, 20.4 ; IR (ATR-liquid): $\bar{v}_{max} = 3091$, 2977, 2949, 2926, 2849, 1463, 1413, 1576, 1318, 1255, 1030, 808 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₉H₁₂NO 150.0919; Found: 150.0917.

2-Isoprenyl-6-methylpyridine (S14). Prepared according to the general procedure discussed above input of 2-bromo-6-chloropyridine (0.6018 g, 3.152 mmol). Spectroscopic data obtained was commensurate with that reported.⁵

2-Isopropenyl-6-phenyl-pyridine (S15). Prepared according to the general procedure discussed above via input of 2-bromo-6-phenylpyridine (0.1200 g, 0.515 mmol), Pd(OAc)₂ (0.0060 g, 0.0267 mmol, 0.05 equiv), RuPhos (0.024 g, 0.051 mmol, 0.10 equiv), Cs₂CO₃ (0.5000 g, 1.535 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(0.1030 g, 0.613 mmol, 1.20 equiv), $R_f = 0.50$, 2% methyl-tert-butyl ether ; purified using

automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*butyl ether:hexanes gradient mobile phase ; isolated yield 0.0450 g, 45%; light brown oil; ¹H NMR (500 MHz, (CD₃)₂CO): δ = 8.18–8.15 (m, 2H), 7.86–7.80 (m, 2H), 7.58 (dd, *J* = 1.8, 6.7 Hz, 1H), 7.51–7.47 (m, 2H), 7.45–7.39 (m, 1H), 6.04–6.01 (m, 1H), 5.36–5.34 (m, 1H), 2.29–2.27 (m, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 158.4, 156.4, 144.5, 140.3, 138.2, 129.7, 129.5, 127.5, 119.3, 118.9, 115.7, 20.6 ; IR (ATR-liquid): \bar{v}_{max} = 3064, 2976, 2921, 2853, 1372, 1567, 1458, 1444, 904, 822, 769, 747, 695 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₁₄H₁₄N 196.1126; Found: 196.1129.

2-Isopropenyl-4-methyl-pyridine (S16). Prepared according to the general procedure discussed above via input of 2-bromo-4-methylpyridine (0.257 g, 1.503 mmol, 1.00 equiv), Pd(OAc)₂ (0.017 g, 0.076 mmol, 0.05 equiv), RuPhos (0.070 g, 0.150 mmol, 0.10 equiv), Cs₂CO₃ (1.469 g, 4.509 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.3030 g, 1.803 mmol, 1.20 equiv), R_f = 0.50, 15% methyl *tert*-butyl ether:hexanes ; purified using automated

flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether :hexanes gradient mobile phase ; isolated yield 0.1281 g, 64%; yellow oil; ¹H NMR (500 MHz, CD₃CN): $\delta = 8.29$ (d, J = 5.0 Hz, 1H), 7.37 (s, 1H), 7.01 (d, J = 4.6 Hz, 1H), 5.83 (s, 1H), 5.19– 5.16 (m, 1H), 2.26 (s, 3H), 2.08–2.06 (m, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 158.1$, 149.0, 148.9, 143.8, 124.1, 121.5, 116.0, 21.0, 20.6 ; IR (ATR-liquid): $\bar{v}_{max} = 3088$, 3052, 2977, 2921, 1596, 1558, 1467, 1451, 901, 827 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₉H₁₂N 134.0970; Found: 134.0965.

4-Isopropenyl-2-methyl-pyridine (S17). Prepared according to the general procedure discussed above via input of 4-bromo-2-methylpyridine (0.257 g, 1.503 mmol, 1.00 equiv), Pd(OAc)₂ (0.017 g, 0.076 mmol, 0.05 equiv), RuPhos (0.070 g, 0.150 mmol, 0.10 equiv), Cs₂CO₃ (1.469 g, 4.509 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.3030 g, 1.803 mmol, 1.20 equiv); $R_f = 0.40, 35\%$ ethyl acetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:hexanes gradient mobile phase

; isolated yield 0.146 g, 73%; amber oil; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.46-8.42$ (m, 1H), 7.25–7.16 (m, 2H), 5.56 (br-d, J = 4.3 Hz, 1H), 5.30–5.25 (m, 1H), 2.60 (d, J = 6.4 Hz, 3H), 2.13 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 157.9$, 149.7, 148.1, 141.0, 120.1, 117.7, 116.3, 23.9, 20.9 ; IR (ATR-liquid): $\bar{v}_{max} = 3087$, 2975, 2923, 2857, 1598, 1542, 1442, 1406, 1381, 905, 840 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₉H₁₂N 134.0970; Found: 134.0965.

3-Isopropenyl-2-methyl-pyridine (S18). Prepared according to the general procedure discussed above via input of 3-bromo-2-methylpyridine pyridine (0.257 g, 1.503 mmol, 1.00 equiv), $Pd(OAc)_2$ (0.017 g, 0.076 mmol, 0.05 equiv), RuPhos (0.070 g, 0.150 mmol, 0.10 equiv), Cs_2CO_3 (1.469 g, 4.509 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.3030 g, 1.803 mmol, 1.20 equiv), $R_f = 0.33$, 5% methanol:dichloromethane ; purified using automated

flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether pentane gradient mobile phase ; isolated yield 0.416 g, 57%; yellow powder; melting point = 175.6–176.0 °C; ¹H NMR (500 MHz, (CD₃)₂CO): δ = 8.35 (d, *J* = 4.6 Hz, 1H), 7.46–7.42 (m, 1H), 7.14 (dd, *J* = 4.9, 7.5 Hz, 1H), 5.26 (s, 1H), 4.89 (s, 1H), 2.47 (s, 3H), 2.05 (s, 3H)-overlaps with residual (CH₃)₂CO ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 155.5, 148.4, 145.2, 139.2, 135.9,

121.7, 116.2, 24.1, 23.0; IR (ATR-solid): $\bar{v}_{max} = 3083$, 3046, 2974, 2921, 2854, 1638, 1567, 1458, 1432, 1373, 1095, 901, 808, 742, cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₉H₁₂N 134.0970; Found: 134.00967.

3-Fluoro-5-isopropenyl-pyridine (S19). Prepared according to the general procedure discussed above via input of 3-bromo-5-fluoro-pyridine (0.3000 g, 1.712 mmol, 1.00 equiv), Pd(OAc)₂ (0.0193 g, 0.086 mmol, 0.05 equiv), RuPhos (0.0798 g, 0.171 mmol, 0.10 equiv), Cs₂CO₃ (1.6734 g, 5.136 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.3452 g, 2.054 mmol, 1.20 equiv), $R_f = 0.48$, 10% methyl *tert*-

butylether:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether:hexanes gradient mobile phase ;isolated yield 0.1904 g, 69%; clear oil; ¹H NMR (500 MHz, CD₃CN): $\delta = 8.59-8.55$ (m, 1H), 8.38 (d, J = 2.7 Hz, 1H), 7.62 (ddd, J = 1.9, 2.6, 10.5 Hz, 1H), 5.54 (s, 1H), 5.29–5.25 (m, 1H), 2.16, (br-s, 3H) ; ¹³C{¹H} NMR (125 MHz, CD₃CN): $\delta = 160.6$ (d, J = 252.2 Hz), 144.0 (d, J = 2.4 Hz), 140.7, 139.2 (d, J = 3.6 Hz), 137.4 (d, J = 23.1 Hz), 120.3 (d, J = 18.6 Hz), 116.1, 21.5 ; ¹⁹F NMR (471 MHz, CD₃CN): $\delta = -130.0$ (d, J = -5.6 Hz) ; IR (ATR-oil): $\bar{v}_{max} = 3733$, 3627, 2598, 2923, 2853, 1457, 668 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₈H₉FN 138.0719; Found: 138.0714.

3-Isopropenyl-5-methoxy-pyridine (S20). Prepared according to the general procedure discussed above via input of 3-bromo-5-methoxy-pyridine (0.2510 g, 1.343 mmol, 1.00 equiv), Pd(OAc)₂ (0.0150 g, 0.067 mmol, 0.05 equiv), RuPhos (0.0630 g, 0.135 mmol, 0.10 equiv), Cs₂CO₃ (1.312 g, 4.027 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.271 g, 1.613 mmol, 1.20 equiv), $R_f = 0.40$, 20% ethyl acetate:hexanes ; purified

using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:hexanes gradient mobile phase ; isolated yield 0.1863 g, 93%; yellow oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 8.33$ (d, J = 1.3 Hz, 1H), 8.21 (d, J = 2.6 Hz, 1H), 7.41–7.39 (m, 1H), 5.51 (br-s, 1H), 5.22–5.20 (m, 1H), 3.92 (s, 3H), 2.19–2.17 (m, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 156.5$, 141.6, 140.1, 137.9, 137.4, 117.6, 114.7, 55.9, 21.7 ; IR (ATR-liquid): $\bar{v}_{max} = 3093$, 3044, 2968, 2941, 2841, 1629, 1585, 1567, 1453, 1417, 1305, 1254, 1048, 896, 871, 690 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₉H₁₂NO 150.0919; Found: 150.0922.

2,5-Diisopropenyl-pyridine (S21). Prepared according to the general procedure discussed above input of 2,5-dibromopyridine (0.2977 g, 1.257 mmol, 1.00 equiv), Pd(OAc)₂ (0.0281 g, 0.126 mmol, 0.05 equiv), RuPhos (0.1172 g, 0.251 mmol, 0.10 equiv), Cs₂CO₃ (1.2286 g, 3.771 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.423 g, 2.51 mmol, 1.20 equiv), R_f = 0.40, 1% methyl *tert*-butyl ether:hexanes ;

purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether:hexanes gradient mobile phase ;isolated yield 0.1285 g, 61% over two steps from 2,5-dibromopyridine; red-orange oil; ¹H NMR (500 MHz, CDCl₃): δ = 8.72 (s, 1H), 7.77–7.71 (br-m, 1H), 7.49–7.45 (br-m, 1H0, 5.93–5.88 (br-m, 1H), 5.44 (s, 1H), 5.35–5.30 (br-m, 1H), 5.17 (s, 1H), 2.30 (s, 3H), 2.17 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 157.6, 146.8, 144.0, 141.4, 135.5, 133.7, 119.7, 115.4, 114.0, 21.5, 20.5 ; IR (ATR-liquid): \bar{v}_{max} = 3088, 2973, 2921, 2853, 1628, 1589, 1547, 1479, 1456, 1380 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₁₁H₁₄N 160.1126; Found: 160.1133.

1-(6-Isopropenyl-pyridin-2-yl)-ethanone (**S22**). Prepared according to the general procedure discussed above via input of 1-(6-bromo-pyridin-2-yl)-ethanone (0.2470 g, 1.241 mmol, 1.00 equiv), Pd(OAc)₂ (0.0139 g, 0.062 mmol, 0.05 equiv), RuPhos (0.0579 g, 0.124 mmol, 0.10 equiv), Cs₂CO₃ (1.214 g, 3.726 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (0.2500 g, 1.488 mmol, 1.20 equiv), $R_f = 0.60$, 7% methyl-*tert*-butyl ether:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether:hexanes gradient mobile phase ;isolated yield 0.1825 g, 92%; amber oil; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.90$ (d, J = 7.7 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 5.97 (br-s, 1H), 5.38 (br-s, 1H), 2.75 (s, 3H), 2.26 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 200.0$, 158.1, 153.6, 143.7, 138.4, 123.8, 120.2, 116.6, 25.5, 20.4, one ¹³C resonance, either overlapped, or was phased out during acquisition and not observed ; IR (ATR-liquid): $\bar{v}_{max} = 3097$, 2975, 2923, 1698, 1581, 1454, 1356, 1241, 1108, 822, 598 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₁₀H₁₁NO 162.0919 ; Found: 162.0915.

2,6-Diisopropenyl-pyridine (**S23**). Prepared according to the general procedure discussed above via input of 2,6-dibromopyridine (0.2977 g, 1.257 mmol, 1.00 equiv), Pd(OAc)₂ (0.0281 g, 0.126 mmol, 0.05 equiv), RuPhos (0.1172 g, 0.251 mmol, 0.10 equiv), Cs₂CO₃ (1.2286 g, 3.771 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.423 g,

2.51 mmol, 1.20 equiv), $R_f = 0.60$, 1% methyl *tert*-butyl ether:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with a methyl-*tert*-butyl ether (1:1):hexanes gradient mobile phase ;isolated yield 0.1326 g, 66% over two steps from 2,6-dibromopyridine; yellow oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 7.73$ (t, J = 7.9Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 5.96–5.94 (m, 2H), 5.31–5.29 (m, 2H), 2.22–2.20 (m, 6H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 157.5$, 144.5, 137.6, 118.8, 115.4, 20.5 ; IR (ATR-liquid): $\bar{v}_{max} = 3088$, 2975, 2922, 1632, 1566, 1455, 1370, 1175, 897, 822, 747 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₁₁H₁₄N 160.1126; Found: 160.1120.

6-Isoprenyl-[2,2']bipyridinyl (**S24**). Prepared according to the general procedure discussed above input of 6-bromo-2,2'-bipyridine (0.3000 g, 1.282 mmol, 1.00 equiv), Pd(OAc)₂ (0.0144 g, 0.0641 mmol, 0.05 equiv), RuPhos (0.0598 g, 0.1282 mmol, 0.10 equiv), Cs₂CO₃ (1.2531 g, 3.846 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.2586 g, 1.539 mmol, 1.20 equiv), R_f = 0.65, 10% (9:1)

ethyl acetate:methyl *tert*-butyl ether:hexanes ; purified using automated flash column chromatography on a normal phase pH 7 Al₂O₃ column with an ethyl acetate:methyl-*tert*-butyl ether (1:1):hexanes gradient mobile phase ; isolated yield 0.1416 g, 56%-average yield over three experiments ; yellow oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 8.70-8.64$ (m, 1H), 8.55 (d, J = 7.9 Hz, 1H), 8.38 (d, J = 7.7 Hz, 1H), 7.95–7.86 (m, 2H), 7.68 (d, J = 7.8 Hz, 1H), 7.43–7.38 (m, 1H), 6.05 (s, 1H), 5.37 (s, 1H), 2.29 (s, 3H) ; ¹³C NMR (125 MHz, (CD₃)₂CO): $\delta = 158.0$, 157.0, 155.8, 150.0, 144.3, 138.2, 137.7, 124.7, 121.4, 120.5, 119.9, 115.8, 20.6 ; IR (ATR-solid): $\bar{v}_{max} = 3060$, 2976, 2921, 2857, 1634, 1579, 1563, 1472, 1456, 1428, 902, 830, 787, 753 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₁₃H₁₃N₂ 197.1079; Found: 197.1072.

6,6'-Diisopropenyl-[2,2']bipyridine (S25). Prepared according to the general procedure discussed above via input of 6,6'-dibromo-[2,2']bipyridine (0.3000 g, 0.962 mmol, 1.00 equiv), Pd(OAc)₂ (0.0108 g, 0.048 mmol, 0.05 equiv), RuPhos (0.0449 g, 0.0962 mmol, 0.10 equiv), Cs₂CO₃ (0.9403 g, 2.886 mmol, 3.00 equiv), and 2-isopropenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.3880 g, 2.308 mmol, 2.40 equiv), R_f = 0.78, 15% acetone:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an

acetone:hexanes gradient mobile phase ; isolated yield 0.1070 g, 89% over two steps from 6,6'dibromo-[2,2']bipyridine; white solid; melting point = 167.8–169.1 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.43 (dd, *J* = 0.8, 7.9 Hz, 2H), 7.78 (t, *J* = 7.8 Hz, 2H), 7.50 (dd, *J* = 0.9, 7.8 Hz, 2H), 6.01–5.99 (m, 2H), 5.36–5.33 (m, 2H), 2.32–2.29 (m, 6H) ; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 157.3, 155.3, 143.6, 137.2, 119.6, 119.5, 115.5, 20.6 ; IR (ATR-solid): \bar{v}_{max} = 3033, 2959, 2922, 1608, 1584, 1568, 1487, 1382, 820, 536 cm⁻¹; HRMS (EI): m/z: [M+H]⁺ Calcd for C₁₆H₁₇N₂ 237.1392; Found: 237.1387.

2,9-Diisoprenyl-[1,10]phenanthroline (**S26**). Prepared according to the general procedure discussed above via input of 2,9-dibromo-1,10phenanthroline (0.3000 g, 0.893 mmol, 1.00 equiv), Pd(OAc)₂ (0.0100 g, 0.0447 mmol, 0.05 equiv), RuPhos (0.0417 g, 0.0893 mmol, 0.10 equiv), Cs₂CO₃ (0.8729 g, 2.679 mmol, 3.00 equiv, and 2-isopropenyl-4,4,5,5tetramethyl-1,3,2-dioxaborolane (0.3602 g, 2.144 mmol, 2.40 equiv), R_f = 0.19, on C18 reverse-phase TLC plates MeCN:H₂O (3:1) ; isolated yield 0.2052 g, 87% over two steps from 2,9-dibromo-1,10-phenanthroline ;

yellow gum ; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 8.37$ (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 7.89 (s, 2H), 6.20–6.19 (m, 2H), 5.56–5.53 (m, 2H), 2.50–2.47 (m, 6H) ; ¹³C{¹H} NMR (CD₃)₂CO): $\delta = 158.1$, 146.3, 145.6, 137.0, 128.7, 126.9, 120.0, 116.8, 20.6 ; IR (ATR- CDCl₃): $\bar{\nu}_{max} = 3727$, 2676, 2629, 2923, 2853, 1654, 1584, 1498, 1457, 1033, 854, 669 cm⁻¹ ; HRMS (EI): m/z: Calcd for C₁₈H₁₇N₂ [M+H]⁺ 261.1392; Found: 261.1400.

2-Isoprenylquinoline (S27). Prepared according to the general procedure discussed above with 2-bromoquinoline (0.3000 g, 1.449 mmol). Spectroscopic data obtained was commensurate with that previously reported.⁶

5-isoprenylbenzofuran (**S28**). Prepared to the general procedure discussed above with 5-bromobenzofuran (0.2961 g, 1.503 mmol). Spectroscopic data obtained was commensurate with that previously reported.⁷

2-Isoprenylbenzothiophene (S29). Prepared to the general procedure discussed above with 2-bromobenzothiophene (0.3203 g, 1.503 mmol). Spectroscopic data obtained was commensurate with that previously reported.⁸

2-(1-Phenylvinyl)pyridine (S30). Spectroscopic data obtained was commensurate with that previously reported.⁹

Scheme S4. General procedure for Sonogashira Cross-Coupling of Scaffolds

2-Isopropenyl-6-[(triisopropylsilanyl)-ethynyl]-pyridine (S31). An adaptation of a literature procedure was helpful.¹⁰ To an 8 mL reaction vial equipped with a magnetic stirring bar at ambient temperature was charged S14 (0.0912 g, 0.596 mmol, 1.00 equiv) in anhydrous 2-methyltetrahydrofuran (2.38 mL, 0.25 M). The resulting clear solution was charged successively with Pd(dppf)Cl₂ (0.0218 g, 0.0298 mmol, 0.05 equiv), CuI (0.0057 g, 0.0298 mmol,

0.05 equiv), triethylamine (0.1806 g, 1.288 mmol, 3.00 equiv), and triisopropylsilylethyne (0.1628 g, 0.8939 mmol, 1.20 equiv) then heated to 79 °C for 12 hours until consumption of the starting material was observed on TLC then benchmarked with ¹H NMR spectroscopy. The crude reaction mixture was worked up as described in the reference and purified using automated flash column chromatography with a normal phase silica gel column using a ethyl acetate:hexanes gradient mobile phase to afford the title compound, $R_f = 0.55$, 5% ethyl acetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:hexanes gradient mobile phase ; isolated yield 0.1042 g, 60%; amber oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 7.77$ (t, *J* = 7.8 Hz, 1H), 7.61 (dd, *J* = 0.7, 8.0 Hz, 1H), 7.44 (dd, *J* = 0.7, 7.6 Hz, 1H), 5.94 (br-m, 1H), 5.34–5.32 (br-m, 1H), 2.18 (s, 3H), 1.23–1.14 (m, 21H) ; ¹³C {¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 159.1$, 143.9, 143.0, 137.6, 127.0, 120.2, 116.4, 108.0, 90.1, 20.4, 19.0, 12.0 ; IR (ATR-liquid): $\bar{v}_{max} = 2943$, 2864, 2161, 1574, 1562, 1463, 1445, 884, 818, 727, 677, 663 cm⁻¹; HRMS (EI): m/z C19H₃₀NSi [M+H] 300.2148; Found: 300.2146.

2-Isoprenyl-6-p-tolylethynyl-pyridine (S32). To an 8 mL reaction vial equipped with a magnetic stirring bar at ambient temperature was charged S14 (0.1480 g, 0.967 mmol, 1.00 equiv) in anhydrous 2-methyltetrahydrofuran (3.87 mL, 0.25 M). The resulting clear solution was charged successively with Pd(dppf)Cl₂ (0.0353 g, 0.0484 mmol, 0.05 equiv), CuI (0.0092 g, 0.0484 mmol, 0.05

equiv), triethylamine (0.2933 g, 2.901 mmol, 3.00 equiv), and 4-methylphenylethyne (0.1178 g, 1.015 mmol, 1.05 equiv) then heated to 79 °C for 16 hours until consumption of the starting material was observed on TLC then benchmarked with ¹H NMR spectroscopy. The crude reaction

mixture was worked up as described in the reference and purified using automated flash column chromatography with a normal phase silica gel column using an ethyl acetate:hexanes gradient mobile phase to afford the title compound, $R_f = 0.50$, 5% ethyl acetate:hexanes ; purified using automated flash column chromatography on a normal phase silica gel column with an ethyl acetate:hexanes gradient mobile phase ;isolated yield 0.1110 g, 43%; amber liquid; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 7.79$ (t, J = 7.8 Hz, 1H), 7.61 (dd, J = 0.7, 8.0 Hz, 1H), 7.51–7.47 (m, 3H), 7.27 (d, J = 7.8 Hz, 2H), 5.96–5.93 (m, 1H), 5.33–5.36 (m, 1H), 2.37 (s, 3H), 2.22–2.18 (m, 3H), ; ¹³C NMR (125 MHz, (CD₃)₂CO): $\delta = 159.2$, 144.0, 143.4, 140.3, 137.7, 132.6, 130.2, 126.5, 120.2, 119.8, 116.4, 89.5, 88.9, 21.5, 20.5 ; IR (ATR-(CD₃)₂CO): $\bar{v}_{max} = 3081$, 3055, 2978, 2954, 2923, 2213, 1575, 1561, 1508, 1446, 1167, 814, 748, 530, cm⁻¹; HRMS (EI): m/z: Calcd for C₁₇H₁₆N [M+H]⁺ 234.1283; Found: 234.1283.

Scheme S5. Preparation of Novel Pyridinyl Methyl Ketones

General Procedure for Oxidative Isoprene Cleavage. To an 8 mL reaction vial equipped with a magnetic stirring bar at ambient temperature were successively charged: the required substrate (0.285 mmol, 1.00 equiv), sodium paraperiodate (0.855 mmol, 3.00 equiv), and potassium carbonate (0.285 mmol, 1.00 equiv). The resulting mixture was slurried in a 4:1 (v:v) acetonitrile:water (0.05 M) solution followed by addition of potassium permanganate (0.342 mmol, 1.20 equiv) in one portion. The resulting mixture which possessed a pH of approximately 8–9 was continued at ambient temperature until conversion of the isoprene to the vicinal-1,2-diol was confirmed by thin layer chromatography. The reaction mixture was subsequently acidified to a pH of 3-4 with a 6.0 N aqueous hydrochloric acid solution, diluted with anhydrous dichloromethane, and subsequently quenched with a saturated aqueous sodium thiosulfate solution (3.0 mL). The biphasic mixture was filtered through a pad of Celite over normal phase silica gel flash chromatography column to remove residual manganese dioxide. The resulting filtrate was washed successively with a saturated potassium carbonate solution (2.0 mL), followed by a saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and then concentrated under reduced pressure at ambient temperature to afford the title compounds in the morphologies listed.

1-[6-(5,6-Diphenyl-[1,2,4]triazin-3-yl)-pyridin-2-yl]-ethanone (2). Prepared according to the general procedure discussed above with input of **6** (0.1000 g, 0.285 mmol), $R_f = 0.22$, 25% ethyl acetate:hexanes; isolated yield 0.0823 g, 82%; yellow solid; melting point = 147.5–148.9 °C; ¹H NMR (500 MHz, CDCl₃)₂: $\delta = 8.84$ (d, J = 7.8 Hz, 1H), 8.23 (d, J = 7.7 Hz, 1H), 8.09 (t, J = 7.7 Hz, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.67 (d, J = 7.7 Hz, 2H), 7.51–

7.45 (m, 2H), 7.44–7.37 (m, 4H), 2.93 (s, 3H); ${}^{13}C{}^{1}H$ NMR (125 MHz, (CD₃)₂SO): $\delta = 200.4$,

160.3, 156.7, 156.2, 154.2, 152.5, 138.2, 135.6, 135.3, 131.2, 130.13, 130.08, 129.7, 128.9, 128.8, 127.5, 123.2, 25.9; IR (ATR-solid): $\bar{v}_{max} = 3060$, 2956, 2924, 1699, 1581, 1493, 1446, 1385, 1362, 1242, 771, 699 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₂₂H₁₆N₄O 352.1324; Found: 352.1324.

1-[6-(5,6-Di-p-tolyl-[1,2,4]triazin-3-yl)-pyridin-2-yl]-ethanone (**10**). Prepared according to the general procedure discussed above with input of **S7** (0.5640 g, 1.491 mmol), $R_f = 0.29$, 25% ethyl acetate:hexanes; isolated yield 0.4263 g, 74%; yellow solid; melting point = 185.1–186.8 °C; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 8.82$ (dd, J = 1.2, 7.7 Hz, 1H), 8.26 (t, J = 7.8Hz, 1H), 8.19 (dd, J = 1.1, 7.7 Hz, 1H), 7.69–7.66 (m, 2H), 7.61–

7.57 (m, 2H), 7.31–7.27 (m, 2H), 7.26–7.24 (m, 2H), 2.81 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H); ${}^{13}C{}^{1}H$ NMR (125 MHz, (CD₃)₂CO): δ = 199.8, 161.0, 157.4, 156.5, 154.9, 153.9, 142.1, 140.6, 139.2, 134.1, 134.X (overlaps with 134.1), 130.8, 130.3, 130.1, 130.0, 128.0, 123.2, 25.6, 21.4, 21.3; IR (ATR-CDCl₃): \bar{v}_{max} = 3032, 2921, 1699, 1609, 1583, 1493, 1384, 1360, 1241, 1185, 1091, 911, 820, 733, 592, 538 cm⁻¹; HRMS (EI): m/z: [M+Na]⁺ Calcd for C₂₄H₂₀N₄ONa 403.1535; Found: 403.1529.

I-{*6*-[*5*,*6*-*Bis*-(*4*-*butyl*-*phenyl*)-[*1*,*2*,*4*]*triazin*-*3*-*yl*]*pyridin*-*2*-*yl*}-*ethanone* (**11**). Prepared according to the general procedure discussed above with input of **S8** (0.3015 g, 652 mmol), $R_f = 0.37$, 25% ethyl acetate:hexanes; isolated yield 0.1578 g, 52%; yellow solid; melting point = 79.8–81.3 °C; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 8.82$ (dd, J = 0.8, 7.7 Hz, 1H), 8.25 (t, J

= 7.7 Hz, 1H), 8.18 (dd, J = 0.9, 7.7 Hz, 1H), 7.71–7.67 (m, 2H), 7.62–7.59 (m, 2H), 7.32–7.28 (m, 2H), 7.27–7.25 (m, 2H), 2.80 (s, 3H), 2.71–2.65 (m, 4H), 1.69–1.57 (m, 4H), 1.42–1.31 (m, 4H), 0.97–0.90 (m, 6H); ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): $\delta = 199.9$, 161.0, 157.5, 156.5, 154.9, 153.9, 147.0, 145.6, 139.2, 134.32, 134.30, 130.9, 130.4, 129.5, 129.4, 128.0, 123.3, 36.02, 36.00, 34.2, 34.1, 25.7, 23.0, 22.9X (overlaps with 23.0), 14.20, 14.16; IR (ATR-solid): $\bar{v}_{max} = 3174$, cm⁻¹; HRMS (EI): m/z: [M+Na]⁺ Calcd for C₃₀H₃₂N₄ONa 487.2474; Found: 487.2471.

l-{6-[5,6-Bis-(4-fluoro-phenyl)-[1,2,4]triazin-3-yl]-pyridin-2yl}-ethanone (**12**). Prepared according to the general procedure discussed above with input of **S9** (0.6100 g, 1.990 mmol), R_f = 0.20, 25% ethyl acetate:hexanes; isolated yield 0.0373 g, 48%; yellow solid; melting point = 186.8–188.4 °C; ¹H NMR (500 MHz, (CD₃)₂SO): δ = 8.78 (dd, *J* = 0.9, 7.8 Hz, 1H), 8.29 (t, *J* = 7.8 Hz, 1H), 8.19 (dd, *J* = 1.0, 7.7 Hz, 1H), 7.73–7.69 (m, 2H),

7.36–7.30 (m, 4H), 2.78 (s, 3H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂SO): δ = 199.3, 164.3 (*J* = 289.4 Hz), 162.3 (*J* = 283.8 Hz), 159.9, 155.8, 155.1, 153.4, 152.1, 139.0, 132.4 (*J* = 35.8 Hz), 131.8 (*J* = 34.8 Hz), 131.7 (*J* = 13.0 Hz), 131.67 (*J* = 12.1 Hz), 127.5, 122.8, 115.8 (*J* = 17.7 Hz), 115.7 (*J* = 17.9 Hz), 25.5 ; ¹⁹F NMR (471 MHz, (CD₃)₂SO): δ = -109.2–-109.4 (m, 1F), -111.1–-111.3 (m, 1F) ; IR (ATR-CDCl₃): \bar{v}_{max} = 3072, 2922, 2863, 1603, 1513, 1492, 1383, 1362, 1236, 1160, 1097, 1008, 910, 841, 728, 668, 567, 546 cm⁻¹; HRMS (EI): m/z: [M+Na]⁺ Calcd for C₂₂H₁₄F₂N₄ONa 411.1033; Found: 411.1031.

l-{*6*-[*5*,*6*-*Bis*-(*4*-*cyclopropyl-phenyl*)-[*1*,*2*,*4*]*triazin-3-yl*]*pyridin-2-yl*}-*ethanone* (**13**). Prepared according to the general procedure discussed above with input of **S10** (0.6200 g, 1.441 mmol), R_f = 0.15, 25% ethyl acetate:hexanes; isolated yield 0.2081 g, 33%; yellow solid; melting point = 112.3–113.7 °C; ¹H NMR (500 MHz, (CD₃)₂CO): δ = 8.09 (d, *J* = 7.7 Hz, 1H), 8.24 (t, *J* = 7.7 Hz, 1H), 8.17 (d, *J* = 7.7 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J*

= 8.0 Hz, 2H), 2.79 (s, 3H), 2.08–1.89 (m, 2H)-overlaps with residual (CH3)2CO resonance, 1.06– 1.02 (m, 4H), 0.80–0.73 (m, 4H) ; ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): δ = 199.9, 160.4, 157.3, 156.3, 154.9, 153.9, 148.8, 147.3, 139.2, 133.9, 133.8, 130.8, 130.3, 128.0, 126.4, 126.3, 123.3, 25.7, 16.0, 15.9, 10.6, 10.4 ; IR (ATR-CDCl₃): \bar{v}_{max} = 3086, 2992, 2959, 2921, 2853, 1695, 1610, 1493, 1358, 892, 828, 802, 598, 546 cm⁻¹; HRMS (EI): m/z: Calcd for C₂₈H₂₅N₄O [M+H]⁺ 433.2028; Found: 433.2023.

I-{6-[5,6-Bis-(3-methoxy-phenyl)-[1,2,4]triazin-3-yl]-pyridin-2yl}-ethanone (14). Prepared according to the general procedure discussed above with input of S11 (0.6111 g, 1.490 mmol), R_f = 0.15, 25% ethyl acetate:hexanes; isolated yield 0.1780 g, 87%; yellow solid; melting point = 139.7–141.9 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.84 (d, *J* = 7.7 Hz, 1H), 8.23 (d, *J* = 7.7 Hz, 1H), 8.08 (t, *J* = 7.7 Hz, 1H), 7.37–7.27 (m, 5H), 7.19–7.15 (m, 1H), 7.05– 6.98 (m, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 2.92 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ = 200.3, 160.3, 160.0, 159.8, 156.5, 156.0, 154.2, 152.5, 138.2, 136.8, 136.5, 129.8, 127.4, 123.2, 122.5,

122.2, 117.4, 116.4, 114.9, 114.5, 55.5, 55.4, 25.9, one ¹³C resonance overlapped, or was phased out during acquisition and was not observed; IR (ATR-film): $\bar{v}_{max} = 3004$, 2938, 2835, 1699, 1600, 1582, 1503, 1361, 1249, 1043, 912, 734, 703 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₂₄H₂₀N₄O₃ 412.1535; Found: 412.1530.

l-(6-Methylpyridin-2-yl)-ethanone (15). Prepared according to the general procedure discussed above with input of S12 (0.0985 g, 0.740 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹¹

l-(6-Methoxypyridin-2-yl)-ethanone (16). Prepared according to the general procedure discussed above with input of S13 (0.0745 g, 0.740 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹²

l-(6-Chloropyridin-2-yl)-ethanone (17). Prepared according to the general procedure discussed above with input of S14 (0.0765 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹³

l-(6-Phenylpyridin-2-yl)-ethanone (18). Prepared according to the general procedure discussed above with input of S15 (0.0976 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹⁴

l-(4-Methylpyridin-2-yl)-ethanone (19). Prepared according to the general procedure discussed above with input of **S16** (0.0665 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹⁵

1-(2-Methylpyridin-4-yl)-ethanone (20). Prepared according to the general procedure discussed above with input of S17 (0.0665 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹⁶

1-(2-Methylpyridin-3-yl)-ethanone (21). Prepared according to the general procedure discussed above with input of **S18** (0.180 g, 1.350 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹⁷

1-(5-Fluoro-pyridin-3-yl)-ethanone (22). Prepared according to the general procedure discussed above with input of **S19** (0.2297 g, 1.676 mmol). Spectroscopic data obtained was commensurate with that previously reported.¹⁸

l-(5-Methoxy-pyridin-3-yl)-ethanone (23). Prepared according to the general procedure discussed above with input of S20 (0.0754 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that reported.¹⁹

l-(6-Acetyl-pyridin-3-yl)-ethanone (24). Prepared according to the general procedure discussed above with input of S21 (0.0796 g, 0.500 mmol). This compound is commercially available.

1-{6-[(Triisopropylsilanyl)-ethynyl]-pyridin-2-yl}-ethanone (25). Prepared according to the general procedure discussed above with input of **S31** (0.1047 g, 0.357 mmol), $R_f = 0.41$, 5% ethyl acetate:hexanes; isolated yield 0.0600 g, 56%; yellow oil; ¹H NMR (500 MHz, (CD₃)₂CO): $\delta = 7.99$ (t, J = 7.7 Hz, 1H), 7.96 (dt, J = 1.2, 7.8 Hz, 1H), 7.78 (dt, J = 1.2, 7.5 Hz, 1H), 2.63 (s, 3H), 1.22–1.14

(m, 21H) ; ${}^{13}C{}^{1}H$ NMR (125 MHz, (CD₃)₂CO): $\delta = 199.2$, 154.8, 143.3, 138.6, 131.8, 121.4, 106.9, 91.9, 25.5, 18.9, 12.0 ; IR (ATR-liquid): $\bar{v}_{max} = 2943$, 2893, 2865, 1703, 1576, 1463, 1445, 1357, 1295, 1254, 1222, 996, 903, 883, 815 cm⁻¹; HRMS (EI): m/z: [M]⁺ Calcd for C₁₈H₂₈NOSi [M+H] 302.1940; Found: 302.1939.

1-(6-p-Tolylethynyl-pyridin-2-yl)-ethanone (26). Prepared according to the general procedure discussed above with input of S32 (0.1064 g, 0.456 mmol). Spectroscopic data obtained was commensurate with that reported.²⁰

1-(6-Acetyl-pyridin-2-yl)-ethanone (27). *Procedure (A)*: Prepared according to the general procedure discussed above input of **S22** (0.0796 g, 0.500 mmol). *Procedure (B)*: Prepared according to the general procedure discussed above with input of **S23** (0.0805 g, 0.500 mmol). Spectroscopic data obtained was commensurate with that previously reported.²¹

1-[2,2']Bipyridinyl-6-yl-ethanone (28). Prepared according to the general procedure discussed above with input of S24 (0.1000 g, 0.510 mmol). Spectroscopic data obtained was commensurate with that reported.²²

1-(6'-Acetyl-[2,2']bipyridinyl-6-yl)-ethanone (**29**). Prepared according to the general procedure discussed above with input of **S25** (0.2457 g, 0.934 mmol). Spectroscopic data obtained was commensurate with that reported.²³

1-(9-Acetyl-[1,10]phenanthrolin-2-yl)-ethanone (**30**). Prepared according to the general procedure discussed above with input of **S26** (0.1701 g, 0.654 mmol). Spectroscopic data obtained was commensurate with that previously reported.²⁴

l-Quinolin-2-yl-ethanone (**31**). Prepared according to the general procedure discussed above with input of **S27** (0.0840 g, 0.498 mmol). Spectroscopic data obtained was commensurate with that previously reported.²⁵

l-Benzofuran-5-yl-ethanone (32). Prepared according to the general procedure discussed above with input of S28 (0.0450 g, 0.285 mmol). Spectroscopic data obtained was commensurate with that previously reported.²⁶

1-Benzothiophen-2-ylethanone (33). Prepared according to the general procedure discussed above with input of S29 (0.0450 g, 0.285 mmol). Spectroscopic data obtained was commensurate with that previously reported.²⁷

Phenyl-pyridin-2-yl-methanone (34). Prepared according to the general procedure discussed above input of S30. Spectroscopic data obtained was commensurate with that previously reported.²⁸

¹ (a) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179. (b) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. *Journal of Organic Chemistry* **1997**, *62*, 7512–7515.

² Chin, A.-L.; Carrick, J. D. Modular approaches to diversified soft Lewis basic complexants through Suzuki-Miyaura cross-coupling of bromoheteroarenes with organotrifluoroborates. *Journal of Organic Chemistry* **2016**, *81*, 1106–1115.

³ Reference 2 above.

⁴ Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. Synthesis and Insertion Chemistry of Cationic Zirconium(IV) Pyridyl Complexes. Productive σ-Bond Metathesis. *Organometallics* **1990**, *9*, 1546–1557.

⁵ Hosokawa, A.; Katsurada, M.; Mikami, E.; Ikeda, O.; Minami, N.; Jikihara, T. Synthesis and Herbicidal Activity of N-(2-Pyridyloxiran-2-ylmethyl)benzenesulfonamide Derivatives. *Nippon Noyaku Gakkaishi* **2001**, *26*, 9–15.

⁶ Xu, C.; Muir, C. W.; Leach, A. G.; Kennedy, A. R.; Watson, A. J. B. Catalytic Enantioselective Synthesis of α-Chiral Azaheteroaryl Ethylamines by Asymmetric Protonation. *Angewandte Chemie, International Edition* **2018**, *57*, 11374–11377.

⁷ Music, A.; Baumann, A.N.; Spiess, P; Hilgert, N.; Koellen, M.F.; Didier, D. Single-Pot Access to Bisorganoborinates: Applications in Zweifel Olefination. *Organic Letters* **2019**, *21*, 2189–2193.

⁸ (a) Li, J.; Li, J.; He, R.; Liu, J.; Liu, Y.; Chen, L.; Huang, Y.; Li, Y. Selective Synthesis of Substituted Pyridines and Pyrimidines through Cascade Annulation of Isopropene Derivatives. *Organic Letters* **2022**, *24*, 1620–1625. (b) Wang, X.; Wang, Z.; Asanuma, Y.; Nishihara, Y.. Synthesis of 2-Substituted Propenes by Bidentate Phosphine-Assisted Methylenation of Acyl Fluorides and Acyl Chlorides with AlMe3. *Organic Letters* **2019**, *21*, 3640–3643.

⁹Nuñez, An.; Abarca, B.; Cuadro, A. M.; Alvarez-Builla, J.; Vaquero, J. J. Ring-Closing Metathesis Reactions of Azinium Salts: Straightforward Access to Quinolizinium Cations and their Dihydro Derivatives. *Journal of Organic Chemistry* **2009**, *102*, 4166–4176.

¹⁰ Chaudhuri, S.; Carrick, J. D. Synthetic Access to Functionalized Dipolarophiles of Lewis Basic Complexant Scaffolds through Sonogashira Cross-Coupling. *Journal of Organic Chemistry* **2018**, *83*, 10261–10271.

¹¹ Reeves, Z. R.; Mann, K. L. V.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D.; Barigelletti, F.; Armaroli, N. Lanthanide Complexes of a New Sterically Hindered Potentially Hexadentate Podand Ligand Based on a Tris(pyrazolyl)borate Core; Crystal Structures, Solution Structures, and Luminescence Properties. *Journal of the Chemical Society, Dalton Transactions* **1999**, 349–355.

¹⁰ Abarca, B.; Mojarred, F.; Jones, G.; Phillips, C.; Ng, N.; Wastling, J. Triazolopyridines. Part
8. Nucleophilic Substitution Reactions of 5-Bromo[1,2,3]Triazolo[5,1-a]Isoquinoline and 7-Bromo[1,2,3]-Triazolo[1,5-a]Pyridine. *Tetrahedron* 1988, *10*, 3005–3014.

¹³ Trofymchuk, S.; Bugera, M.; Klipkov, A. A.; Ahunovych, V.; Razhyk, B.; Semenov, S.; Boretskyi, A.; Tarasenko, K.; Mykhailiuk, P. V. Scalable Approach to Fluorinated Heterocycles with Sulfur Tetrafluoride (SF₄). *Journal of Organic Chemistry* **2021**, *86*, 12181–12198.

¹⁴ Lambert, A. E.; Carrick, J. D. Diversification of 6-Bromo-2-substituted Pyridine Derivatives via Suzuki-Miyaura Cross-Coupling: Synthetic Access to Functionalized 2-Carbonyl and Procarbonyl Pyridine Synthons. *Journal of Heterocyclic Chemistry* **2018**, *55*, 1232–1239.

¹³ Choi, J. S.; Kang, C. W.; Jung, K.; Yang, J. W.; Yang-Gyun, K.; Han, H. Synthesis of DNA Triangles with Vertexes of Bis(terpyridine)iron(III) Complexes. *Journal of the American Chemical Society* **2004**, *126*, 8606–8607.

¹⁶ Hay, M. P.; Torcotte, S.; Flanagan, J. V.; Bonnet, M.; Chan, D. A.; Sutphin, D. D.; Nguyen, D.; Giaccia, A. J.; Denny, W. A. 4-Pyridylaminothiazoles that Selectively Target von Hippel-Lindau Deficient Renal Cell Carcinoma. *Journal of Medicinal Chemistry* **2010**, *53* 787–797. ¹⁷ Allais, C.; Lieby-Muller, F.; Rodriguez, J.; Constantieux, T. Metal-Free Michael-Addition-Initiated Three-Component Reaction for the Regioselective Synthesis of Highly Functionalized Pyridines: Scope, Mechanistic Investigations and Applications. *European Journal of Organic Chemistry* **2013**, *2013*, 4131–4145.

¹⁸ López-Iglesias, M.; Gonzáles-Martinez, D.; Rodriguez-Mata, M.; Gotor, V.; Busto, E.; Kroutil, W.; Gotor-Fernández, V. Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases. *Advanced Synthetic Catalysis* **2017**, *359*, 279–291.

¹⁹ Reference 16.

¹⁸ Chaudhuri, S.; Carrick, J. D.* Synthetic access to functionalized dipolarophiles of Lewis Basic Complexant Scaffolds through Sonogashira Cross-Coupling. *Journal of Organic Chemistry* **2018**, *83*, 10261–10271.

¹⁹ Kianmehr, E.; Pakbaznia, A.; Faghih, N.; Foroumadi, A. Metal-Free Chemo- and Regioselective Acylation of Pyridine Derivatives with Alcohols in Water. *Tetrahedron* **2017**, *73*, 1407–1412.

²⁰ Xie, G.; Ai, H.; Lu, L.; Zhang, P. A Facile and Efficient Approach to the Synthesis of 2,6-Diacetylpyridine. *Journal of the Chemical Society of Pakistan* **2009**, *31*, 674–676.

²² Vlugt, J. L.; Demeshko, S.; Dechert, S.; Meyter, F. Tetranuclear Co^{II}, Mn^{II}, and Cu^{II} Complexes of a Novel Binucleating Pyrazolate Ligand Preorganized for the Self-Assembly of Compact [2×2]-Grid Structures. *Inorganic Chemistry* **2008**, *47*, 1576–1585.

²³ Zong, R.; Want, D.; Hammitt, R.; Thummel, R. P. Synthetic Appraoches to Polypyridyl Bridging Ligands with Proximal Multidentate Binding Sites. *Journal of Organic Chemistry* **2006**, *71*, 167–175.

²⁴ Reference 21

²⁵ Mroczek, A.; Erre, G.; Taras, G.; Gladiali, S. Chiral Ferrocenyl Ligands with Bidentate Pyridine Donors. Synthesis and Application in Pd-Catalyzed Asymmetric Alkylation of 1,3-Diphenylpropenyl-1-esters. *Tetrahedron Asymmetry* **2010**, *21*, 1921–1927.

²⁶ (a) Kotha, S.; Solanke, B.U.; Gupta, N.K. Design and Synthesis of C3-symmetric Molecules Containing Oxepine and Benzofuran Moieties via Metathesis. *Journal of Molecular Structure* **2021**, *1244*, 130907. (b) Lu, L.; Hua, R. A Monomer-Polymer-Monomer (MPM) Organic Synthesis Strategy: Synthesis and Application of Polybenzofuran for Functionalizing Benzene Ring of Benzofuran. *Asian Journal of Organic Chemistry* **2021**, *10*, 2137–2142.

²⁷ Tosa, M.I.; Podea, P.V.; Paizs, C.; Irimie, Florin D. ChemoenzymaticSsynthesis of (*R*)- and (*S*)-1-heteroarylethanols. *Tetrahedron* **2008**, *19*, 2068–2071.

²⁸ Mamane, V.; Aubert, E.; Fort, Y. The Methyl Goup as a Source of Structural Diversity in Heterogeneous Chemistry: Side Chain Functionalization of Picolines and Related Heterocycles. *Journal of Organic Chemistry* **2007**, *72*, 7294–7300.

3-(6-Isopropenyl-pyridin-2-yl)-6-(1-methylene-but-2enyl)-5-phenyl-[1,2,4]triazine (6) AMS-A-193(8)

..... 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm **S23**

200 190 180	170 160 150 140 130 120 110	100 90 80 70 60 50	40 30 20 10 pp n
5, 6-BIS- (4-Dut ZZG-G-63 (2)		$\sum_{n=1}^{N} \frac{N}{n} $	35.7 35.6 33.4 33.4 33.3 22.5 22.5 22.6 14.1 14.1

5,6-Bis-(4-fluoro-phenyl)-3-(6-isopropenyl-pyridin-2-yl)-[1,2,4]triazine (S9) ZZG-G-51(2)

5,6-Bis-(4-fluoro-phenyl)-3-(6- ZZG-G-51	isopropenyl-pyridin-2-yl)-	[1,2,4]triazine (S9	$ \begin{array}{c} F \\ F \\ F \\ F \end{array} $
ئۆچىلىرىلىقىلىقىرىمىلىلىرىلىرىمىتى 11. 14-14-14-14-14-14-14-14-14-14-14-14-14-1	ka ka sha ka sa sa sa sa sa sa sa sa ka ka ka sa sa ka sa sa sa ka sa sa sa ka sa s	sen a saal da la sender	st st se ste ander de alemante ander de tribuitente andere fissiste des states de states de states de st
-102 -103 -104 -105 -106	-107 -108 -109 -110 S30	-111 -112 -113 -1	ининичинининининининининининининининини

5,6-Bis-(4-cyclopr yl)-[1,2,4]triazin ZZG-G-11(2)	ropyl-phenyl)-3-(6-isopropenyl-pyridin-2- e (S10) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	$ \begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & $
200 190 180 170	160 150 140 130 120 110 100 90 \$32	80 70 60 50 40 30 20 10 ppm

2-Isopropenyl-6-phenyl	-pyridi	ne (S15)				
LCP-A-159(3)	158.4 156.4		<pre>/129.5 127.5 119.3 118.9 115.7</pre>	N S15		
						k
210 200 190 180 170	160 1	50 140 1 3	30 120 110 ² S38	100 90 80 70	 40 30 20 10	ppm

2-Is CCP-	opropeny] A-81(10)	-4-methy]	pyric	line (S1	L6)			Г	1							
				149.0 148.9 143.8		G.121				F				21.0		
								L	S16	'						
			I													I
(l									/ 		-
210	200 190	180 170	160	150 14	10 130 1	20 1	10 100 S40	90	80 70	60	50	40	30	20	10	ppm

4-Is CCP-2	oprop A-83	penyl (7)	-2-met	chyl-r 851 6.751	oyridi	ine (S	317) G	1120.0	116.4						517			23.9		
												Minganging Ar			un de speringen gin for		reces - Lution			
200	190	180	170	160	150	140	130	120	110	100 S42	90	80	70	60	50	40	30	20	10	ppm

3-Isopropeny CCP-A-163(1)	1-2-methyl-p	yridi	.ne (S18)										
					121.7	116.2						24.1 23.0		
									S18					
				I										
											I			
·····		<u>I</u>	A I	<u>_</u>		·····			·····		<i>-</i>			
210 200 190	180 170 1	60	150	140 1	30 120	110 S4	100 90 4	80	70 60	50	40 3	0 20	10	ppm

3-F.	luoro-	-5-isc	prope	enyl-p	oyridin	ne (S19	9)							11						
		(-)			144.0 144.0 110.7	139.2	-137.4 -120 4	118.3	/116.1		F		N 519							
200	190	180	170	160	150	140 1	130	120	110	100 S46	90	80	70	60	50	40	30	20	10	ppm

3-Fluoro-5-isopropenyl-pyridine (S19) ZZG-J-19(4)

-129.96

P-A-93(4)	<u>ب</u>	804 107	4		ט ט
	— 157	146 144 141 135 133 133	119 115 114		21. 20.
	I	1 1 1 11	I II	S21	

6-Isoprenyl-[2,2]bipyr AMS-A-247(3)	idinyl (S24)				
	158.0 157.0 155.8 155.8 155.8 150.0 144.3 138.2	124.7 121.5 121.5 120.5 119.9 115.8			
210 200 190 180 170	160 150 140 1	30 120 110 100 \$57	90 80 70 60	50 40 30	20 10 ppm

200	190	180	170	160	150	140	13	0 120	110) <u>100</u> S59	90	80	70	60	50	40	30	20	10	ppm
																				4
								119.6	115.5						N 525	Z				

561

2-Isopropenyl-6-[(triisopropylsilanyl)-ethynyl]-pyridine (S31) AMS-A-117(6)

210	200 1	190	180	170	160	150	140	130	120	110 <u>110</u>	100	90	80	70	60	50	40	30	20	10	ppm
					1			<u>, 1</u>				Ĩ				S32					
AMS	5-в-25 (2	2)			59.2	44.0	4 3. 4 40.3 37.7	32.6 30.2 26.5	20.2 19.8			о. 9. 9.		~		N			1.5 0.5		

1-[6-(5,6-Diphenyl-[1,2,4]triazin-3-yl)-pyridin-2-yl]-ethanone (2) ZZG-F-279(4)

ЛЛ

0.99

2:00

1.00

3.07

210	200	190	180	170	160	150	140	130	120	110	100 \$69	90	80	70	<mark>60</mark>	50	40	30	20	10	0	ppm

22G-J-31(5)	161.0 157.5 156.5 156.5 156.5 157.6 157.9 147.0 147.0 139.2 134.3 134.3 134.3 134.3 134.3 134.3 132.9 123.3	→ 36.0 36.0 34.1 34.1 25.7 25.7 23.0

1-{6-[5,6-Bis-(4-cyclopropyl-phenyl)-[1,2,4]triazin-3yl]-pyridin-2-yl}-ethanone (13) AMS-A-251(4)

1-{6-[5,6-Bis-(4-cyclopropyl-phenyl)-[1,2,4]triazin-3yl]-pyridin-2-yl}-ethanone (13) AMS-A-241(4)

1-{6-[5,6-Bis-(3 yl]-pyridin-2-yl ZZG-G-43(1)	-methoxy-pher }-ethanone (1	nyl)-[1,2,4]triazin-3- L4)		
	160.3 160.0 159.8 156.5 156.5 156.0 154.2 152.5	138.2 136.5 136.5 136.5 127.4 127.4 122.5 112.5 112.5 114.5 114.5	55 . 5 55 . 4	25.9
200 190 180 17	70 160 150	140 130 120 110 100 90 \$78	80 70 60 50 40	30 20 10 ppm

1-{ ams	6-[(T -A-20	riisc 3(17)	propy	ylsila	anyl)	-ethy	vnyl]-	-pyri	din-2	-yl}-et	thanone	(25)					7			
	199.2	5(17)				154.8		— 131.8			91.9		S	;i	N 25		u c	19.0		
	I					1				I	I									
/	J					J		I	l 	, <u> </u>	I	·····				·····	ال			······
210	200	190	180	170	160	150	140	130	120	110 \$80	100 90 D	80	70	60	50	40	30	20	10	ppm

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 1.0 min Solvent A: Hexane Solvent B: MTBE Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Wednesday 09 September 2020 06:50AM

Sample: ZZG-F-251

RediSep Column: Silica 12g SN: E04150D81BD3C Lot: 301341205X Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent A: Hexane Solvent B: Ethyl Acetate Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Run Notes:

16 mm x 100 mm Tubes

S82

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent A: Hexane Solvent B: 1:1 MTBE:EtOAc Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent A: Hexane Solvent B: 1:1 MTBE:EtOAc Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Friday 04 September 2020 12:44PM

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent A: Hexane Solvent B: 1:1 MTBE:EtOAc Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Friday 28 August 2020 07:42AM

Run Notes:

S85

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 1.0 min Solvent A: Hexane Solvent B: 1:1 MTBE:EtOAc Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Wednesday 09 September 2020 06:15AM

RediSep Column: Silica 12g SN: E04150E8066AB Lot: 302224502X Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

O N | S13

Run Notes:

		Rac	k A		
108	107	106	105	104	103
Ø	98	Ø	100	101	102
96	95	94	Ø	92	n
85	86	87	88	<u>8</u> 9	Ð
S)	ด	Ø	ญ	ญ	<i>1</i> 0
9 10	• •	69 63	604 1704	(1) (1)	6
0	e A	6	0	0	0
0	U	W	69	68	0
61	62	63	64	65	66
0	59	58	IJ	50	53
49	50	Ð	1	9	9
4 8	47	46	45	44	43
87	<u>8</u> 8	<u>89</u>	40	4)	42
86	85	<u>8</u> 4	83	82	3
25	26	27	28	$\boldsymbol{\mathcal{O}}$	<u>30</u>
24	23	22	21	20	Ø
G	0	G	ด	Ô	ß
õ	ñ	ю П	0	®	ā
₩ M	s C	e Bernere Bern		•	
U	2	G	4	9	0

13 mm x 100 mm Tubes

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Thursday 23 September 2021 09:51AM

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Thursday 24 June 2021 04:51AM

RediSep Column: Silica 12g SN: E04150E63D749A Lot: 311537906Z Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B1 Ethyl Acetate Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Run Notes:

61	62	63	64	65
60	59	58	57)	56
51	52	53	54)	55
50	49	48	(47)	46
41	42	43	44	45
40	39	38	37)	36
31	32	33	34)	35
3	29	28	07	26
	•			
(21)	(22)	(23)	24)	25
20	19	18	17	16
Ո	(12)	13	14	(15)
•				
U	9	(8)	(\mathcal{I})	6
1	2	3	4	5

16 mm x 100 mm Tubes

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 pentane Solvent: B2 MTBE Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Run Notes:

		Rac	k A			Peal	k #	Start Tube	End Tub
108	107	106	105	104	103	1		A:2	A:2
97	9 8	Ø	100	101	102	2		A:5	A:6
- 60		- 94	ഒ	പ	ை			A:13	A:13
0 03	•• 62	9 67		ക	M			A:17	A:20
03	99 Q	ข	1 00	ଔ	eu S	5		A:21	A:28
84	83	82	81	80	V9	0		A.29 A.32	A:31
Ø	Ø	Ø	Ø	Ø	18			A:34	A:1
D	0	Ø	69	68	Ø				
0	62	63	69	65	60				
9	6 9	68	57	56	63				
ň	จ	<u>о</u>	5	6	ล	Duration	%B	Solvent A	Solvent
	90 60	91 10	04 67	9 9	9	0.0	0.0	A1 pentane	B2 MTE
9	4)	40	49	44	49	1.0	0.0	A1 pentane	B2 MTE
D	68	89	40	()	42	2.0	5.0	A1 pentane	B2 MTE
6	85	34	<u>8</u> 3	<u>8</u> 2	6)	1.0	5.1	A1 pentane	B2 MTE
25	26	27	28	29	60		10.1	Al pentane	B2 MTB
•				Ā	Ā			Al pentane	B2 MTB
-	20	× 2	2	E	U		14.3	A1 pentane	B2 MTB
0	Ø	G	Ø	Ø	1	3.1	16.8	A1 pentane	B2 MTB
Q	O	Ø	9	8	Ō				
D	2	3	4	5	6				

13 mm x 100 mm Tubes

RediSep Column: Silica 24g SN: E04150D74CBF37 Lot: 301334205X Flow Rate: 35 ml/min Equilibration Volume: 168.0 ml Initial Waste: 0.0 ml Air Purge: 1.0 min Solvent: A1 Hexane Solvent: B1 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

RediSep Column: Silica 12g SN: E04150E8067D5 Lot: 302224502X Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B1 Ethyl Acetate

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Wednesday 07 July 2021 05:16AM

Run Notes:

13 mm x 100 mm Tubes

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Run Notes:

9

4

8

5

 \mathcal{T}

6

Ø

3

0

Q

1 2

Rf 200

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B2 MTBE

Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Run Notes: 2,6-Diisopropenyl-pyridine (S24)

RediSep Column: Al2O3 pH=7 8g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B1 1:1 MTBE:EtOAc Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 30 sec Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

	107	106	105	104	103
Ø	9 8	Ø	100	101	102
Ø	9 5	93	Ø	Ø	Ð
85	86	87	6 8	89	Ø
83	83	82	8)	80	Ø
Ø	Ø	G	Ø	Ø	18
Ø	Ø	Ø	69	68	Ø
<u>.</u>	62	63	64	65	66
60	<u>5</u> 9	58	57	50	55
an An	~ 50	5	5	5	50
T A	n dia	<u></u>	~~ 15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1 1 1
49 10	•	4 0	45 10	49 10	*J 10
9 7	50	59	4V	4J	4⊉
56	85	<u>84</u>	53	52	<u>5</u>)
25	26	27	28	29	<u>3</u> 0
24	23	22	2)	20	Ø
0	Ø	(5	6	Ø	6
	O	0	9	8	7
1	2	3	4	5	6
13	mm	x 10	0 mm	1 Tub	es

Sample: bis-isoprenylBIPY-ACTUAL

RediSep Column: Silica 12g SN: E04150E63D52C Lot: 311537906Z Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent A: Hexane Solvent B: Acetone Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf+

Sunday 04 July 2021 02:33PM

Run Notes:

Duration	%В	Solvent A	Solvent B
0.0	0.0	Hexane	Acetone
2.0	0.0	Hexane	Acetone
2.0	1.5	Hexane	Acetone
3.0	1.5	Hexane	Acetone
0.0	3.0	Hexane	Acetone
4.0	3.0	Hexane	Acetone
0.0	6.0	Hexane	Acetone
2.7	6.0	Hexane	Acetone
0.3	6.0	Hexane	Acetone
3.0	6.0	Hexane	Acetone
•••	•••	•••	•••
	Duration 0.0 2.0 3.0 0.0 4.0 0.0 2.7 0.3 3.0	Duration %B 0.0 0.0 2.0 0.0 2.0 1.5 3.0 1.5 0.0 3.0 4.0 3.0 0.0 6.0 2.7 6.0 0.3 6.0 3.0 6.0	Duration %B Solvent A 0.0 0.0 Hexane 2.0 0.0 Hexane 2.0 1.5 Hexane 3.0 1.5 Hexane 0.0 3.0 Hexane 0.0 3.0 Hexane 0.0 6.0 Hexane 0.3 6.0 Hexane 3.0 6.0 Hexane 3.0 6.0 Hexane

13 mm x 100 mm Tubes

45

40

63

28

21

Ø

9

4

46

89

64

Q7

22

G

Ø

3

48

87 58

86

25

Ø

Ø

Q

1 2

47

85

26

23

Ø

O

4

4

62

Ø

Ø

Ø

8

5

49

42

9

80

Ø

(8)

6

RediSep Column: Silica 4g Flow Rate: 18 ml/min Equilibration Volume: 33.6 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B1 Ethyl Acetate

Run Notes:

Peak Tube Volume: Max.

Loading Type: Solid

Non-Peak Tube Volume: Max.

Wavelength 2 (purple): 280nm

Wavelength 1 (red): 254nm

Peak Width: 30 sec

Threshold: 0.20 AU

Sample: AMS-B-25

RediSep Column: Silica 12g Gold SN: E04150AA31743 Lot: 312220702W Flow Rate: 30 ml/min Equilibration Volume: 100.8 ml Initial Waste: 0.0 ml Air Purge: 0.5 min Solvent: A1 Hexane Solvent: B1 Ethyl Acetate Peak Tube Volume: Max. Non-Peak Tube Volume: Max. Loading Type: Solid Wavelength 1 (red): 254nm Peak Width: 1 min Threshold: 0.20 AU Wavelength 2 (purple): 280nm

Rf 200

Tuesday 29 March 2022 12:27PM

Run Notes:

Page 1 of 1