Supporting Information for:

Modification of proteins with azobenzene crosslinkers using reversible covalent bonds

Nobuo Yasuike, ${ }^{\text {a, }}$ b Chihiro Kachi-Terajima, ${ }^{\mathrm{c}}$ Amirhossein Karin, ${ }^{\text {d }}$ Takashi Mino, ${ }^{\text {a }}$ and G. Andrew Woolley *d
a. Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
b. JSR Corporation, 1-9-2, Higashi-Shinbashi, Minato-ku, Tokyo, 105-8640, Japan.
c. Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, Japan.
d. Department of Chemistry, University of Toronto, Toronto, Canada.

Org. Biomol. Chem.

Table of Contents

Synthetic Methods 3
Table S1 8
Figure S1. Single crystal X-ray structure analysis of BCNA (solvent is DMSO). 11
Figure S2. Photoisomerization of BCNA detected by NMR in DMSO-d6 13
Figure S3. Analysis of BCNA isomers by HPLC and UV-Vis 14
Figure S4. Thermal relaxation of BCNA in DMSO 15
Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 2 mM BCNA with 2-ME (8 eq.) in DMSO-d ${ }_{6}$ 15
Figure S6. S-S distances in BCNA adducts 16
Figure S7. Titrations of BCNA with di-thiols detected by UV-Vis absorption spectra 17
Table 3. Calculated binding of BCNA to $\mathrm{Z}(\mathrm{I}, \mathrm{i}+7)$ in the presence of GSH 19
Figure S8. Photoswitching of a BCNA Z-domain (i, i+7) L51S adduct 20

Synthetic Methods

All chemicals were used without further purification. The starting material, azobenzene- 4,4 'biscarbaldehyde was synthesized according to previous literature methods. ${ }^{1,2}$
NMR measurements were performed on either Varian MercuryPlus 400 MHz , Bruker Avance III-400 MHz, Varian Vnmr-S 400 MHz , Agilent DD2-500 MHz, Agilent DD2-600 MHz or Agilent DD2-700 MHz spectrometers. UV spectra were recorded on either a Perkin-Elmer Lambda 35 spectrometer or a diode array. ESI-MS measurements were performed on Agilent Technologies 6538 UHD Accurate-Mass Q-TOF LC/MS.

Synthesis of (2E,2'E)-3,3'-(((E)-diazene-1,2-diyl)bis(4,1-phenylene))bis(2-cyanoacrylic acid) (BCNA)(1)

To a solution of azobenzene-4, 4^{\prime}-biscarbaldehyde ($0.052 \mathrm{~g}, 0.217 \mathrm{mmol}$) and cyanoacetic acid $(0.058 \mathrm{~g}, 0.679 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ was added a solution of piperidine $(0.12 \mathrm{~g}, 1.42$ $\mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$. The solution was heated to reflux for 18 h . The resulting dark orange precipitate was collected by suction filtration, washed with acetonitrile ($3 \times 30 \mathrm{~mL}$), and then dried under vacuum. The solid was then suspended in 10% aqueous HCl 10 mL and stirred for 1 h . The dark orange solid was isolated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 2 \mathrm{~mL})$ and dried in vacuo. Yield: $0.06 \mathrm{~g}, 72 \% .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta \mathrm{ppm} 8.06(\mathrm{~m}, 4 \mathrm{H}), 8.24(\mathrm{~m}, 4 \mathrm{H})$, $8.42(\mathrm{~s}, 2 \mathrm{H}), 14.12(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.5 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 163.4,154.1,153.4,135.1$, 132.4, 124.0, 116. 4, 106.0. ESI-MS: m/z calc'd for: $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 373.093681$; found: 373.0931

Synthesis of (2E,2'E)-3,3'-(((E)-diazene-1,2-diyl)bis(4,1-phenylene))bis(2-cyanoacrylamide)

(2)

To a solution of azobenzene-4, $\mathbf{4}^{\prime}$-biscarbaldehyde ($0.04 \mathrm{~g}, 0.168 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added a solution of 2-cyanoacetamide ($0.04 \mathrm{~g}, 0.458 \mathrm{mmol}$) and piperidine ($0.04 \mathrm{~g}, 0.456 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 48 h . The dark orange precipitate was collected by suction filtration, washed with MeOH and dried under vacuum. Yield: $0.05 \mathrm{~g}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta \mathrm{ppm} 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $8.07(\mathrm{~m}, 4 \mathrm{H}), 8.16(\mathrm{~m}, 4 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H})$. DART-MS: m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$: 371.13 (100.0\%), 372.13 (21.9\%), 373.13 (3.1\%), 372.12 (2.2\%); found: 371.1 (100\%); 372.1 (20\%)

CyAzoNH 2

Acq. Data Name: 151106_2859
Average(MS[1] Time:1.77..1.82)-1.0*Average(MS[1] Time:2.29..2.33)
CyanoAzo2 DART @450C
$\times 10^{3}$ Intensity (51411)

ION MODE: POSITIVE

Table S1

All calculations were carried out using Spartan '18, Version 1.4.1, Jul 26, 2019 (Wavefunction, Inc. Irvine, CA). Methods and basis sets are indicated. Equilibrium geometries were calculated by first sampling conformational space using the Monte Carlo conformer search methods in Spartan using a molecular mechanics (MMFF) forcefield and also by setting a variety of plausible starting structures by hand. Lowest energy conformers were then minimized using DFT methods as detailed in Table S 1 . In general, we used $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D}$ methods ${ }^{3}$ with default settings (biggrid: 70 shells in the radial direction, 302 Lebedev radial points). A polarizable continuum solvation water model was applied (dielectric $=78.30$). ${ }^{4}$ All minimum structures reported converged normally. The absence of imaginary frequencies confirmed the structures were local minima. TDDFT calculations did not employ solvent. Six states were considered, and spectra were simulated using a sum of gaussians with 0.4 eV line broadening (see: https://gaussian.com/uvvisplot/).

Name:	ChemDraw:	3D:	$\begin{gathered} \hline \text { Relative } \\ \text { Energy } \\ (\mathrm{kJ} / \mathrm{mol}): \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Eq. } \\ \text { Geometry } \\ \text { Method: } \\ \hline \end{array}$	Energy Method:	$\begin{gathered} \text { Energy } \\ \text { (hartrees) }: \end{gathered}$	Spectrum: UVVIS=WB97X-D,6-31G* (EEI spectrum shown in orange)		
EEE-BCNA			0	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\begin{gathered} \omega B 97 X-D ; 6 \\ 311+G(2 D F, \\ 2 P) \end{gathered}$	-1288.7501	$\left.\begin{array}{r} 100000 \\ 80000 \\ 60000 \\ 40000 \\ 20000 \\ 0 \\ 0 \end{array} \right\rvert\,$		
ZEE-BCNA			23.881548	$\begin{gathered} \text { WB97X-D/6- } \\ 31 \mathrm{G}^{*}+\mathrm{CPCM} \\ : \text { WATER } \end{gathered}$	$\begin{gathered} \omega B 97 X-D ; 6- \\ 311+G(20 F, \\ 2 P) \end{gathered}$	-1288.741			
ZEZ-bCNA			47.920626	WB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM WATER	$\left\lvert\, \begin{gathered} \omega B 97 X-D ; 6- \\ 311+G(2 D F, \\ 2 P) \end{gathered}\right.$	-1288.7319			
EZE-BCNA			48.183176	WB97X-D/6- $31 \mathrm{G}^{+}+$CPCM :WATER	$\left\lvert\, \begin{gathered} \omega B 97 X-D ; 6- \\ 311+G(2 D F, \\ 2 P) \end{gathered}\right.$	-1288.7318			
EZZ-BCNA			59.787886	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\begin{gathered} \omega B 97 X-D ; 6- \\ 311+G(2 D F, \\ 2 P) \end{gathered}$	-1288.7274			
ZZZ-BCNA			95.153371	$\left\|\begin{array}{c} \omega B 97 X-D / 6- \\ 31 G^{*}+C P C M \\ : \text { WATER } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \omega B 97 X-D ; 6- \\ 311+G(2 D F, \\ 2 P) \end{gathered}\right.$	-1288.7139			

EE-BCNA- (2-ME)		$\frac{88}{8} 8=8=0,0=000-8$	0	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\underset{31 G^{*}}{\omega B 97 X-D / 6-}$	-1841.9268	
$\left\|\begin{array}{c} E Z-\mathrm{BCNA} \\ (2-\mathrm{ME}) \end{array}\right\|$			23.708265	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\underset{31 G^{*}}{\omega B 97 X-D / 6-}$	-1841.9178	
ZE-BCNA- (2-ME)			33.29134	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\underset{31 G^{*}}{\omega B 97 X-D / 6-}$	-1841.9141	
$\left\|\begin{array}{c} Z Z-\mathrm{BCNA} \\ (2-\mathrm{ME}) \end{array}\right\|$			76.55958	wB97X-D/6- $316^{*}+$ CPCM water	$\underset{31 G^{*}}{\omega B 97 X-D / 6-}$	-1841.8976	

$\left\|\begin{array}{c} E-\mathrm{BCNA}(2 \\ \mathrm{ME}) 2(\mathrm{RS}) \end{array}\right\|$			0	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\left\lvert\, \begin{gathered} \omega B 97 X-D / 6- \\ 31 \mathrm{G}^{*} \end{gathered}\right.$	-2395.1049	
$\left\|\begin{array}{c} E-\mathrm{BCNA}-(2 \\ \mathrm{ME}) 2(\mathrm{~S} / \mathrm{S}) \end{array}\right\|$			-3.806975	wB97X-D/6- $31 \mathrm{G}^{*}+$ CPCM :WATER	$\left\lvert\, \begin{gathered} \omega B 97 X-D / 6- \\ 31 \mathrm{G}^{*} \end{gathered}\right.$	-2395.1064	
$\left\|\begin{array}{c} \text { Z-BCNA-(2 } \\ \mathrm{ME}) 2(\mathrm{RS}) \end{array}\right\|$			60.100321	ω B97X-D/6- $31 \mathrm{G}^{+}+$CPCM WATER	$\left\lvert\, \begin{gathered} \omega B 97 X-D / 6- \\ 31 \mathrm{G}^{+} \end{gathered}\right.$	-2395.082	
$\left\|\begin{array}{c} Z-\mathrm{BCNA}(2 \\ \mathrm{ME}) 2(\mathrm{~S} / \mathrm{S}) \end{array}\right\|$			38.846898	$\begin{gathered} \omega B 97 X-D / 6- \\ 31 G^{*}+C P C M \\ : \text { WATER } \end{gathered}$	$\begin{array}{\|c\|c\|} \omega B 97 X-D / 6- \\ 31 \mathrm{G}^{*} \end{array}$	-2395.0901	

Figure S1. Single crystal X-ray structure analysis of BCNA (solvent is DMSO). DOI: $10.5517 /$ ccdc.csd.cc238jwt
(a)
\qquad

(b)

(d)

	Dark-adapted		UV-irradiated					
	Isomer 1; EEE		Isomer 1; EEE		Isomer 2; EZE		Isomer 3; ?	
	${ }^{13} \mathrm{C}[\mathrm{ppm}]$	${ }^{1} \mathrm{H}[\mathrm{ppm}]$						
H_{a}	124	8.07	124	8.07	121	7.10	121	$(7.07 ?)$
H_{b}	132.5	8.24	132.5	8.24	132	7.97	132.3	7.87
H_{c}	153.5	8.42	153.5	8.42	153.5	8.23	153.5	$(8.19 ?)$

Figure S2. Photoisomerization of BCNA detected by NMR in DMSO-d6.
(a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of BCNA before irradiation and after irradiation with $370 \mathrm{~nm}\left(25 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ and $445 \mathrm{~nm}\left(55 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ LEDs for the indicated periods. Irradation was from the outside of the NMR tube.
(b) ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of dark-adapted sample.
(c) ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum about 370 nm irradiated BCNA. The solution of BCNA was irradiated with a $370 \mathrm{~nm}\left(25 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ LED, then transferred to an NMR tube and measured immediately.
(d) Chemical shifts of isomers of BCNA. For Isomer 3, chemical shifts are not certain due to overlap of proton peaks.

Figure S3. Analysis of BCNA isomers by HPLC and UV-Vis.
(a) HPLC chromatogram of dark-adapted BCNA. (b) HPLC chromatogram of UV-irradiated (370 nm) BCNA. (c) UV-Vis spectra of HPLC fractions of UV-irradiated BCNA. HPLC conditions: Zorbax SB-18 column with a linear gradient of $35-70 \%$ acetonitrile/water (containing $+0.1 \%$ trifluoroacetic acid) over a course of 13.5 min . The peaks with retention times of 5.2 and 5.7 min both have spectra consistent with cis-azo isomers. We attribute the peak with retention time of 5.2 min to a cis-azo isomer with one E and one $Z \mathrm{C}=\mathrm{C}$ bond (i.e. $E Z Z$, or $Z E E$), and the peak with retention time of 5.7 min to a cis-azo isomer with two $E \mathrm{C}=\mathrm{C}$ bonds (i.e. $E Z E$)

Figure S4. Thermal relaxation of BCNA in DMSO
Thermal relaxation of $25 \mu \mathrm{M} \mathbf{B C N A}$ in DMSO after irradiation with $370 \mathrm{~nm}, 15 \mathrm{~min}$ at $22^{\circ} \mathrm{C}$.

Figure $55 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 2 mM BCNA with 2-ME (8 eq.) in DMSOd_{6}.

Figure S6. S-S distances in BCNA adducts

See Table S 1 for chemical structures. For each of E-BCNA-(2-ME) $)_{2}, \mathrm{R} / \mathrm{S}$ and E-BCNA-(2-ME) $)_{2}, \mathrm{~S} / \mathrm{S}$ and Z-BCNA-(2-ME $)_{2}, \mathrm{R} / \mathrm{S}$ and Z-BCNA-(2-ME) $)_{2}, \mathrm{~S} / \mathrm{S}$ a conformer distribution calculation was carried out using Spartan 2019. The MMFF molecular mechanics force field was used with constraints to maintain the azo unit in DFT optimized trans or cis geometry. (a) Representative structures of E -BCNA-(2-ME) $)_{2}, \mathrm{R} / \mathrm{S}$ and $E-B C N A-(2-M E)_{2}, \mathrm{~S} / \mathrm{S}$ adducts. (b) Representative structures of Z-BCNA-(2-ME) $)_{2}, \mathrm{R} / \mathrm{S}$ and $Z-\mathrm{BCNA}-(2-\mathrm{ME})_{2}, \mathrm{~S} / \mathrm{S}$ adducts. (c) Histogram showing S-S distances found for $E-$ adduct conformers and Z-adduct conformers (all conformers within $10 \mathrm{~kJ} / \mathrm{mol}$ of the lowest calculated energy).

Figure S7. Titrations of BCNA with di-thiols detected by UV-Vis absorption

spectra

(a) Spectrum of $10 \mu \mathrm{M}$ BCNA in 20 mM sodium phosphate buffer $\mathrm{pH}=7.5$ at $20^{\circ} \mathrm{C}$, with increasing amounts of SS7L peptide (i,i+7) (black; 0 eq., gray; $0.1-6$ eq.). (b) Spectrum of $10 \mu \mathrm{M}$ BCNA in 20 mM sodium phosphate buffer $\mathrm{pH}=8.0$ at $20^{\circ} \mathrm{C}$, with increasing amounts of UT386-3 Z-domain (i, $\mathrm{i}+7$) (black; 0 eq., gray; $0.1,0.2,0.5,1,2,3,4,5,7.5,10$ eq.). (c) Spectrum of $10 \mu \mathrm{M}$ BCNA in 20 mM sodium phosphate buffer $\mathrm{pH}=8.0$ at $20^{\circ} \mathrm{C}$, with increasing amounts of UT386-2 Z-domain (i, $\mathrm{i}+11$) (black; 0 eq., gray; $1,10,20,30,40,50,60$ eq.).

$K_{d}=\mathbf{3} \mu \mathrm{M}$	$[B C N A-Z 7]$			
BCNA $\mu \mathrm{M}$	1	5	10	25
$[\mathrm{Z} 7]_{\text {total }} \mu \mathrm{M}$				
1	0.05	0.2	0.35	0.58
2	0.1	0.4	0.7	1.14
5	0.2	0.92	1.6	2.8
10	0.35	1.6	2.8	5.24
25	0.58	2.8	5.2	11
50	0.73	3.6	7.1	16.3
100	0.85	4.2	8.4	20.4

BCNA	\% Z7 bound			
	$[\mathrm{Z7}]_{\text {total }} \mu \mathrm{M}$			
	1	5	10	25
1	5	4	3.5	2.32
2	10	8	7	4.56
5	20	18.4	16	11.2
10	35	32	28	20.96
25	58	56	52	44
50	73	72	71	65.2
100	85	84	84	81.6

$\mathbf{K}_{\mathbf{d}}=\mathbf{3 0 0} \mathbf{n M}$	[BCNA-Z7]			
[Z7] total $\mu \mathrm{M}$				
BCNA $\mu \mathrm{M}$	1	5	10	25
1	0.28	0.7	0.84	0.94
2	0.46	1.34	1.64	1.86
5	0.71	2.77	3.9	4.6
10	0.84	3.9	6.6	8.9
25	0.93	4.6	9	19.1
50	0.96	4.8	9.6	23.4
100	0.98	4.9	9.8	24.4

BCNA	\% Z7 bound			
	$[\mathrm{Z} 7]_{\text {total }} \mu \mathrm{M}$			
	1	5	10	25
1	28	14	8.4	3.76
2	46	26.8	16.4	7.44
5	71	55.4	39	18.4
10	84	78	66	35.6
25	93	92	90	76.4
50	96	96	96	93.6
100	98	98	98	97.6

$\mathrm{K}_{\mathrm{d}}=\mathbf{3 0} \mathbf{n M} \quad[\mathrm{BCNA}-\mathrm{Z7}]$

$\%$ Z7 bound				
BCNA	1	5	10	25
1	66	19.2	9.8	3.96
2	86	37.8	19.6	7.92
5	96	82	48.3	19.4
10	98	96	87.4	39.52
25	99.2	99.2	98.8	91.88
50	99.6	99.6	99.6	99.28
100	99.8	99.8	99.8	99.76

$K_{d}=3 n M$
[BCNA-Z7]

$[\mathrm{Z} 7]_{\text {total }} \mu \mathrm{M}$				
BCNA $\mu \mathrm{M}$	1	5	10	25
1	0.872	0.995	0.998	0.999
2	0.982	1.988	1.99	1.998
5	0.995	4.7	4.98	4.995
10	0.998	4.98	9.58	9.98
25	0.9992	4.99	9.98	24.33
50	0.9996	4.998	9.995	24.98
100	0.9998	4.999	9.998	24.99

	$\begin{array}{r} \% \mathrm{Z} \\ {[\mathrm{Z} 7]_{\text {total }} \mu \mathrm{M}} \end{array}$			
BCNA	1	5	10	25
1	87.2	19.9	9.98	3.996
2	98.2	39.76	19.9	7.992
5	99.5	94	49.8	19.98
10	99.8	99.6	95.8	39.92
25	99.92	99.8	99.8	97.32
50	99.96	99.96	99.95	99.92
100	99.98	99.98	99.98	99.96

Table 3. Calculated binding of BCNA to $Z(1, i+7)$ in the presence of $G S H$.

Assuming a dissociation constant for BCNA and GSH of 1 mM , and concentration of GSH of 5 mM , Kintek Explorer was used to numerically solve for equilibrium concentrations of the Z-domain (i, i + 7) adduct using the dissociation constants given $(3 \mu \mathrm{M}, 300 \mathrm{nM}, 30 \mathrm{nM}, 3 \mathrm{nM})$ and the concentrations shown (all concentrations are given in $\mu \mathrm{M}$). The left-side Tables show equilibrium concentrations of the Z -domain $(\mathrm{i}, \mathrm{i}+7$) adduct while the right-side Tables give $\%$ of Z -domain $(\mathrm{i}, \mathrm{i}+7)$ adduct $v s$. total Z-domain (i, $\mathrm{i}+7$). Values above 95% adduct are coloured red.

Figure S8. Photoswitching of a BCNA Z-domain (i, i+7) L51S adduct
(a) UV-Vis spectra of $10 \mu \mathrm{M}$ BCNA: Z-domain L51S $=1: 6$ eq. in 50 mM sodium phosphate buffer at $\mathrm{pH}=8.0$ at $20^{\circ} \mathrm{C}$, dark-adapted (black), after irradiation with 370 nm light (violet), and after irradiation with 455 nm light (blue). (b)Thermal relaxation of Z-domain adducted BCNA after 370 nm irradiation measured at $20^{\circ} \mathrm{C}$. (c) CD spectra of $12.5 \mu \mathrm{M}$ BCNA: Z-domain L51S (1:1 eq) in 10 mM sodium phosphate buffer at $\mathrm{pH}=8.0$ at $20^{\circ} \mathrm{C}$, including 0.125% DMSO. Dark-adapted (black), after irradiation with 370 nm light (violet), and after irradiation with 455 nm light (blue), Z-domain L51S only (dash).

References

1.

P. Gerstel, S. Klumpp, F. Hennrich, A. Poschlad, V. Meded, E. Blasco, W. Wenzel, M. M. Kappes and C. Barner-Kowollik, ACS Macro. Lett., 2014, 3, 10-15.
2. L. Masciello and P. Potvin, Can. J. Chem., 2003, 81, 209-218.
3. J. D. Chai and M. Head-Gordon, Phys Chem Chem Phys, 2008, 10, 6615-6620.
4. A. W. Lange and J. M. Herbert, J Chem Phys, 2011, 134, 204110.

