SUPPORTING INFORMATION

A copper-catalyzed three-component reaction of dithioacetals with diazo ketones and ketimines

Hongkai Sha, Yu Qian,* Xiangji Yang, Kuiyong Dong, Xinfang Xu and Wenhao Hu*

Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

E-mail: huwh9@mail.sysu.edu.cn; qianyu5@mail.sysu.edu.cn

Table of Contents

1. General Information	S2
2. Condition Optimization	S2
3. General Procedure for the Synthesis of Compounds 4	S 3
4. General Procedure for the Synthesis of Compounds 5	S3-S16
5. General Procedure for the Synthesis of Compounds 5'	S17
6. Control Experiments	S18-S20
7. Procedure for Scale up and Derivations	S20-S22
8. ¹ H and ¹³ C NMR Spectra of Compounds 4, 5, 5', 7, 8, and 9	S23-S59
9. Single-Crystal X-ray Diffraction of 4e, 5e and 5'	S60-S62

General Information

All reactions were performed in oven-dried glassware under atmosphere of argon. Solvents were dried and distilled followed the standard methods before using. Racemization phosphoric acid (PPA) and other metal catalysts purchased from chemical vendors and used directly without any treatment. Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (300-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or CD₂Cl₂-*d*₂ on 400/500 MHz spectrometer; chemical shifts are reported in ppm with the solvent signals as reference, and coupling constants (J) are given in Hertz. The peak information is described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source). Materials were prepared according to the known procedure and had physical and spectral properties identical to those earlier reported.

BocN rac-PPA (10 mol%) O S + N_2 Ph [Cu] (20 mol%) Solvent, T. 4Å MS Β'n 1a 2a 3a 4a Entry [Cu](20 mol%) Solvent T (°C) Yield (%)^b DCE 25 1 Cu(CH₃CN)₄BF₄ 35 2 Cu(CH₃CN)₄BF₄ DCE 50 34 3 Cu(CH₃CN)₄BF₄ DCE 0 42 4 Cu(CH₃CN)₄PF₆ DCE 0 22 CuOTf 5 DCE 0 20 CuOAc DCE 16 6 0 7 CuTc DCE 0 48 8 CuTc ΕA n 15 9 CuTc Toluene 31 0 MTBE CuTc 0 20 10 CuTc DCM 50 11 0 0 CuTc 76 12° DCM 13^c CuTc DCM -10 82 14^d CuTc DCM -10 70

Table S1: Condition optimization^a

^a Unless otherwise noted, all reactions were carried out on a 0.1 mmol scale ($1\mathbf{a} : 2\mathbf{a} : 3\mathbf{a} = 1 : 1.5 : 1$) under an argon atmosphere for 12 h. *rac*-PPA = racemic phosphoric acid. ^b Isolated yields based on $3\mathbf{a}$ after flash-chromatography. ^c 0.2 mmol of $1\mathbf{a}$ and $2\mathbf{a}$ were used. ^d 0.3 mmol of $1\mathbf{a}$ and $2\mathbf{a}$ were used.

General Procedure for the Synthesis of Compounds 4

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketimines **3** (0.1 mmol), CuTc (3.8 mg, 20 mol%), 4 Å MS (50 mg) and racemization phosphoric acid (3.5 mg, 10 mol%) in DCM (0.5 mL), was added acyclic ketene dithioacetal **1a** (0.2 mmol) and diazo-ketones **2** (0.2 mmol) in DCM (1.0 mL) *via* a syringe pump under stirring in 2 h under argon atmosphere at -10 °C. The resulting reaction mixture was stirred overnight under these conditions. When the reaction was completed (monitored by TLC), the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to afford the pure products **4** in good yields.

General Procedure for the Synthesis of Compounds 5

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketimines **3** (0.1 mmol), CuTc (3.8 mg, 20 mol%), 4 Å MS (50 mg) and racemization phosphoric acid (3.5 mg, 10 mol%) in DCM (0.5 mL), was added cyclic ketene dithioacetal **1b** (0.2 mmol) and diazo-ketones **2** (0.2 mmol) in DCM (1.0 mL) *via* a syringe pump under stirring in 2 h under argon atmosphere at -10 °C. The resulting reaction mixture was stirred overnight under these conditions. When the reaction was completed (monitored by TLC), the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to afford the pure products **5** in good yields.

tert-Butyl (1-benzyl-6-chloro-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4a) White solid, 58.4 mg, 82% yield, mp: 214 - 216 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ ,

ppm) 7.86 – 7.84 (comp, 2H), 7.52 – 7.51 (comp, 2H), 7.43 – 7.36 (comp, 4H), 7.31 – 7.28 (comp, 3H), 7.25 – 7.18 (comp, 5H), 6.85 – 6.86 (m, 1H), 6.81 (s, 1H), 6.44 (s, 1H), 5.48 (s, 1H), 4.77 (d, J = 15.0 Hz, 1H), 4.53 (d, J = 15.0 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 3H), 1.13 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.6, 174.7, 171.7, 155.5, 153.2, 145.1, 139.2, 135.1, 133.3, 132.0, 130.2, 130.1, 129.1, 129.0, 128.9, 128.6, 128.3, 127.9, 127.7, 127.6, 127.5, 126.4, 122.8, 109.7, 100.0, 80.5, 64.6, 44.6, 28.0, 19.9, 12.9; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₇ClN₂O₅S₂Na 735.1725; found 735.1726.

tert-Butyl (1-benzyl-3-((*Z*)-1-(methylthio)-2-(((*Z*)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4b) White solid, 50.2 mg, 74% yield, mp: 218 – 219 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 8.02 – 8.01 (comp, 2H), 7.71 – 7.70 (comp, 2H), 7.62 – 7.50 (comp, 4H), 7.46 – 7.42 (comp, 3H), 7.39 – 7.29 (comp, 5H), 7.23 – 7.20 (m, 1H), 7.04 – 7.01 (m, 1H), 7.00 (s, 1H), 6.63 – 6.61 (m, 1H), 5.58 (s, 1H), 4.91 (d, *J* = 15.0 Hz, 1H), 4.71 (d, *J* = 15.0 Hz, 1H), 2.43 (s, 3H), 2.37 (s, 3H), 1.26 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.5, 174.4, 171.7, 155.0, 153.1, 143.8, 139.1, 135.5, 133.4, 131.8, 130.5, 130.1, 129.9, 129.4, 128.6, 128.4, 128.1, 127.9, 127.7, 127.6, 127.4, 125.3, 122.8, 109.1, 99.7, 80.1, 64.9, 44.3, 27.8, 19.8, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₈N₂O₅S₂Na 701.2114; found 701.2111.

tert-Butyl (1-benzyl-5-methyl-3-((*Z*)-1-(methylthio)-2-(((*Z*)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4c) White solid, 50.5 mg, 73% yield, mp: 189 – 191 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 8.06 – 8.04 (comp, 2H), 7.74 – 7.73 (comp, 2H), 7.57 – 7.50 (comp, 3H), 7.45 – 7.30 (comp, 9H), 7.08 (s, 1H), 7.00 (m, 1H), 6.50 (m, 1H), 5.53 (s, 1H), 4.89 (d, *J* = 15.0 Hz, 1H), 4.73 (d, *J* = 15.0 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H), 1.26 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.6, 174.2, 171.9, 154.8, 153.1, 141.3, 139.2, 135.7, 133.5, 132.6, 131.8, 130.3, 130.1, 129.8, 129.6, 128.6, 128.4, 128.1, 128.0, 127.7, 127.6, 127.3, 126.2, 108.8, 99.7, 80.1, 65.1, 44.3, 27.9, 20.7, 19.8, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₀H₄₀N₂O₅S₂Na 715.2271; found 715.2269.

tert-Butyl (1-benzyl-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-5-nitro-2-oxoindolin-3-yl)carbamate (4d)

White solid, 52.1 mg, 72% yield, mp: $125 - 126 \,^{\circ}$ C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 8.40 (s, 1H), 8.13 - 8.11 (m, 1H), 7.94 - 7.92 (comp, 2H), 7.61 - 7.51 (comp, 5H), 7.46 - 7.44 (comp, 2H), 7.42 - 7.40 (m, 1H), 7.36 - 7.33 (comp, 5H), 6.82 (s, 1H), 6.64 (m, 1H), 5.80 (s, 1H), 5.03 (d, *J* = 16.0 Hz, 1H), 4.71 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H), 2.40 (s, 3H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.3, 175.1, 171.3, 156.2, 153.0, 149.4, 143.6, 138.9, 134.5, 132.6, 131.9, 131.4, 130.3, 130.0, 128.8, 128.5, 128.3, 128.0, 127.52, 127.47, 126.4, 126.2, 120.4, 108.7, 100.2, 80.8, 64.2, 44.9, 27.8, 19.9, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₇N₃O₇S₂Na 746.1965; found 746.1960.

tert-Butyl (1-benzyl-5-bromo-3-((*Z*)-1-(methylthio)-2-(((*Z*)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4e) White solid, 56.7 mg, 75% yield, mp: 209 – 21 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.86 – 7.84 (comp, 2H), 7.58 (s, 1H), 7.51 – 7.50 (comp, 2H), 7.43 – 7.38(comp, 3H), 7.30 – 7.27 (comp, 3H), 7.24 – 7.16 (comp, 6H), 6.79 (s, 1H), 6.32 (m, 1H), 5.51 (s, 1H), 4.79 (d, *J* = 15.0 Hz, 1H), 4.52 (d, *J* = 15.0 Hz, 1H), 2.30 (s, 3H), 2.25 (s, 3H), 1.14 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.4, 174.0, 171.6, 155.6, 153.1, 142.8, 139.0, 135.0, 133.1, 132.3, 132.1, 131.8, 130.04, 129.99, 128.7, 128.5, 128.3, 128.2, 127.8, 127.5, 127.4, 127.2, 115.4, 110.5, 99.8, 80.5, 64.7, 44.5, 27.8, 19.8, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₇BrN₂O₅S₂Na 779.1219; found 779.1219.

tert-Butyl (1-benzyl-7-chloro-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4f) White solid, 43.4 mg, 61% yield, mp: 200 - 202 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ ,

ppm) 7.81 – 7.79 (comp, 2H), 7.43 – 7.41 (comp, 3H), 7.39 – 7.33 (comp, 3H), 7.33 – 7.24 (comp, 5H), 7.22 – 7.13 (comp, 3H), 7.07 – 7.05 (m, 1H), 6.87 (m, 1H), 6.71 (s, 1H), 5.71 (s, 1H), 5.14 (d, J = 16.0 Hz, 1H), 4.91 (d, J = 16.0 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.3, 175.3, 171.6, 155.7, 152.9, 140.0, 139.0, 137.4, 133.7, 132.7, 132.0, 131.8, 130.2, 130.0, 128.43, 128.35, 128.1, 127.6, 127.5, 127.0, 126.6, 123.7, 123.3, 115.2, 99.9, 80.4, 64.0, 45.7, 27.8, 19.9, 12.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₇ClN₂O₅S₂Na 735.1725; found 735.1724.

tert-Butyl (1-methyl-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4g) White solid, 36.7 mg, 61% yield, mp: 104 – 106 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.99 – 7.97 (comp, 2H), 7.60 – 7.51 (comp, 4H), 7.36 – 7.26 (comp, 6H), 7.09 – 7.06 (m, 1H), 6.89 (s, 1H), 6.62 – 6.61 (m, 1H), 5.94 (s, 1H), 2.98 (s, 3H), 2.45 (s, 3H), 2.38 (s, 3H), 1.25 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.3, 174.0, 171.7, 155.5, 153.2, 144.4, 139.0, 132.8, 131.8, 130.9, 129.9, 129.7, 129.5, 128.5, 128.4, 127.8, 127.6, 124.6, 122.7, 108.3, 99.5, 80.1, 64.0, 27.8, 26.3, 19.9, 12.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₃H₃₄N₂O₅S₂Na 625.1801; found 625.1803.

tert-Butyl (1-acetyl-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4h) White solid, 31.5 mg, 50% yield, mp: 180 – 182 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.91 – 7.90 (m, 1H), 7.71 – 6.69 (comp, 2H), 7.46 – 7.44 (m, 1H), 7.41 – 7.33 (comp, 3H), 7.30 – 7.23 (comp, 2H), 7.21 – 7.12 (comp, 3H), 7.03 – 7.01 (comp, 2H), 6.48 (s, 1H), 6.31 (s, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 2.27 (s, 3H), 1.13 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.0, 175.4, 171.2, 170.0, 156.7, 153.0, 141.2, 138.9, 131.9, 131.7, 130.7, 130.4, 129.8, 128.5, 128.2, 128.1, 127.4, 125.4, 122.9, 116.6, 99.9, 80.9, 63.8, 27.7, 26.2, 20.1, 12.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₄H₃₄N₂O₆S₂Na 653.1751; found 653.1749.

tert-Butyl (1-allyl-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)-2-oxoindolin-3-yl)carbamate (4i) White solid, 39.6 mg, 63% yield, mp: 164 – 166 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 – 7.98 (comp, 2H), 7.65 – 7.63 (comp, 2H), 7.60 – 7.58 (m, 1H), 7.51 – 7.43 (comp, 3H), 7.34 – 7.28 (comp, 3H), 7.24 – 7.22 (m, 1H), 7.01 – 6.94 (comp, 2H), 6.69 – 6.67 (m, 1H), 5.83 – 5.79 (m, 1H), 5.40 (s, 1H), 5.35 (s, 1H), 5.22 (d, *J* = 12 Hz, 1H), 4.28 (d, *J* = 16 Hz, 1H), 4.16 (d, *J* = 16 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.0, 174.2, 171.9, 154.7, 153.0, 143.5, 139.0, 133.4, 131.8, 130.8, 130.3, 130.1, 129.8, 129.4, 128.4, 128.1, 127.83, 127.80, 125.6, 122.9, 117.8, 109.0, 99.9, 80.1, 64.9, 42.9, 28.1, 19.8, 13.0; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₅H₃₆N₂O₅S₂Na 651.1958; found 651.1957.

tert-Butyl (1-benzyl-3-((Z)-2-(4-bromophenyl)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)vinyl)-6-chloro-2-oxoindolin-3yl)carbamate (4j)

White solid, 37.9 mg, 48% yield, mp: 135 - 136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.04 – 8.02 (comp, 2H), 7.66 – 7.65 (comp, 2H), 7.57 – 7.55 (m, 1H), 7.52 – 7.50 (m, 1H), 7.47 – 7.43 (comp, 4H), 7.40 – 7.38 (comp, 2H), 7.35 – 7.28 (comp, 3H), 7.00 (s, 1H), 6.93 – 6.91 (m, 1H), 6.653 – 6.649 (m, 1H), 5.12 (s, 1H), 4.92 – 4.80 (m, 2H), 2.39 (s, 3H), 2.24 (s, 3H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.0, 174.5, 171.7, 153.3, 153.0, 144.6, 138.9, 135.4, 134.6, 132.6, 132.0, 131.6, 131.3, 129.0, 128.5, 128.2, 128.1, 128.0, 127.8, 127.3, 127.2, 124.4, 123.1, 109.8, 99.9, 80.6, 64.9, 44.7, 28.1, 19.7, 13.0; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₆BrClN₂O₅S₂Na 813.0830; found 813.0834.

tert-Butyl (1-benzyl-6-chloro-3-((Z)-2-(4-fluorophenyl)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)vinyl)-2-oxoindolin-3yl)carbamate (4k)

White solid, 47.5 mg, 65% yield, mp: 211 – 212 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.92 – 7.90 (comp, 2H), 7.66 – 7.65 (comp, 2H), 7.47 – 7.43 (comp, 2H), 7.41 – 7.38 (comp, 2H), 7.33 – 7.32 (comp, 2H), 7.28 – 7.21 (comp, 3H), 6.97 – 6.94 (comp, 2H), 6.92 – 6.84 (comp, 2H), 6.55 – 6.56 (m, 1H), 5.30 (s, 1H), 4.79 (d, *J* = 15.0 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H), 1.15 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 187.5, 174.5, 171.6, 168.8, 163.5 (d, *J*_{C-F} = 248.8 Hz), 154.0, 153.1, 144.8, 139.0, 135.1, 134.8, 132.3(d, *J*_{C-F} = 8.7 Hz), 131.9, 129.7 (d, *J*_{C-F} = 3.0 Hz), 128.8, 128.7, 128.4, 127.9, 127.6, 127.3, 126.6, 122.8, 115.2 (d, *J*_{C-F} = 21.3 Hz), 109.5, 99.7, 80.5, 64.7, 44.5, 27.8, 19.7, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) - 109.77; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₆ClFN₂O₅S₂Na 753.1630; found 753.1632.

tert-Butyl (1-benzyl-6-chloro-3-((*Z*)-1-(methylthio)-2-(((*Z*)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-(p-tolyl)vinyl)-2-oxoindolin-3-yl)carbamate (4l) White solid, 39.9 mg, 55% yield, mp: 186 – 187 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.87 – 7.85 (comp, 2H), 7.46 – 7.42 (comp, 3H), 7.40 – 7.39 (comp, 2H), 7.37 – 7.32 (comp, 3H), 7.28 – 7.25 (comp, 3H), 7.10 – 7.08 (comp, 2H), 6.90 – 6.88 (m, 1H), 6.77 (s, 1H), 6.49 (s, 1H), 5.48 (s, 1H), 4.80 (d, *J* = 16.0 Hz, 1H), 4.60 (d, *J* = 16.0 Hz, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H), 1.16 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.4, 174.6, 171.7, 155.5, 153.0, 145.0, 140.5, 139.0, 135.0, 134.9, 131.8, 130.1, 130.0, 128.9, 128.8, 128.7, 128.4, 127.8, 127.6, 127.3, 126.6, 126.1, 122.6, 109.5, 100.0, 80.2, 64.5, 44.5, 27.8, 21.1, 19.8, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₀H₃₉ClN₂O₅S₂Na 749.1881; found 749.1886.

tert-Butyl (1-benzyl-6-chloro-3-((Z)-2-(4-methoxyphenyl)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)vinyl)-2-oxoindolin-3yl)carbamate (4m)

White solid, 37.9 mg, 51% yield, mp: $164 - 166 \,^{\circ}$ C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.87 – 7.85 (comp, 2H), 7.53 – 7.32 (comp, 8H), 7.27 – 7.21 (comp, 3H), 6.89 – 6.87 (m, 1H), 6.78 – 6.76 (comp, 3H), 6.50 (s, 1H), 5.51 (s, 1H), 4.81 (d, *J* = 16.0 Hz, 1H), 4.64 (d, *J* = 16.0 Hz, 1H), 3.74 (s, 3H), 2.33 (s, 3H), 2.23 (s, 3H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.4, 174.7, 171.7, 161.0, 155.5, 153.0, 145.0, 139.1, 135.0, 134.8, 131.8, 131.6, 129.0, 128.7, 128.4, 127.8, 127.5, 127.4, 126.1, 126.0, 125.1, 122.6, 113.5, 109.4, 99.9, 80.2, 64.6, 55.4, 44.5, 27.8, 19.8, 12.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₀H₃₉ClN₂O₆S₂ 765.1830; found 765.1825.

tert-Butyl (1-benzyl-6-chloro-3-((Z)-2-(3-chlorophenyl)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)vinyl)-2-oxoindolin-3-yl)carbamate (4n)

White solid, 52.2 mg, 70% yield, mp: 137 - 138 °C; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.02 – 8.00 (comp, 2H), 7.63 – 7.62 (m, 1H), 7.56 – 7.50 (comp, 3H), 7.47 – 7.45 (comp, 2H), 7.39 – 7.28 (comp, 6H), 7.24 – 7.21 (m, 1H), 6.97 – 6.89 (comp, 2H), 6.59 (s, 1H), 5.32 (s, 1H), 4.89 (d, *J* = 15.0 Hz, 1H), 4.77 (d, *J* = 15.0 Hz, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 1.24 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 188.0, 174.5, 171.5, 156.5 153.1, 153.0, 144.6, 138.9, 138.8 135.5, 135.3, 134.6, 134.0, 132.0, 130.0, 129.9, 129.4, 128.9, 128.5, 128.3, 128.0, 127.8, 127.3, 127.0, 123.1, 109.8, 100.0, 80.7, 64.6, 44.6, 28.1, 19.7, 13.0; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₆Cl₂N₂O₅S₂Na 769.1335; found 769.1333.

tert-Butyl (1-benzyl-3-((Z)-2-(3-bromophenyl)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)vinyl)-6-chloro-2-oxoindolin-3yl)carbamate (40) White solid, 57.7 mg, 73% yield, mp: 152 - 153 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.01 – 7.99 (comp, 2H), 7.75 (S, 1H), 7.59 – 7.58 (m, 1H), 7.55 – 7.44 (comp, 5H), 7.37 – 7.36 (comp, 2H), 7.34 – 7.27 (comp, 3H), 7.17 – 7.13 (m, 1H), 6.93 – 6.91 (comp, 2H), 6.57 – 6.58 (m, 1H), 5.36 (s, 1H), 4.88 (d, *J* = 16.0 Hz, 1H), 4.75 (d, *J* = 16.0 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.1, 174.5, 171.5, 153.2, 153.0, 144.6, 138.9, 135.5, 134.6, 132.9, 132.8, 132.0, 129.6, 129.0 128.9, 128.5, 128.3, 128.0, 127.8, 127.7, 127.3, 127.2, 126.9, 123.1, 122.0, 109.8, 100.0, 80.7, 64.5, 44.7, 28.1, 19.8, 13.0; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₆BrClN₂O₅S₂Na 813.0830; found 813.0831.

tert-Butyl (1-benzyl-6-chloro-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-(naphthalen-2-yl)vinyl)-2-oxoindolin-3yl)carbamate (4p)

White solid, 34.3 mg, 45% yield, mp: 144 – 146 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 8.12 (s, 1H), 7.97 – 7.95 (comp, 2H), 7.91 – 7.89 (m, 1H), 7.87 – 7.83 (comp, 2H), 7.74 – 7.72 (m, 1H), 7.62 – 7.57 (comp, 2H), 7.56 – 7.54 (comp, 2H), 7.50 – 7.47 (comp, 2H), 7.38 – 7.28 (comp, 5H), 7.04 – 6.96 (comp, 2H), 6.44 (s, 1H), 5.61 (s, 1H), 4.84 (d, *J* = 16.0 Hz, 1H), 4.41 (d, *J* = 16.0 Hz, 1H), 2.46 (s, 3H), 2.42 (s, 3H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.5, 174.5, 171.6, 155.2, 153.0, 144.9, 139.1, 135.04, 134.99, 134.9, 133.7, 132.3, 131.8, 130.5, 130.3, 129.0, 128.70, 128.65, 128.6, 128.4, 127.9, 127.8, 127.7, 127.6, 127.3, 127.2, 126.8, 126.4, 122.7, 109.5, 100.0, 80.2, 64.5, 44.3, 27.6, 19.9, 12.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₃H₃₉ClN₂O₅S₂Na 785.1881; found 785.1882.

tert-butyl (1-benzyl-6-chloro-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-(thiophen-3-yl)vinyl)-2-oxoindolin-3-yl)carbamate (4q)

White solid, 46.0 mg, 64% yield, mp: 212 - 213 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.92 - 7.90 (comp, 2H), 7.56 - 7.55 (m, 1H), 7.46 - 7.41 (comp, 2H), 7.41 - 7.35 (comp, 3H), 7.32 - 7.30 (comp, 2H), 7.26 - 7.20 (comp, 3H), 6.92 - 6.87 (comp, 2H), 6.84 (s, 1H), 6.56 - 6.55 (m, 1H), 5.53 (s, 1H), 4.80 (d, *J* = 16.0 Hz, 1H), 4.66 (d, *J* = 16.0 Hz, 1H), 2.30 (s, 3H), 2.23 (s, 3H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.5, 174.4, 171.4, 153.3, 148.3, 144.9, 139.0, 135.0, 134.9, 133.5, 133.2, 131.9, 129.7, 129.4, 128.8, 128.7, 128.6, 128.4, 127.8, 127.7, 127.3, 126.5, 126.4, 122.8, 109.6,

99.5, 80.5, 64.8, 44.5, 27.9, 19.9, 12.8; HRMS (TOF MS ESI⁺) m/z: $[M+Na]^+$ calculated for C₃₇H₃₅ClN₂O₅S₃Na 741.1289; found 741.1290.

tert-Butyl (1-benzyl-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5a)

White solid, 54.1 mg, 80% yield, mp: $160 - 161 \,{}^{\circ}C$; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.83 – 7.81 (comp, 3H), 7.48 – 7.41 (comp, 2H), 7.41 – 7.31 (comp, 7H), 7.30 – 7.18 (comp, 4H), 7.12 – 7.10 (m, 1H), 6.89 – 6.86 (comp, 2H), 6.59 – 6.58 (m, 1H), 5.06 (s, 1H), 4.83 – 4.73 (m, 2H), 3.34 – 3.32 (m, 1H), 3.10 – 3.09 (m, 2H), 2.96 – 2.84 (m, 1H), 1.10 (s, 9H); {}^{13}C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.2, 171.0, 152.9, 143.7, 138.5, 135.7, 132.8, 132.2, 130.8, 130.1, 129.7, 129.5, 128.6, 128.4, 128.1, 127.8, 127.6, 127.5, 127.4, 125.8, 122.9, 122.5, 110.2, 108.7, 80.0, 64.6, 44.3, 36.7, 29.8, 27.8; HRMS (TOF MS ESI⁺) m/z: [M+H]⁺ calculated for C₃₉H₃₇N₂O₅S₂ 677.2144; found 677.2139.

tert-Butyl (1-benzyl-5-methyl-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5b) White solid, 49.0 mg, 71% yield, mp: 178 - 179 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.95 - 7.90 (comp, 4H), 7.53 - 7.52 (m, 1H), 7.47 - 7.39 (comp, 7H), 7.34 - 7.27 (comp, 4H), 6.99 - 6.97 (comp, 2H), 6.55 - 6.53 (m, 1H), 5.11 (s, 1H), 4.91 - 4.78 (m, 2H), 3.54 - 3.36 (m, 1H), 3.16 (m, 2H), 2.97 (m, 1H), 2.11 (s, 3H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.1, 174.1, 171.2, 154.3, 152.9, 141.3, 138.4, 135.8, 132.9, 132.7, 132.3, 130.8, 130.1, 129.7, 129.6, 128.6, 128.4, 128.1, 127.9, 127.6, 127.4, 126.5, 122.8, 109.9, 108.5, 79.9, 64.7, 44.3, 36.8, 29.7, 27.8, 20.6; HRMS (TOF MS ESI⁺) m/z: [M+H]⁺ calculated for C₄₀H₃₉N₂O₅S₂ 691.2295; found 691.2295.

tert-Butyl (1-benzyl-5-nitro-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5c)

White solid, 41.8 mg, 58% yield, mp: 203 - 204 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 8.22 (s, 1H), 8.02 - 8.00 (m, 1H), 7.74 - 7.72 (comp, 2H), 7.61 - 7.60 (comp, 2H), 7.44 - 7.43 (m, 1H), 7.38 - 7.29 (comp, 7H), 7.27 - 7.21 (comp, 3H), 6.73 (s, 1H), 6.61 - 6.59 (m, 1H), 5.28 (s, 1H), 4.84 (d, *J* = 15.0 Hz, 1H), 4.72 (d, *J* = 15.0 Hz, 1H), 3.24 - 3.21 (m, 1H), 3.17 - 3.06 (m, 2H), 3.03 - 2.93 (m, 1H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.8, 169.6, 155.6, 153.0, 149.3, 143.6, 138.3, 134.6, 132.4, 132.2, 130.6, 130.5, 128.8, 128.5, 128.4, 128.3, 128.0, 127.8, 127.5, 126.3, 120.9, 120.4, 111.3, 108.5, 80.7, 64.0, 44.7, 37.3, 30.5, 27.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₅N₃O₇S₂Na 744.1809; found 744.1816.

tert-Butyl (1-benzyl-5-bromo-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5d)

White solid, 52.8 mg, 70% yield, mp: $197 - 199 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.87 – 7.86 (comp, 2H), 7.75 – 7.74 (comp, 2H), 7.62 – 7.61 (m, 1H), 7.50 – 7.48 (m, 1H), 7.44 – 7.35 (comp, 7H), 7.33 – 7.28 (comp, 3H), 7.25 – 7.24 (m, 1H), 6.86 (s, 1H), 6.48 – 6.46 (comp, 1H), 5.15 (s, 1H), 4.82 (s, 2H), 3.39 – 3.33 (m, 1H), 3.23 – 3.11 (m, 2H), 3.05 – 2.98 (m, 1H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.5, 174.0, 170.4, 154.7, 152.9, 142.6, 138.3, 135.0, 132.4, 131.4, 130.7, 130.2, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 127.5, 121.5, 115.8, 110.8, 110.3, 80.5, 64.4, 44.5, 36.9, 30.2, 28.1; HRMS (TOF MS ESI⁺) m/z: [M+Na]+ calculated for C₃₉H₃₅BrN₂O₅S₂Na 777.1063; found 777.1060.

tert-Butyl (1-benzyl-6-chloro-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5e)

White solid, 57.5 mg, 81% yield, mp: $195 - 196 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.89 – 7.88 (comp, 2H), 7.78 – 7.76 (comp, 2H), 7.50 – 7.49 (m, 1H), 7.44 – 7.27 (comp, 11H), 6.97 – 6.82 (comp, 2H), 6.61 – 6.60 (m, 1H), 5.11 (s, 1H), 4.86 – 4.78 (m, 2H), 3.42 – 3.32 (m, 1H), 3.23 – 3.10 (m, 2H), 3.03 – 2.93 (m, 1H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.6, 174.7, 170.9, 154.7, 153.1, 144.8, 138.5, 135.5, 135.0, 132.7, 132.5, 130.8, 130.2, 128.9, 128.8, 128.6, 128.3, 128.2, 128.1, 128.0, 127.5, 123.1, 122.0, 110.7, 109.6, 80.5, 64.3, 44.7, 36.9, 30.2, 28.2; HRMS (TOF MS ESI+) m/z: [M+Na]+ calculated for Chemical Formula: C₃₉H₃₅ClN₂O₅S₂Na 733.1568; found 733.1563;

tert-Butyl (1-benzyl-7-methyl-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5f) White solid, 40.0 mg, 58% yield, mp: 168 – 169 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.79 – 7.73 (comp, 4H), 7.46 – 7.42 (m, 1H), 7.39 – 7.28 (comp, 6H), 7.25 (comp, 4H), 7.16 – 7.19 (m, 1H), 6.90 – 6.88 (m, 1H), 6.85 – 6.76 (comp, 2H), 5.14 (s, 1H), 5.04 – 4.93 (m, 2H), 3.32 – 3.23 (m, 1H), 3.16 – 3.12 (m, 2H), 2.95 – 2.86 (m, 1H), 2.12 (s, 3H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.2, 175.2, 170.7, 154.3, 152.9, 141.8, 138.5, 137.7, 133.6, 132.6, 132.2, 130.8, 130.6, 130.1, 128.7, 128.4, 128.0, 127.8, 127.1, 126.0, 123.2, 122.9, 122.7, 119.5, 110.4, 80.0, 63.8, 45.8, 36.8, 30.0, 27.8, 18.5; HRMS (TOF MS ESI⁺) m/z: [M+H]⁺ calculated for C₄₀H₃₉N₂O₅S₂ 691.2295; found 691.2297.

tert-Butyl (1-benzyl-7-chloro-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5g)

White solid, 48.3 mg, 68% yield, mp: 199 – 200 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.89 – 7.87 (comp, 2H), 7.82 – 7.81 (comp, 2H), 7.56 – 7.55 (m, 1H), 7.50 – 7.41 (comp, 7H), 7.38 – 7.26 (comp, 4H), 7.22 – 7.20 (m, 1H), 6.98 – 6.94 (m, 1H), 6.89 (s, 1H), 5.38 (d, *J* = 16.0 Hz, 1H), 5.28 (s, 1H), 5.20 (d, *J* = 16.0 Hz, 1H), 3.34 – 3.29 (m, 1H), 3.25 – 3.10 (m, 2H), 3.05 – 2.95 (m, 1H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.2, 175.0, 170.4, 154.7, 152.8, 139.9, 138.4, 137.5, 132.8, 132.3, 132.1, 130.7, 130.3, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.1, 126.8, 123.8, 121.7, 114.9, 110.7, 80.3, 63.9, 45.6, 36.9, 30.1, 27.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₅ClN₂O₅S₂Na 733.1568; found 733.1573.

tert-Butyl (1-benzyl-3-((2Z,7Z)-8-(4-bromophenyl)-2-(2-oxo-2-phenylethylidene)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-6-chloro-2-oxoindolin-3-yl)carbamate (5h) White solid, 48.9 mg, 62% yield, mp: 122 – 123 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ, ppm) 7.96 – 7.95 (comp, 2H), 7.81 – 7.80 (comp, 2H), 7.59 – 7.57 (comp, 3H), 7.53 – 7.47 (comp, 3H), 7.45 – 7.42 (comp, 2H), 7.40 – 7.34 (comp, 3H), 7.05 – 6.93 (comp, 2H), 6.72 - 6.67 (m, 1H), 5.07 (s, 1H), 4.96 - 4.84 (m, 2H), 3.48 - 3.37 (m, 1H), 3.25 - 3.16 (m, 2H), 3.05 - 2.98 (m, 1H), 1.25 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.1, 174.2, 170.7, 153.3, 152.9, 144.7, 138.4, 135.4, 135.0, 133.6, 132.4, 132.3, 131.8, 131.3, 128.8, 128.7, 128.5, 128.0, 127.9, 127.8, 127.3, 124.5, 122.9, 110.3, 109.4, 80.4, 64.2, 44.5, 36.7, 29.8, 27.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₄BrClN₂O₅S₂Na 811.0673; found 811.0671.

tert-Butyl (1-benzyl-6-chloro-3-((2Z,7Z)-8-(4-fluorophenyl)-2-(2-oxo-2-phenylethylidene)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-2-oxoindolin-3-yl)carbamate (5i)

White solid, 47.3 mg, 65% yield, mp: 199 – 201 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.93 – 7.75 (comp, 4H), 7.56 – 7.52 (m, 1H), 7.49 – 7.42 (comp, 3H), 7.41 – 7.39 (comp, 2H), 7.37 – 7.30 (comp, 3H), 7.12 – 7.07 (comp, 2H), 6.96 – 6.86 (comp, 2H), 6.68 – 6.62 (m, 1H), 5.07 (s, 1H), 4.91 – 4.80 (m, 2H), 3.44 – 3.30 (m, 1H), 3.21 – 3.12 (m, 2H), 3.03 – 2.95 (m, 1H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.1, 174.3, 170.6, 163.7 (d, *J*_{C-F} = 249.0 Hz), 153.5, 152.9, 144.8, 138.4, 135.3, 135.0, 132.9 (d, *J*_{C-F} = 8.0 Hz), 132.3, 128.7, 128.5, 128.1, 127.93, 127.87, 127.8, 127.4, 126.9, 122.9, 122.2, 115.1 (d, *J*_{C-F} = 22.0 Hz), 110.4, 109.3, 80.3, 64.2, 44.4, 36.7, 29.9, 27.8; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -109.73; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₄ClFN₂O₅S₂Na 751.1474; found 751.1467.

tert-Butyl (1-benzyl-6-chloro-2-oxo-3-((2Z,7Z)-2-(2-oxo-2-phenylethylidene)-8-(p-tolyl)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)indolin-3-yl)carbamate (5j)

White solid, 36.9 mg, 51% yield, mp: 198 - 199 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.90 – 7.89 (comp, 2H), 7.79 – 7.72 (comp, 2H), 7.58 – 7.55 (m, 1H), 7.50 – 7.46 (comp, 2H), 7.45 – 7.43 (comp, 3H), 7.39 – 7.33 (comp, 3H), 7.27 – 7.25 (comp, 2H), 6.99 – 6.89 (comp, 2H), 6.67 – 6.63 (m, 1H), 5.21 (s, 1H), 4.89 – 4.82 (m, 2H), 3.42 – 3.34 (m, 1H), 3.25 – 3.17 (m, 2H), 3.06 – 3.02 (m, 1H), 2.42 (s, 3H), 1.22 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.4, 170.7, 154.4, 153.0, 145.0, 140.7, 138.4, 135.2, 135.1, 132.3, 130.6, 129.5, 128.8, 128.7, 128.5, 128.2, 128.0, 127.8, 127.4, 126.5, 122.7, 121.1, 110.6, 109.2, 80.1, 64.2, 44.4, 36.6, 29.9, 27.8, 21.2; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₀H₃₇ClN₂O₅S₂Na 747.1725; found 747.1721.

tert-Butyl (1-benzyl-6-chloro-3-((2Z,7Z)-8-(3-chlorophenyl)-2-(2-oxo-2-phenylethylidene)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-2-oxoindolin-3-yl)carbamate (5k)

White solid, 45.4 mg, 61% yield, mp: 126 - 128 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.97 – 7.95 (comp, 2H), 7.87 – 7.76 (comp, 2H), 7.59 – 7.48 (comp, 4H), 7.46 – 7.33 (comp, 7H), 7.12 – 6.83 (comp, 2H), 6.74 – 6.63 (m, 1H), 5.18 (s, 1H), 4.89 (s, 2H), 3.48 – 3.38 (m, 1H), 3.29 – 3.17 (m, 2H), 3.10 – 2.99 (m, 1H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.2, 170.4, 153.3, 153.0, 144.7, 138.4, 135.3, 135.0, 134.7, 133.8, 132.3, 130.5, 130.0, 129.3, 128.73, 128.65, 128.5, 128.0, 127.9, 127.8, 127.5, 127.3, 123.4, 122.9, 110.3, 109.4, 80.4, 64.1, 44.4, 37.0, 30.0, 27.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₄Cl₂N₂O₅S₂Na 767.1178; found 767.1184.

tert-Butyl (1-benzyl-3-((2Z,7Z)-8-(3-bromophenyl)-2-(2-oxo-2-phenylethylidene)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-6-chloro-2-oxoindolin-3-yl)carbamate (5l) White solid, 44.9 mg, 57% yield, mp: 130 – 131 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 7.95 – 7.90 (comp, 2H), 7.77 – 7.75 (m, 1H), 7.57 – 7.53 (comp, 2H), 7.50 – 7.46 (comp, 3H), 7.40 – 7.27 (comp, 7H), 6.97 – 6.89 (comp, 2H), 6.65 – 6.63 (m, 1H), 5.15 (s, 1H), 4.89 – 4.81 (m, 2H), 3.40 – 3.35 (m, 1H), 3.24 – 3.15 (m, 2H), 3.04 – 2.99 (m, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.2, 170.4, 153.2, 153.0, 144.7, 138.4, 135.4, 135.0, 134.9, 133.3, 132.9, 132.4, 129.6, 129.3, 128.7, 128.5, 128.0, 127.9, 127.85, 127.5, 127.3, 123.5, 122.9, 121.9, 110.3, 109.4, 80.5, 64.1, 44.4, 37.0, 30.0, 27.8; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₉H₃₄BrClN₂O₅S₂Na 811.0673; found 811.0672.

tert-Butyl (1-benzyl-6-chloro-3-((2Z,7Z)-8-(naphthalen-2-yl)-2-(2-oxo-2-phenylethylidene)-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-2-oxoindolin-3-yl)carbamate (5m)

White solid, 43.3 mg, 57% yield, mp: 192 - 193 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 8.36 (s, 1H), 7.94 - 7.90 (comp, 3H), 7.86 - 7.84 (comp, 2H), 7.63 - 7.57 (comp,

2H), 7.52 (comp, 2H), 7.45 – 7.42 (comp, 2H), 7.40 – 7.31 (comp, 6H), 7.02 – 6.95 (comp, 2H), 6.62 – 6.57 (m, 1H), 5.22 (s, 1H), 4.81 (d, J = 15.0 Hz, 1H), 4.66 (d, J = 15.0 Hz, 1H), 3.50 – 3.45 (m, 1H), 3.34 – 3.25 (m, 2H), 3.14 – 3.09 (m, 1H), 1.01 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.2, 174.4, 170.5, 154.5, 152.9, 144.8, 138.4, 135.2, 135.1, 133.9, 132.5, 132.3, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 127.9, 127.79, 127.77, 127.6, 127.5, 127.4, 127.3, 126.7, 122.8, 122.4, 110.6, 109.3, 80.0, 64.1, 53.9, 53.6, 53.4, 53.2, 53.0, 44.3, 36.9, 30.2, 27.6, 27.5; HRMS (TOF MS ESI⁺) m/z: [M+H]⁺ calculated for C₄₃H₃₈ClN₂O₅S₂ 761.1905; found 761.1908.

tert-Butyl (1-benzyl-6-chloro-2-oxo-3-((2Z,8Z)-2-(2-oxo-2-phenylethylidene)-9-phenyl-5,6-dihydro-4*H*-1,3,7-oxadithionin-8-yl)indolin-3-yl)carbamate (5n) White solid, 50.0 mg, 69% yield, mp: 230 – 231 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 8.14 – 8.12 (comp, 2H), 7.96 – 7.95 (comp, 2H), 7.45 – 7.43 (comp, 2H), 7.41 – 7.32 (comp, 6H), 7.30 – 7.20 (comp, 5H), 6.64 – 6.63 (m, 1H), 6.62 (s, 1H), 5.04 (s, 1H), 4.94 (d, *J* = 15 Hz, 1H), 4.71 (d, *J* = 15 Hz, 1H), 3.42 – 3.22 (m, 1H), 3.12 – 3.09 (m, 1H), 2.70 – 2.66 (m, 1H), 2.47 – 2.42 (m, 1H), 2.18 – 2.14 (m, 1H), 1.74 – 1.66 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 188.0, 175.0, 174.5, 155.1, 153.2, 144.5, 139.0, 135.1, 135.0, 134.5, 131.81, 131.75, 130.4, 130.0, 128.8, 128.30, 128.25, 128.2, 128.0, 127.9, 127.7, 127.1, 122.8, 109.4, 101.2, 80.2, 64.8, 44.4, 39.4, 31.9, 28.7, 27.7; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₀H₃₇ClN₂O₅S₂Na 747.1725; found 747.1723.

tert-Butyl (1-benzyl-6-chloro-2-oxo-3-((2*Z*,9*Z*)-2-(2-oxo-2-phenylethylidene)-10phenyl-4,5,6,7-tetrahydro-1,3,8-oxadithiecin-9-yl)indolin-3-yl)carbamate (5o) White solid, 39.1 mg, 53% yield, mp: 120.4 – 121.6 °C; ¹H NMR (400 MHz, CD₂Cl₂) (δ , ppm) 8.05 – 8.03 (comp, 2H), 7.65 – 7.60 (comp, 3H), 7.58 – 7.55 (m, 1H), 7.52 – 7.48 (comp, 2H), 7.44 – 7.40 (comp, 3H), 7.39 – 7.32 (comp, 5H), 7.10 (s, 1H), 6.98 – 6.96 (m, 1H), 6.58 – 6.57 (m, 1H), 5.65 (s, 1H), 4.89 (d, *J* = 16 Hz, 1H), 4.62 (d, *J* = 16 Hz, 1H), 3.23 – 3.11 (m, 1H), 3.00 – 2.87 (m, 3H), 2.14 – 1.98 (m, 2H), 1.93 – 1.83 (m, 2H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 187.6, 174.5, 169.8, 154.5, 153.2, 144.7, 139.0, 134.94, 134.90, 133.2, 131.9, 130.3, 130.2, 129.9, 129.0, 128.7, 128.4, 128.0, 127.8, 127.3, 126.9, 126.3, 122.7, 109.5, 101.7, 80.3, 64.3, 44.4, 35.7, 28.4, 27.8, 27.7, 27.6; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₄₁H₃₉ClN₂O₅S₂Na 761.1881; found 761.1881.

General Procedure for the Synthesis of Compounds 5'

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketene dithioacetal **1b** (0.1 mmol), CuTc (3.8 mg, 20 mol%), 4 Å MS (50 mg) and racemization phosphoric acid PPA (3.5 mg, 10 mol%) in DCM (0.5 mL), ketene dithioacetal **2a** (0.2 mmol) in DCM (0.1 mL) *via* a syringe pump under stirring in 2 h at room temperature under argon atmosphere. The resulting reaction mixture was stirred overnight under these conditions. When the reaction was completed (monitored by TLC), the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to afford the pure products **5'** in 45% yields.

(Z)-(7-(2-oxo-2-phenylethylidene)-1,4-dithiepane-5,6-diyl)bis(phenylmethanone) (5')

White solid, 20.6 mg, 45% yield, mp: 102 - 103 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 – 8.07 (comp, 2H), 7.94 – 7.93 (comp, 2H), 7.83 – 7.76 (comp, 2H), 7.63 – 7.59 (m, 1H), 7.57 – 7.47 (comp, 4H), 7.46 – 7.37 (comp, 4H), 6.73 (s, 1H), 5.59 (d, *J* = 8.0 Hz, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 3.30 – 3.24 (m, 1H), 3.19 – 3.08 (m, 2H), 2.76 – 2.68 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 196.4, 192.9, 188.2, 159.7, 138.1, 134.7, 134.1, 133.6, 132.4, 128.9, 128.9, 128.9, 128.8, 128.5, 128.0, 117.2, 52.1, 44.9, 30.7, 29.4; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₂₇H₂₂O₃S₂Na 481.0908; found 481.0904.

Control Experiments

To a 10-mL oven-dried vial containing a magnetic stirring bar, cyclic ketene dithioacetal **1b** (0.2 mmol), CuTc (3.8 mg, 20 mol%), 4Å MS (50 mg) and racemization phosphoric acid PPA (3.5 mg, 10 mol%) in DCM (0.5 mL), was added diazo-ketones **2a** (0.2 mmol) in DCM (1.0 mL) *via* a syringe pump under stirring in 2 h at -10 °C under argon atmosphere. The resulting reaction mixture was stirred for 12 h. When the diazo-ketones **2a** was consumed (monitored by TLC), ketimines **3a** in DCM (0.5 mL)was added in the reaction mixture. The resulting reaction mixture was stirred for 12 h. Then the reaction mixture was subjected to proton NMR analysis in CDCl₃ after the solvent was evaporated, and **5m** was not observed.

Figure S1. Proton NMR spectrum of crude reaction mixture of **1b and 2a** with **3a** under standard conditions.

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketimines **3a** (0.1 mmol), CuTc (3.8 mg, 20 mol%), 4 Å MS (50 mg) and racemization phosphoric acid PPA (3.5 mg, 10 mol%) in DCM (0.5 mL), was added diazo-ketones **2a** (0.2 mmol) in DCM (1.0 mL) *via* a syringe pump under stirring in 2 h at -10 °C under argon atmosphere. The resulting reaction mixture was stirred for 12 h. When the diazo-ketones **2a** was consumed (monitored by TLC), ketene dithioacetal **1b** (0.2 mmol) in DCM (0.5 mL)was added in the reaction mixture. The resulting reaction mixture was stirred for 12 h. Then the reaction mixture was subjected to proton NMR analysis in CDCl₃ after the solvent was evaporated, and **5m** was not observed.

Figure S2. Proton NMR spectrum of crude reaction mixture of **2a** and **3a** with **1b** under standard conditions.

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketimines **3a** (0.1 mmol), CuTc (3.8 mg, 20 mol%), 4 Å MS (50 mg) and racemization phosphoric acid PPA (3.5 mg, 10 mol%) in DCM (0.5 mL), was added diazo-ketones **2a** (0.2 mmol) in DCM (1.0 mL) *via* a syringe pump under stirring in 2 h at -10 °C under argon atmosphere. The resulting reaction mixture was stirred for 12 h. Then the reaction mixture was subjected to proton NMR analysis in CDCl₃ after the solvent was evaporated, and **1b** and **3a** were remain.

Procedure for Scale up

To a 10-mL oven-dried vial containing a magnetic stirring bar, ketimines **3a** (3 mmol), CuTc (114.0 mg, 20 mol%), 4 Å MS (200 mg) and racemization phosphoric acid PPA (104.4 mg, 10 mol%) in DCM (5.0 mL), was added ketene dithioacetal **1a** (6 mmol) and diazo-ketones **2a** (6 mmol) in DCM (5.0 mL) *via* a syringe pump under stirring in 4 h at -10 °C under argon atmosphere. The resulting reaction mixture was stirred overnight under these conditions. When the reaction was completed (monitored by TLC), the solvent was evaporated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexanes/ethyl acetate = 5:1) to afford the pure products **4a** in 67% yields.

Derivations

<u>Synthesis of 6 and 7</u>: To a 10-mL oven-dried vial with a magnetic stirring bar, **4a** (71.3 mg, 0.1 mmol) in 6 mL solvent (DCM : EtOH = 1:5 mL), was added NH₂NH₂·H₂O (10 mg, 0.2 mmol) at room temperature. The resulting solution was reflux at 78 °C for 2 h. The reaction mixture was added with H₂O (1.0 mL), extracted with CH₂Cl₂ (5.0 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure after filtration. The residue was purified by silica gel column chromatography (hexanes/ethyl acetate = 5:1) to afford compound **6 and 7**.

tert-Butyl (1-benzyl-6-chloro-3-(1-(methylthio)-2-oxo-2-phenylethyl)-2oxoindolin-3-yl)carbamate (7)

White solid, 48.8 mg, 91% yield, mp: 93 – 94 °C; ¹H NMR (500 MHz, CD₂Cl₂) (δ , ppm) 7.82 – 7.81 (comp, 2H), 7.71 – 7.63 (m, 1H), 7.53 – 7.50 (m, 1H), 7.43 – 7.32 (comp, 4H), 7.29 – 7.17 (comp, 3H), 6.91 – 6.89 (m, 1H), 6.60 (s, 1H), 5.96 (s, 1H), 4.89 – 4.78 (m, 2H), 4.76 (s, 1H), 1.77 (s, 3H), 1.24 (s, 9H); ¹³C NMR (125 MHz, CD₂Cl₂) (δ , ppm) 194.0, 175.5, 154.4, 145.4, 136.1, 135.5, 135.1, 133.9, 128.9, 128.8, 128.5, 127.8, 127.6, 127.2, 127.1, 122.4, 109.6, 80.8, 62.8, 52.9, 44.6, 28.0, 15.6; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₂₉H₂₉ClN₂O₄SNa 559.1429; found 559.1428.

<u>Synthesis of 8</u>: To a 25-mL oven-dried vial with a magnetic stirring bar, **4a** (71.3 mg, 0.1 mmol) in 10 mL DCM, was added trifluoroacetic acid TFA (0.2 mL, 3.0 mmol) at 0 °C. The resulting solution was stirred at room temperature for 2 h. The reaction mixture was added with H₂O (1.0 mL), extracted with CH₂Cl₂ (5.0 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure after filtration. The residue was purified by silica gel column chromatography (hexanes/ethyl acetate = 5:1) to afford compound **8**.

3-Amino-1-benzyl-6-chloro-3-((Z)-1-(methylthio)-2-(((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-en-1-yl)oxy)-2-phenylvinyl)indolin-2-one (8)

White solid, 50.8 mg, 83% yield, mp: 95 – 96 °C; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.81 – 7.79 (comp, 2H), 7.49 – 7.47 (m, 1H), 7.44 – 7.41 (comp, 2H), 7.38 – 7.36 (m, 1H), 7.33 – 7.28 (comp, 3H), 7.26 – 7.23 (comp, 7H), 7.03 – 7.02 (m, 1H), 6.70 (s, 1H), 6.59 (s, 1H), 4.72 – 4.69 (m, 1H), 4.22 – 4.19 (m, 1H), 2.42 (s, 6H), 1.95 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 187.8, 177.1, 171.8, 153.3, 143.8, 139.1, 135.3, 134.8, 133.7, 132.0, 131.9, 131.3, 130.2, 130.0, 129.7, 128.9, 128.5, 128.2, 127.9, 127.6, 127.2, 124.3, 123.0, 110.2, 100.3, 63.7, 43.8, 19.8, 13.0; HRMS (TOF MS ESI⁺) m/z: [M+Na]⁺ calculated for C₃₄H₂₉ClN₂O₃S₂Na 635.1168; found 635.1173;

<u>Synthesis of 9</u>: To a 10-mL oven-dried vial with a magnetic stirring bar, **4a** (71.3 mg, 0.1 mmol) in 6 mL solvent (DCM : MeOH = 1 : 5 mL), was added NaBH₄ (3.8 mg, 0.1 mmol) at room temperature. The resulting solution was stirred at room temperature for 30 min. The reaction mixture was added with H₂O (1.0 mL), extracted with CH₂Cl₂ (5.0 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure after filtration. The residue was purified by silica gel column chromatography (hexanes/ethyl acetate = 5:1) to afford compound **9**.

tert-Butyl (1-benzyl-5-bromo-3-((2Z,7Z)-2-(2-hydroxy-2-phenylethylidene)-8phenyl-4,5-dihydro-1,3,6-oxadithiocin-7-yl)-2-oxoindolin-3-yl)carbamate(9) Yellow solid, 49.1 mg, 65% yield, mp:83 – 84 °C;¹H NMR (400 MHz, CD₂Cl₂) (δ, ppm) 13.07 (s, 1H), 8.02 – 8.00 (comp, 2H), 7.78 – 7.76 (comp, 2H), 7.57 – 7.56 (m, 1H), 7.44 – 7.35 (comp, 6H), 7.26 – 7.20 (comp, 6H), 7.10 – 7.07 (m, 1H), 6.79 – 6.78 (m

7.44 – 7.35 (comp, 6H), 7.26 – 7.20 (comp, 6H), 7.10 – 7.07 (m, 1H), 6.79 – 6.78 (m 1H), 6.52 – 6.50 (m, 1H), 5.82 (s, 1H), 4.89 (s, 2H), 3.04 – 3.02 (m, 2H), 2.96 – 2.95 (m, 2H), 1.42 (s, 9H).¹³C NMR (100 MHz, CD₂Cl₂) (δ , ppm) 191.0, 187.5, 165.8, 161.5, 152.0, 150.7, 140.2, 139.0, 135.84, 135.77, 133.9, 132.0, 130.8, 129.7, 128.8, 128.5, 127.7, 127.5, 127.3, 124.2, 122.0, 118.3, 114.4, 110.4, 100.0, 93.7, 82.4, 43.5, 30.9, 29.5, 27.8. HRMS (TOF MS ESI⁺) m/z: [M+H]⁺ calculated for C₃₉H₃₈BrN₂O₅S₂ 757.1406; found 757.1399.

1.22

$\begin{array}{c} & -1.23 \\ -1.23$

7.1.90 7.1.88 7.1.88 7.1.46 7.1.44 7.1.44 7.1.44 7.1.28 7.1.39 7.1.39 7.1.38 7.1.39 7.

110 100 90 f1 (ppm)

-1.19

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Crystallographic Data for Compound **4e** (CCDC: 2105305)

Datablock: shhk_210520

Bond precision: C-C = 0.0031 A Wavelength=1.54184				
Cell:	a=10.1834(2)	b=12.1739((2)	c=15.8758(2)
Temperature:	alpha=92.900(1) 150 K	beta=107.4	51(1)	gamma=105.810(2)
	Calculated		Reporte	d
Volume	1787.67(6)		1787.67	(5)
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	C39 H37 Br N2	05 S2	C39 H37	Br N2 05 S2
Sum formula	C39 H37 Br N2	05 S2	C39 H37	Br N2 05 S2
Mr	757.73		757.73	
Dx,g cm-3	1.408		1.408	
Z	2		2	
Mu (mm-1)	3.036		3.036	
F000	784.0		784.0	
F000'	785.92			
h,k,lmax	12,15,19		12,15,1	9
Nref	7470		7135	
Tmin,Tmax	0.859,0.859		0.909,1	.000
Tmin'	0.859			
Correction method= # Reported T Limits: Tmin=0.909 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 0.955 Theta(max) = 76.094				
R(reflections) = 0.0314(6403) wR2(reflections) = 0.0761(7135)				
S = 1.074	Npa	r= 447		

Crystallographic Data for Compound **5e** (CCDC: 2105306)

CI

Ъ'n

Datablock: shhk_210208_3

Bond precision:	C-C = 0.0091 A	A Wavelength=1.54184		
Cell:	a=10.7902(2)	b=15.73	45(4)	C=21.2170(6)
	alpha=90	beta=90		gamma=90
Temperature:	100 K			
	Calculated		Reported	
Volume	3602.19(15)		3602.19(15)
Space group	P 21 21 21		P 21 21 2	21
Hall group	P 2ac 2ab		P 2ac 2al	C
Moiety formula	C39 H35 Cl N2 O	5 S2	C39 H35 (Cl N2 O5 S2
Sum formula	C39 H35 Cl N2 O	5 S2	C39 H35 (Cl N2 O5 S2
Mr	711.26		711.26	
Dx,g cm-3	1.311		1.312	
Z	4		4	
Mu (mm-1)	2.396		2.396	
F000	1488.0		1488.0	
F000'	1496.02			
h,k,lmax	13,19,26		13,19,26	
Nref	7601[4244]		7487	
Tmin,Tmax	0.866,0.887		0.655,1.0	000
Tmin'	0.698			
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tn	nin=0.655	Tmax=1.000
Data completene	ss= 1.76/0.99	Theta(ma	ax)= 77.02	26
R(reflections) =	0.0616(5883)	wR2(ref)	lections):	= 0.1606(7487)
S = 1.064	Npar=	445		

Crystallographic Data for Compound 5' (CCDC: 2129099)

Datablock: shhk_210812_auto

Bond precision:	C-C = 0.0037 A	Wavelength=1.54184		
Cell:	a=10.2253(2) alpha=103.079(2)	b=11.0686(2) beta=97.132(2	c=22.4374(5) gamma=100.779(2)	
Temperature:	100 K			
	Calculated	Repo	rted	
Volume	2392.88(9)	2392	.88(9)	
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C27 H22 O3 S2 [+	solvent] C27	H22 O3 S2	
Sum formula	C27 H22 O3 S2 [+	solvent] C27	H22 O3 S2	
Mr	458.57	458.	56	
Dx,g cm-3	1.273	1.27	3	
Z	4	4		
Mu (mm-1)	2.222	2.22	2	
F000	960.0	960.	0	
F000'	965.13			
h,k,lmax	12,13,28	12,1	3,27	
Nref	9921	9400		
Tmin, Tmax	0.539,0.895	0.71	1,1.000	
Tmin'	0.489			
Correction meth AbsCorr = MULTI	od= # Reported T L -SCAN	imits: Tmin=0.7	11 Tmax=1.000	
Data completene	ss= 0.947	Theta(max)=	75.502	
R(reflections)=	0.0566(8056)		wR2(reflections)=	
S = 1.084	Npar= 5	599	0.1007(94007	