Organocatalytic Enantioselective Mannich Reaction of Isoxazol-5(4*H*)ones to Isatin-derived Ketimines

Ricardo Torán, Dario Puchán, Amparo Sanz-Marco, Carlos Vila, Jose R. Pedro, Gonzalo Blay*

Departament de Química Orgànica, Facultat de Química, Universitat de València, 46100-Burjassot, Spain.

E-mail: gonzalo.blay@uv.es

Materials and methods	S2
General procedure for the enantioselective Mannich reaction	S2
Characterization data for compounds 3	S3-S14
Synthesis of compound 3aa at 1 mmol scale	S15
Synthesis of tert-butyl (1-benzyl-3-(4-fluoro-5-oxo-3-phenyl-	
4,5-dihydroisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (4)	S15
Synthesis of <i>tert</i> -butyl (S)-(1-benzyl-2-oxo-3-(2-oxo-2-	
phenylethyl)indolin-3-yl)carbamate (5)	S16
NMR spectra for compounds 3-5	S17-S41
HPLC traces for compounds 3-5	S42-S66
Absolute configuration analysis	S67-S68
References	S68

Materials and methods

All reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for ¹H and at 75 MHz for ¹³C NMR using residual nondeuterated solvent (CHCl₃) as internal standard (δ 7.26 and 77.0 ppm, respectively). Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a Q-TOF spectrometer equipped with an electrospray source with a capillary voltage of 3.3 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary phase columns from Daicel or Phenomenex.

N-Boc isatin ketimines,^[1] isoxazol-5-ones,^[2-4] and squaramide $IV^{[5]}$ were prepared according to the previous literature.

General procedure for the enantioselective Mannich reaction

An oven dried test tube was charged with isatin ketimine 1 (0.2 mmol), isoxazol-5-one 2 (0.2 mmol) and squaramide IV (12.0 mg, 0.02 mmol). The test tube was purged with N_2 10 minutes. Dichloromethane (2 mL) was added, and the mixture was stirred at room temperature until completion (TLC). A 1 M solution of TMS-diazomethane in diethyl ether (0.4 mmol) was added via syringe and the reaction was stirred for 2 hours at room temperature. The reaction mixture was chromatographed on silica gel eluting with hexane:EtOAc mixtures to give compound **3**.

Characterization data for compounds 3

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-phenylisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (3aa)

69.5 mg (70%) of **3aa** were obtained from **1a** (67.2 mg) and **2a** (32.1 mg). Enantiomeric excess (93%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 17.9$ min, minor enantiomer: $t_r = 23.1$ min Pale yellow solid, m.p. = 156.3-157.4 °C; $[\alpha]_D^{25} = -6.2$ (c = 1.0,

CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.37-7.15 (9H, m, Ar), 7.08-7.00 (3H, m, Ar), 6.91 (1H, td, J = 9, 1.2 Hz, Ar), 6.35 (1H, d, J = 9 Hz, Ar), 6.15 (1H, s, NH), 4.8 (1H, d, J = 15.9 Hz, CH-Ph), 4.15 (3H, s, MeO), 4.09 (1H, d, J = 15.9 Hz, CH-Ph), 1.26 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.6 (C), 168.6 (C), 164.3 (C), 153.5 (C), 142.8 (C), 135.3 (C), 129.2 (CH), 129.1 (CH), 129.0 (CH), 128.6 (CH), 127.7 (CH), 127.6 (CH), 127.4 (CH), 124.2 (CH) 122.8 (CH), 109.1 (CH), 90.2 (C), 80.3 (C), 59.0 (C), 58.6 (CH₃), 44.0 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3442, 1720 (C=O), 1615, 1405, 1168, 749, 695 cm⁻¹; **HRMS** (ESI) *m/z*: 512.2198 [M+H]⁺, C₃₀H₃₀N₃O5⁺ requires 512.2180.

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-phenylisoxazol-4-yl)-5-methyl-2oxoindolin-3-yl)carbamate (3ba)

Yellow solid, m.p. = 65.2-67.1 °C; $[a]_D^{25}$ = +5.4 (*c* = 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.12 (9H, m, Ar), 7.05 (1H, s, Ar), 6.99 (2H, dd, *J* = 8.2, 1.3 Hz, Ar), 6.82 (1H, ddd, *J* = 8.2, 1.6, 0.7 Hz, Ar), 6.23 (1H, d, *J* = 7.9 Hz, Ar), 6.17 (1H, s, N-H), 4.77 (1H, d, *J* = 15.7 Hz, CH-Ph), 4.17 (3H, s, MeO), 4.04 (1H, d, *J* = 15.7 Hz, CH-Ph), 2.20 (3H, s, Ar-CH₃), 1.28 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.8 (C), 169.0 (C), 164.7 (C), 153.9 (C), 140.6 (C), 135.8 (C), 132.7 (CH), 130.4 (C), 129.7 (CH), 129.4 (CH), 128.9 (C), 128.0 (CH), 127.9 (CH), 127.7 (CH), 125.3 (CH), 109.2 (CH), 90.7 (C), 80.6 (C), 59.4 (C), 58.9 (CH₃), 44.3 (CH₂), 28.1 (CH₃), 21.3 (CH₃); **IR** (ATR) v 3431,

1718 (C=O), 1623, 1477, 1407, 1161, 920, 697 cm⁻¹; **HRMS** (ESI) m/z: 526.2330 [M+H]⁺, C₃₁H₃₂N₃O₅⁺ requires 526.2336.

tert-Butyl (*R*)-(1-benzyl-5-methoxy-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ca)

Orange solid, m.p. = 71.3-72.4 °C ; $[\alpha]_D^{25}$ = +10.5 (*c* =1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.12 (9H, m, Ar), 7.08-7.00 (2H, m, Ar), 6.88 (1H, d, *J*=2.4 Hz, Ar), 6.55 (1H, dd, *J* = 8.4, 2.7 Hz, Ar), 6.24 (1H, d, *J* = 8.8 Hz, Ar), 6.14 (1H, s, NH), 4.77 (1H, d, *J* = 15.9 Hz, CH-Ph), 4.17 (3H, s, MeO), 4.09 (1H, d, *J* = 15.9 Hz, CH-Ph), 3.68 (3H, s, MeO), 1.28 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.4 (C), 168.7 (C), 164.4 (C), 156.1 (C), 153.5 (C), 136.2 (C), 135.4 (C), 131.2 (C), 129.1 (CH), 128.61 (C), 128.55 (CH), 127.7 (CH), 127.6 (CH), 127.4 (CH), 113.9 (CH), 111.3 (CH), 109.6 (CH), 90.1 (C), 80.4 (C), 59.4 (C), 58.6 (CH₃), 55.7 (CH₃), 44.1 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3427, 1714 (C=O), 1617, 1490, 1403, 1272, 1006, 695 cm⁻¹; **HRMS** (ESI) *m/z*: 542.2269 [M+H]⁺, C₃₁H₃₂N₃O₆⁺ requires 542.2286.

tert-Butyl (*R*)-(1-benzyl-5-chloro-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3da)

68.7 mg (63%) of **3da** were obtained from **1d** (74.4 mg) and **2a** (32.2 mg). Enantiomeric excess (95%) was measured by HPLC (Chiralcel OD-H), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 11.8$ min, minor enantiomer: $t_r = 8.7$ min.

Pale yellow solid, m.p. = 76.0-79.7 °C; $[\alpha]_D^{25}$ = +8.3 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.27 (5H, m, Ar), 7.25-7.17 (4H, m, Ar), 7.04 (2H, dd, *J* = 8.2, 1.3 Hz, Ar), 6.98 (1H, dd, *J* = 8.3, 2.1 Hz, Ar), 6.29-6.15 (2H, m, Ar + NH), 4.80 (1H, d, *J* = 15.9 Hz, CH-Ph), 4.19 (3H, s, MeO), 4.06 (1H, d, *J* = 15.9 Hz, CH-Ph, 1.30 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.3 (C), 168.7 (C), 164.2 (C), 153.4 (C), 141.3 (C), 134.9 (C), 131.7 (C), 129.3 (CH), 129.1 (CH), 129.0 (C), 128.6 (CH), 128.4 (C),

128.2 (C), 127.8 (CH), 127.6 (CH), 127.5 (CH), 124.6 (CH), 110.1 (CH),84.5 (C), 80.7 (C), 59.0 (C), 58.7 (CH₃), 55.7 (CH₃), 44.1 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3427, 2967, 1716 (C=O), 1610, 1477, 1403, 1155, 1008, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 546.1769 $[M+H]^+$, C₃₀H₂₉ClN₃O₅⁺ requires 546.1790.

tert-Butyl (*R*)-(1-benzyl-5-bromo-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ea)

75.8 mg (64%) of **3ea** were obtained from **1e** (83.1 mg) and **2a** (32.2 mg). Enantiomeric excess (94%) was measured by HPLC (Chiralcel AD-H), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 12.1$ min, minor enantiomer: $t_r = 16.0$ min.

White solid, m.p. = 143.3-144.0 °C; $[\alpha]_D^{25}$ = +15.2 (*c* = 0.82, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.15 (9H, m, Ar), 7.08 (1H, dd, J = 8.3, 2.0 Hz, Ar), 7.02-6.98 (2H, m, Ar), 6.16-6.13 (2H, m, NH+Ar), 4.77 (1H, d, *J* = 15.9 Hz, CH-Ph), 4.15 (3H, s, MeO), 4.01 (2H, d, *J* = 15.9 Hz, CH-Ph), 1.26 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.2 (C), 168.7 (C), 164.2 (C), 153,4 (C), 141,8 (C), 134.9 (C), 132.1 (C), 131.8 (CH), 129.3 (CH), 129.1 (CH), 128.6 (CH), 128.4 (C), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 115.5 (C), 110.6 (CH), 89.5 (C), 80.7 (C), 58.9 (C), 58.8 (CH₃), 44.1 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3431, 1722 (C=O), 1623, 1474, 1405, 1155, 1006, 695 cm⁻¹; **HRMS** (ESI) *m/z*: 590.1279 [M+H]⁺, C₃₀H₂₉BrN₃O₅⁺ requires 590.1285.

tert-Butyl (*R*)-(1-benzyl-5-nitro-3-(5-methoxy-3-phenylisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (3da)

77.8 mg (70%) of **3da** were obtained from **1d** (76.5 mg) and **2a** (32.2 mg). Enantiomeric excess (96%) was measured by HPLC (Chiralcel OD-H), hexane:^{*i*}PrOH 90:10, 1.0 mL min⁻¹, major enantiomer: $t_r = 34.4$ min, minor enantiomer: $t_r = 41.3$ min.

Orange solid, m.p. = 78.4-81.9 °C; $[\alpha]_D^{25}$ = +30.8 (c = 0.79, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.0 (1H, d, J = 2.1 Hz, Ar), 7.93 (1H, dd, J = 8.7, 2.1 Hz, Ar) 7.35-7.21 (6H, m, Ar), 7.17 (2H, t, J = 7.5 Hz, Ar), 7.03-6.93 (1H, m, Ar), 6.35 (1H, d, J = 8.7 Hz, Ar), 6.30 (1H, s, NH), 4.80 (1H, d, J = 15.9 Hz, CH-Ph), 4.17 (4H, m, MeO + CH-Ph), 1.30

(9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.2 (C), 169.0 (C), 16402 (C), 153.6 (C), 148.6 (C), 143.9 (C), 131.2 (C), 129.7 (CH), 129.2 (CH), 128.9(CH), 128.3 (C), 128.1 (CH), 128.0 (CH), 127.6 (CH), 126.2 (CH), 119.8 (CH), 108.9(CH),88.7 (C), 81.2 (C), 59.0 (CH₃), 58.7 (C), 58.7 (CH₃), 44.6 (CH₂), 28.2 (CH₃); **IR** (ATR) v 1716 (C=O), 1610, 1477, 1330, 1153, 1067, 1006, 698 cm⁻¹; **HRMS** (ESI) *m/z*: 557.2017 [M+H]⁺, C₃₀H₉N₄O₇⁺ requires 557.2031.

tert-Butyl (*R*)-(1-benzyl-6-methoxy-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ga)

Yellow solid, m.p. = 63.5-66.8 °C; $[\alpha]_D^{25}$ = +5.8 (*c* =0.87, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.10 (9H, m, Ar), 7.02 (1H, s, Ar), 7.00 (1H, d, *J* = 8.2, 7.6, 0.8 Hz, Ar), 6.36 (1H, dd, *J* = 7.1, 2.3 Hz, Ar), 6.09 (1H, s, N-H), 4.76 (1H, d, *J* = 15.7 Hz, CH-Ph), 4.18-4.01 (4H, m, MeO + CH-Ph), 3.64 (3H, s, OCH₃), 1.26 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.2 (C), 168.6 (C), 164.5 (C), 153.6 (C), 144.0 (C), 135.3 (C), 129.1 (CH), 129.0 (CH), 128.6 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 125.2 (CH), 122.2 (C), 106.4 (CH), 97.2 (CH), 90.6 (C), 80.2 (C), 58.7 (C), 58.6 (CH₃), 44.17 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3438, 1716 (C=O), 1619, 1477, 1403, 1159, 1006, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 542.2285 [M+H]⁺, C₃₁H₃₂N₃O₆⁺ requires 542.2286.

tert-Butyl (*R*)-(1-benzyl-6-chloro-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ia)

68.0 mg (63%) of **3ha** were obtained from **1h** (74.5 mg) and **2a** (32.2 mg). Enantiomeric excess (92%) was measured by HPLC (Chiralcel OD-H), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 9.9$ min, minor enantiomer: $t_r = 7.7$ min.

Pale yellow solid, m.p. = 75.4-77.3 °C; $[\alpha]_D^{25} = +10.8$ (c =

0.82, CHCl₃); ¹**H NMR** (300 MHz, CDCl₃) δ 7.48-7.04 (9H, m, Ar), 6.98 (1H, m, Ar), 6.84 (1H, dd, J = 8.0, 1.8 Hz), 4.78 (1H, d, J = 15.6 Hz, CH-Ph), 4.13 (3H, s, MeO), 4.04

(1H, d, J = 15.6 Hz, CH-Ph), 1.24 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.7 (C), 168.6 (C), 164.2 (C), 153.5 (C), 143.9 (C), 134.7 (C), 129.2 (CH), 129.0 (CH), 128.7 (CH), 128.5 (CH), 128.3 (C), 127.8 (CH), 127.7 (CH), 127.5 (CH), 125.0 (CH), 122.7 (CH) 109.6 (CH),89.7 (C), 80.6 (C), 58.7 (CH₃), 55.7 (CH₃), 53.4 (C), 44.1 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3431, 1738 (C=O), 1710, 1608, 1476, 1403, 1284, 1162, 1006, 698 cm⁻¹; **HRMS** (ESI) *m/z*: 546.1791 [M+H]⁺, C₃₀H₂₉ClN₃O₅⁺ requires 546.1790.

tert-Butyl (*R*)-(1-benzyl-7-chloro-3-(5-methoxy-3-phenylisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ia)

68.2 mg (67%) of **3ia** were obtained from **1i** (74.2 mg) and **2a** (32.2 mg). Enantiomeric excess (95%) was measured by HPLC (Chiralcel OD-H), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 15.9$ min, minor enantiomer: $t_r = 13.7$ min.

Yellow solid, m.p. = 68.4-71.0 °C; $[\alpha]_D^{25}$ = -42.1 (*c* = 0.76, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.08 (9H, m, Ar), 6.87 (1H, dd , *J* = 8.1, 7.3 Hz Ar), 6.35 (1H, s, N-H), 5.01 (1H, d, *J* = 15.8 Hz, CH-Ph), 4.04 (1H, d, *J* = 15.8 Hz, CH-Ph) 4.20 (3H, s, MeO), 1.30 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.6(C), 168.6 (C), 164.3 (C), 153.4 (C), 139.1 (C), 137.3 (C), 133.5 (CH), 131.8 (C), 129.7 (CH), 129.1 (CH), 128.3 (C), 127.9 (CH), 127.0 (CH), 123.8 (CH), 122.5 (CH), 115.5 (CH), 90.0 (C), 80.8 (C), 58.9 (CH₃), 58.8 (C), 45.1 (CH₂), 28.2 (CH₃); **IR** (ATR) v 3425, 1718 (C=O), 1617, 1451, 1403, 1157, 1123, 1008, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 546.1781 [M+H]⁺, C₃₀H₂₉ClN₃O₅⁺ requires 546.1790.

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-phenylisoxazol-4-yl)-5,7-dimethyl-2oxoindolin-3-yl)carbamate (3ga)

Yellow oil. $[\alpha]_D^{25} = -7.2$ (*c* =1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.37 (1H,tt, *J*= 7.5, 2.1 Hz, Ar), 7.31-7.13 (7H, m, Ar), 6.91 (3H, m, Ar), 6.31 (1H, s, Ar), 6.46 (1H, s, NH), 4.93 (1H, d, *J* = 17.1 Hz, CH-Ph), 4.25 (3H, s, MeO), 4.08 (1H, d, *J* = 17.1 Hz, CH-Ph), 2.20 (3H, s, CH₃-Ph), 1.89 (3H, s, CH₃-Ph), 1.28 (9H, s, *t*-BuO); ¹³C NMR

(75 MHz, CDCl₃) δ 175.5 (C), 168.3 (C), 164.3 (C), 153.5 (C), 138.3 (C), 137.4 (C), 133.6 (CH), 132.4 (C), 131.3 (CH), 129.2 (C), 129.1 (CH), 128.5 (CH), 127.4 (CH), 126.8 (CH), 126.1(CH), 122.5 (CH), 119.3 (C), 90.9 (C), 80.3 (C), 58.7 (CH₃), 45.2 (CH₂), 28.1 (CH₃), 20.7 (CH₃), 18.3 (CH₃); **IR** (ATR) v 3442, 2920, 1716 (C=O), 1623, 1477, 1403, 1161, 1008, 695 cm⁻¹; **HRMS** (ESI) *m/z*: 540.2490 [M+H]⁺, C₃₂H₃₄N₃O₅⁺ requires 540.2493.

tert-Butyl (*R*)-(3-(5-methoxy-3-phenylisoxazol-4-yl)-1methyl-2-oxoindolin-3-yl)carbamate (3ka)

55.2 mg (64%) of **3ka** were obtained from **1k** (52.4 mg) and **2a** (32.2 mg). Enantiomeric excess (94%) was measured by HPLC (Chiralcel AS-H), hexane:^{*i*}PrOH 90:10, 1.0 mL min⁻¹, major enantiomer: $t_r = 11.2$ min, minor enantiomer: $t_r = 13.9$ min

Yellow oil; $[\alpha]_{D}^{25} = +11.7$ (*c* =1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.29 (2H, m, Ar), 7.30 – 7.16 (2H, m, Ar), 7.07 (1H, td, *J* = 8.2, 7.6, 0.8 Hz, Ar), 6.93 (1H, d, *J* = 7.1 Hz, Ar), 6.49 (1H, s, Ar), 6.46 (1H, s, N-H), 4.34 (3H, s, MeO), 2.8 (3H, s, MeN), 1.31 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.2 (C), 168.6 (C), 164.5 (C), 153.5 (C), 143.5 (C), 143.5 (C), 129.4 (CH), 129.2 (CH), 129.1 (CH), 128.5 (C), 127.7 (CH), 123.8 (CH), 123.0 (CH), 108.2 (CH), 90.3 (C), 80.5 (C), 59.0 (CH₃), 28.1 (CH₃), 26.1 (CH₃); **IR** (ATR) v 3425, 1712 (C=O), 1612, 1472, 1403, 1284, 1153, 764, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 438.1869 [M+H]⁺, C₂₄H₂₆N₃O₅⁺ requires 438.1867.

tert-Butyl (*R*)-(3-(5-methoxy-3-phenylisoxazol-4-yl)-1-(methoxymethyl)-2oxoindolin-3-yl)carbamate (3la)

53.4 mg (57%) of **3la** were obtained from **1l** (58.6 mg) and **2a** (32.2 mg). Enantiomeric excess (92%) was measured by HPLC (Chiralpak AS-H), hexane;^{*i*}PrOH 90:10, 1.0 mL min⁻¹, major enantiomer: $t_r = 8.9$ min, minor enantiomer: $t_r = 10.3$ min.

MOM Brown solid, m.p. = 66.1-66.5 °C; $[\alpha]_D^{25}$ = +51.8 (c = 0.80, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.13 (5H, m, Ar), 7.03-6,92 (3H, m, Ar), 6.67 (1H, d, J = 7.1 Hz, Ar), 6.31 (1H, s, NH), 4.78 (1H, d, J = 11.0 Hz, CH-OMe), 4.33 (1H, d, J= 11.0 Hz, CH-OMe), 4.20 (3H, s, MeO), 3.31 (3H, s, Me), 1.26 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.0 (C), 168.4 (C), 164.2 (C), 153.3 (C), 141.9 (C), 129.9 (C), 129.3 (CH), 129.2 (CH), 129.1 (CH), 128.3 (C), 127.7 (CH), 123.7 (CH), 123.3 (CH), 109.6 (CH), 90.2 (C), 80.4 (C), 71.5 (C), 59.2 (C), 58.8 (CH₃), 56.6 (CH₃), 28.1 (CH₃); **IR** (ATR) v 3429, 2978, 1716 (C=O), 1612, 1477, 1401, 1153, 1008, 915, 751, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 466.1957 [M+H]⁺, C₂₅H₂₈N₃O₆⁺ requires 466.1973.

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-(4-methoxyphenyl)isoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ab)

59.0 mg (55%) of **3ab** were obtained from **1a** (67.3 mg) and **2b** (38.2 mg). Enantiomeric excess (94%) was measured by HPLC (Phenomenex Lux[®] 5µm Amylose-1), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 19.9$ min, minor enantiomer: $t_r = 17.9$ min.

Pale yellow solid, m.p.= 148.0-148.3 °C; $[\alpha]_D^{25} = +20.2$ (c = 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.12 (9H, m, Ar), 7.01-6.95 (3H, m, Ar), 6.84 (1H, td, J = 7.5, 1.0 Hz, Ar), 6.64 (2H, m, Ar), 6.34 (1H, d, J = 7.8 Hz, Ar), 6.01 (1H, s, NH), 4.72 (1H, d, J = 15.9 Hz, CH-Ph), 4.21 (1H, d, J = 15.8 Hz, CH-Ph), 4.00 (3H, s, MeO), 3.72 (3H, s, MeO), 1.17 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 174.8 (C), 168.6 (C), 164.2 (C), 160.4 (C), 153.5 (C), 142.9 (C), 135.4 (C), 130.6 (CH), 130.3 (C), 129.0 (CH), 128.6 (CH), 127.6 (CH), 127.5 (CH), 125.2 (CH), 122.8 (CH), 120,8 (C), 113.3 (CH), 109.1 (CH), 90.1 (C), 80.3 (C), 59.1 (C), 58.5 (CH₃), 55.3 (CH₃), 44.2 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3436, 1716 (C=O), 1613, 1479, 1401, 1244, 1155, 993, 751, 697, 577 cm⁻¹; **HRMS** (ESI) m/z: 542.2271 [M+H]⁺, C₃₁H₃₂N₃O₆⁺ requires 542.2286.

tert-Butyl (*R*)-(1-benzyl-3-(3-(4-bromophenyl)-5-methoxyisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ac)

87.1 mg (76%) of **1a** were obtained from **1a** (67.3 mg) and **2c** (48.0 mg). Enantiomeric excess (85%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 17.3$ min, minor enantiomer: $t_r = 14.3$ min.

Yellow oil, $[\alpha]_D^{25} = +27.8 \ (c = 0.94, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta 7.38-7.25 (6H, m, Ar), 7.09 (1H, td, <math>J_1 = 7.7, J_2 = 1.3 \text{ Hz}), 6.94-6.89 (3H, m, Ar), 6.43 (1H, d, <math>J = 7.8 \text{ Hz}, \text{Ar}), 6.04 (1H, s, \text{NH}), 4.78 (1H, d, <math>J = 15.6 \text{ Hz}, \text{CH-Ph}), 4.29 (1H, d, J = 15.6 \text{ Hz}, \text{CH-Ph}), 4.13 (3H, s, \text{MeO}), 1.26 (9H, s, t-BuO); {}^{13}\text{C} \text{NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 174.6 (C), 168.9 (C), 163.4 (C), 153.5 (C), 142.7 (C), 135.2 (C), 130.9 (CH), 130.8 (CH), 130.0 (C$

(C), 129.2 (CH), 128.6 (CH), 127.7 (CH), 127.6 (CH), 127.5 (C), 124.5 (CH), 123.7 (C), 122.9 (CH), 109.1 (CH), 90.2 (C), 80.4 (C), 59.0 (C), 58.7 (CH₃), 44.1 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3432, 1716 (C=O), 1615, 1477, 1403, 1066, 993, 749 cm⁻¹; **HRMS** (ESI) *m/z*: 590.1279 [M+H]⁺, C₃₀H₂₉BrN₃O₅⁺ requires 590.1285.

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-(4-methoxyphenyl)isoxazol-4-yl)-5-nitro-2oxoindolin-3-yl)carbamate (3fb)

enantiomer: $t_r = 58.0$ min.

32.7 mg (56%) of **3db** were obtained from **1d** (38.1 mg) and **2b** (19.1 mg). Enantiomeric excess (95%) was measured by HPLC (Phenomenex Lux[®] 5µm Amylose-1), hexane;^{*i*}PrOH 90:10, 1.0 mL min⁻¹, major enantiomer: $t_r = 62.2$ min, minor

Yellow oil; $[a]_{D}^{25} = +54.7$ (c = 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.03-7.98 (2H, m, Ar), 7.37-7.27 (5H, m, Ar), 7.06-7.01 (2H, m, Ar), 6.76-6.71 (2H, m, Ar), 6.24 (1H, s, NH), 4.92 (1H, d, J = 15.9 Hz, CH-Ph), 4.35 (1H, d, J = 15.8 Hz, CH-Ph), 4.15 (3H, s, MeO), 3.80 (3H, s, MeO), 1.30 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.2 (C), 168.7 (C), 163.7 (C), 160.6 (C), 153.4 (C), 148.5 (C), 143.5 (C), 134.3 (C), 131.1 (C), 130.5 (CH), 128.8 (CH), 127.9 (CH), 127.5 (CH), 126.1 (CH), 120.3 (C), 119.7 (CH), 113.5 (CH), 108.7 (CH), 88.5 (C), 81.0 (C), 58.7 (CH), 58.6 (C), 58.4 (CH₃), 44.6 (CH₂), 28.1 (CH₃); **IR** (ATR) v 3432, 1716 (C=O), 1615, 1477, 1403, 1066, 993, 749 cm⁻¹; **IRMS** (ESI) m/z: 587.2112 [M+H]⁺, C₃₁H₃₁N₄O₈⁺ requires 587.2136.

tert-Butyl (*R*)-(1-benzyl-3-(5-methoxy-3-methylisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (3ad)

53.2 mg (59%) of **3ad** were obtained from **1a** (67.3 mg) and **2d** (19.8 mg). Enantiomeric excess (41%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 23.8$ min, minor enantiomer: $t_r = 14.0$ min.

Yellow oil; $[\alpha]_{D}^{25} = +10.7$, $(c = 0.81, CHCl_3)$; ¹H NMR (300 MHz, CDCl_3) δ 7.41-7.37 (9H, m, Ar), 7.34-7.27 (4H, m, Ar), 7.21 (1H, td, J = 7.5, 1.0 Hz, Ar), 7.02 (1H, td, J = 7.5, 1.0 Hz, Ar), 6.77 (1H, d, J = 7.7 Hz, Ar), 6.21 (1H, s, NH), 5.01 (1H, d, J = 15.4 Hz, CH-Ph), 4.83 (1H, d, J = 15.4 Hz, CH-Ph), 4.11 (3H, s, MeO),

1.53 (3H, s, MeO), 1.31 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 175.0 (C), 168.8 (C), 160.7 (C), 153.8 (C), 142.9 (C), 135.6 (C), 129.8 (C), 129.4 (CH), 128.7 (CH), 127.7 (CH), 124.2 (CH), 123.0 (CH), 109.1 (CH), 89.3 (C), 80.6 (C), 58.9 (C), 58.5 (CH₃), 44.4 (CH₂), 28.1 (CH₃), 11.5 (CH₃); **IR** (ATR) v 3421, 2976, 1712 (C=O), 1608, 1455, 1284, 1161, 944, 751, 700 cm⁻¹; **HRMS** (ESI) *m/z*: 450.2020 [M+H]⁺, C₂₅H₂₈N₃O₅⁺ requires 450.2023.

tert-Butyl (*R*)-(1-benzyl-3-(3-cyclopropyl-5-methoxyisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (3ae)

27.0 mg (57%) of **3ae** were obtained from **1a** (33.6 mg) and **2e** (12.5 mg). Enantiomeric excess (65%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 17.5$ min, minor enantiomer: $t_r = 14.6$ min.

Yellow solid, m.p. = 141.5-141.9 °C; $[\alpha]_{D}^{25}$ = +8.2 (*c* = 0.89, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.27 (5H, m, Ar), 7.19 (1H, td, *J* = 7.7, 1.3 Hz, Ar), 7.02 (1H, td, *J* = 7.5, 1.0 Hz, Ar), 6.74 (1H, d, *J* = 7.8 Hz, Ar), 6.26 (1H, bs, NH), 5.00-4.90 (1H, m, Ar), 4.02 (3H, s, MeO), 1.30-1.16 (10H, m, *t*-BuO + CH), 0.79-0.68 (2H, m, CH₂), 0.56-0.41 (2H, m, CH₂), ¹³C NMR (75 MHz, CDCl₃) δ 175.1 (C), 168.6 (C), 165.1 (C), 153.7 (C), 143.1 (C), 135.6 (C), 129.9 (C), 129.2 (CH), 128.7 (CH), 127.8 (CH), 127.6 (CH), 124.2 (CH), 122.9 (CH), 108.9 (CH), 90.2 (C), 80.5 (C), 59.1 (C), 58.4 (CH₃), 44.5 (CH₂), 28.1 (CH₃), 7.1 (CH₂), 7.01 (CH), 6.11 (CH₂); **IR** (ATR) v 3423, 1735, 1710 (C=O), 1627, 1468, 1422, 1164, 1047, 754, 702 cm⁻¹; **HRMS** (ESI) *m/z*: 476.2189 [M+H]⁺, C₂₇H₃₀N₃O₅⁺ requires 476.2180.

tert-butyl (1-benzyl-3-(4-benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3af)

49.7 mg (85% overall yield) of product **3af** were obtained in a 41:59 diastereoisomeric ratio.

 $\underbrace{Syn \text{ diastereoisomer:}}_{Bn} 20.6 \text{ mg } (35\%) \text{ were obtained from 1a} (33.6 \text{ mg}) \text{ and 2h } (25.1 \text{ mg}). \text{ Enantiomeric excess } (>99\%) \text{ was}$ measured by HPLC (Chiralpak AD-H), hexane;'PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 24.1$ min, minor enantiomer: $t_r = 25.7$ min Orange solid, m.p. = 133.4-134.3°C; $[\alpha]_D^{25}$ = +87.5 (c = 0.82, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.55 (1H, m, Ar), 7.49-7.38 (4H, m, Ar), 7.37-7.25 (6H, m, Ar), 7.22-6.94 (8H, m, Ar), 6.14 (1H, d, J = 7.8 Hz, Ar), 4.83 (1H, d, J = 16.2 Hz, CH-Ph), 4.58 (1H, d, J = 14.9 Hz, CH-Ph), 3.84 (1H, d, J = 14.9 Hz, CH-Ph), 2.85 (1H, dJ = 16.0 Hz, CH-Ph), 1.37 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 178.9 (C), 171.2 (C), 165.1 (C), 153.5 (C), 141.9 (C), 134.6 (C), 131.7 (CH), 130.1 (CH), 129.7 (CH), 128.8 (CH), 128.6 (CH), 128.4 (CH), 128.1 (C), 128.0 (CH), 127.9 (CH), 127.3 (CH), 127.2 (CH), 123.3 (CH), 121.6 (CH), 109.8 (CH), 80.9 (C), 61.6 (C), 60.8 (C), 43.2 (CH₂), 33.9 (CH₂), 28.2 (CH₃); **IR** (ATR) v 3391, 2976, 1768, 1718 (C=O), 1610, 1487, 1366, 1157, 889, 752, 695 cm⁻¹; **HRMS** (ESI) *m*/*z*: 528.2488 [M+H]⁺, C₃₆H₃₄N₃O5⁺ requires 528.2493.

<u>Anti diastereoisòmer:</u> 29.1 mg (50%) were obtained from 1a (33.6 mg) and 2h (25.1 mg). Enantiomeric excess (72%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 14.3$ min, minor enantiomer: $t_r = 7.8$ min

Yellow solid, m.p. = 142.8-144.0 °C; $[\alpha]_D^{25}$ = +9.1 (*c* = 0.97, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.53 (1H, dd, *J* = 7.1, 1.5 Hz, Ar), 7.35-6.99 (18H, m, Ar), 5.99 (1H, d, *J* = 7.4, 1.3 Ar), 5.04 (1H, d, *J* = 15.6 Hz, CH-Ph), 4.01-3.83 (3H, m, CH-Ph), 1.27 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 178.1 (C), 174.1 (C), 163.9 (C), 154.4 (C), 143.6 (C), 134.6 (C), 131.7 (C), 130.7 (CH), 130.1 (CH), 129.8 (CH), 128.8 (CH), 128.6 (CH), 128.3 (CH), 128.1 (C), 127.9 (CH), 127.6 (CH), 127.5 (C), 127.4 (CH), 125.7 (C), 124.6 (CH), 122.6 (CH), 109.5 (CH), 81.0 (C), 64.9 (C), 58.6 (C), 44.1 (CH₂), 36.4 (CH₂), 27.9 (CH₃); **IR** (ATR) v 3384, 2976, 1768, 1716 (C=O), 1612, 1480, 1366, 1155, 900, 728, 695, 505 cm⁻¹; **HRMS** (ESI) *m/z*: 528.2488 [M+H]⁺, C₃₆H₃₄N₃O5⁺ requires 528.2493.

tert-butyl (1-benzyl-3-(4-methyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ag)

47.4 mg (93% overall yield) of product **3ag** were obtained in a 32:68 diastereoisomeric ratio.

<u>Syn diastereoisomer:</u> 15.4 mg (30%) were obtained from 1a (33.6 mg) and 2g (17.5 mg). Enantiomeric excess (27%) was

measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 11.8$ min, minor enantiomer: $t_r = 28.1$ min

Yellow solid, m.p. = 161.1-162.6°C; $[\alpha]_D^{25}$ = +17.4 (*c* = 0.96, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.53 (1H, m, Ar), 7.47-7.41 (1H, m, 2H), 7.22-7.11 (9H, m, Ar), 7.00 (1H, td, *J* = 7.6 Hz, *J* = 1.0 Hz, Ar), 6.60 (1H, bs, NH), 6.23 (d, *J* = 7.8 Hz, Ar), 4.58 (1H, d, *J* = 16.2 Hz), CH-Ph), 2.86 (1H, d *J* = 16.2 Hz, CH-Ph), 2.23 (3H, s, CH₃), 1.33 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 179.7 (C), 170.9 (C), 167.2 (C), 153.5 (C), 141.8 (C), 134.6 (C), 131.7 (CH), 130.1 (CH), 129.0 (C), 128.7 (CH), 128.4 (CH), 127.5 (CH), 127.4 (C), 127.3 (CH), 127.2 (C), 126.0 (C),123.2 (CH), 121.6 (CH), 109.7 (CH), 80.8 (C), 60.9 (C), 54.2 (C), 42.7 (CH₂), 28.2 (C), 28.1 (CH₃), 15.2 (CH₃); **IR** (ATR) v 3395, 2924, 1776, 1718 (C=O), 1612, 1489, 1366, 1157, 898, 751, 695 cm⁻¹; **HRMS** (ESI) *m/z*: 512.2172 [M+H]⁺, C₃₀H₃₀N₃O₅⁺ requires 512.2180.

<u>Anti diastereoisomer:</u> 32.0 mg (63%) were obtained from 1a (33.6 mg) and 2g (17.5 mg). Enantiomeric excess (86%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 17.9$ min, minor enantiomer: $t_r = 10.9$ min

Yellow oil, $[a]_D^{25} = -56.9 (c = 1.0, CHCl_3)$; ¹H NMR (300 MHz, CDCl_3) δ 7.38 (1H, dd, J = 6.8, 1.7 Hz, Ar), 7.30-7.18 (7H, m, Ar), 7.05-6.89 (7H, m, Ar), 6.00 (1H, dd, J = 7.3, Ar), 5.04 (1H, d, J = 15.5 Hz, CH-Ph), 4.07 (1H, d, J = 15.5 Hz, CH-Ph), 2.07 (3H, s, CH_3), 1.23 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl_3) δ 179.3 (C), 174.1 (C), 166.3 (C), 154.2 (C), 143.2 (C), 134.7 (C), 130.6 (CH), 130.0 (CH), 128.6 (CH), 127.9 (CH), 127.8 (C), 127.7 (CH), 127.6 (CH), 126.9 (CH), 125.4 (C), 124.2 (CH), 122.4 (CH). 109.7 (CH), 80.9 (C), 64.4 (C), 51.9 (C), 44.2 (CH₂), 27.9 (CH₃), 17.9 (CH₃); **IR** (ATR) v 3362, 2980, 1774, 1716 (C=O), 1612, 1487, 1366, 1250, 1157, 894, 728, 691 cm⁻¹; **HRMS** (ESI) *m/z*: 512.2172 [M+H]⁺, C₃₀H₃₀N₃O₅⁺ requires 512.2180.

tert-butyl (1-benzyl-3-(4-benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-2oxoindolin-3-yl)carbamate (3ah)

97.7 mg (93% overall yield) of product **3ah** were obtained in a 48:52 diastereoisomeric ratio.

<u>Svn diastereoisomer:</u> 47.1 mg (45%) were obtained from 1a (67.2 mg) and 2f (37.8 mg). Enantiomeric excess (46%) was

measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 13.9$ min, minor enantiomer: $t_r = 15.4$ min

Yellow solid, m.p. = 155.4-156.5 °C; $[\alpha]_D^{25}$ = +48.5 (*c* = 0.79, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.54 (2H, m, Ar), 7.38-7.21 (8H, m, Ar), 7.19-7.16 (1H, m, Ar), 7.11-7.07 (2H, m, Ar), 7.01 (1H, td, *J* = 7.6, 1.0 Hz, Ar), 6.86 (1H, s, NH), 6.83-6.80 (1H, m, Ar), 5.16 (1H, d, *J* = 15.3 Hz, CH-Ph), 4.81 (1H, d, *J* = 15.3 Hz, CH-Ph), 4.03 (1H, d, *J* = 14.4 Hz, CH-Ph), 3.65 (1H, d, *J* = 14.4 Hz, CH-Ph), 1.62 (3H, s, CH₃), 1.35 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl₃) δ 178.9 (C), 171.9 (C), 164.5 (C),153.7 (C), 142.3 (C), 134.8 (C), 132.9 (C), 129.5 (CH), 128.8 (CH), 128.4 (CH), 127.9 (CH), 126.2 (C), 123.7 (CH), 122.5 (CH), 109.4 (CH), 81.0 (C), 60.9 (C), 60.7 (C), 44.9 (CH₂), 33.2 (CH₂), 28.2 (CH₃), 12.7 (CH₃); **IR** (ATR) v 3382, 1772, 1716 (C=O), 1608, 1481, 1153, 756, 700 cm⁻¹; **HRMS** (ESI) *m/z*: 526.2334 [M+H]⁺, C₃₁H₃₂N₃O₅⁺ requires 526.2336.

<u>Anti diastereoisomer:</u> 50.6 mg (48%) were obtained from 1a (67.2 mg) and 2f (37.8 mg). Enantiomeric excess (64%) was measured by HPLC (Chiralpak AD-H), hexane;^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 36.7$ min, minor enantiomer: $t_r = 12.0$ min

Yellow solid, m.p. = 93.3-96.6 °C; $[\alpha]_D^{25}$ = +10.6 (*c* = 0.76, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.49 (1H, dd, J = 7.9, 1.0 Hz, Ar), 7.42-7.21 (9H, m, Ar), 7.15 (1H, td, *J* = 7.6, 1.0 Hz, Ar), 7.05-7.00 (2H, m, Ar), 6.98 (1H, s, NH), 6.87 (1H, dd, J = 7.9, 1.0 Hz, Ar), 5.09 (1H, d, *J* = 15.2 Hz, CH-Ph), 4.66 (1H, d, *J* = 15.2 Hz, CH-Ph), 3.72 (1H, d, *J* = 13.6 Hz, CH-Ph), 3.32 (1H, d, *J* = 13.6 Hz, CH-Ph), 1.31 (9H, s, *t*-BuO), 1.20 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 177.7 (C), 173.8 (C), 163.9 (C), 154.3 (C), 143.8 (C), 135.0 (C), 131.7 (C), 130.5 (CH), 129.6 (CH), 128.9 (CH), 128.8 (CH), 128.2 (CH), 128.0 (CH), 125.5 (C), 125.1 (CH), 123.0 (CH), 109.6 (CH), 81.2 (C), 64.0 (C), 58.8(C), 44.6 (CH₂), 34.8 (CH₂), 28.0 (CH₃), 13.2 (CH₃); **IR** (ATR) v 3365, 1777, 1716 (C=O), 1610, 1485, 1366, 1157, 883, 697 cm⁻¹; **HRMS** (ESI) *m/z*: 526.2334 [M+H]⁺, C₃₁H₃₂N₃O₅⁺ requires 526.2336.

Synthesis of compound 3aa at one mmol scale

An oven dried round bottom flask was charged with isatin ketimine **1a** (337 mg, 1.0 mmol), isoxazol-5-one **2a** (162 mg, 1.0 mmol) and squaramide **IV** (60.0 mg, 0.1 mmol). The flask was purged with N₂ for 10 minutes. Dichloromethane (10 mL) was added, and the mixture was stirred at room temperature until completion (TLC). 1 M solution of TMS-diazomethane in diethyl ether (2.0 mL, 2 mmol) was added via a syringe and the reaction was stirred 2 hours at room temperature. The reaction mixture was chromatographed on silica gel eluting with hexane:EtOAc (8:2) to give 333 mg (65%) of compound **3aa** with 94% ee.

Synthesis of *tert*-butyl ((*S*)-1-benzyl-3-((*R*)-4-fluoro-5-oxo-3-phenyl-4,5dihydroisoxazol-4-yl)-2-oxoindolin-3-yl)carbamate (4)

An oven dried test tube was charged with isatin ketimine **1a** (33.6 mg, 0.1 mmol), isoxazol-5-one **2** (16.1 mg, 0.1 mmol) and squaramide **IV** (6.0 mg, 0.01 mmol). The test tube was purged with N₂ and dichloromethane (1 mL) was added. The mixture was stirred at room temperature for 20 hours. NFSI (41.0 mg, 0.13 mmol) and K₂CO₃ (18.0 mg, 0.13 mmol) were added and the

reaction was stirred vigorously 5 more hours. Upon completion, the reaction mixture was chromatographed on silica gel eluting with hexane:EtOAc mixtures to give compound 4 (33.1 mg, 64%) as a single diastereomer (dr>20:1) with identical spectroscopical features to those described in the literature.^[6] Enantiomeric excess (93%) was measured by HPLC (Phenomenex Lux® *i*-Amylose-1), 90:10 Hexane/*i*PrOH, 0.5 mL min⁻¹, major enantiomer: $t_r = 27.8$ min, minor enantiomer: $t_r = 18.5$ min; lit.^[6] (Chiralpak IA, same stationary phase as Lux® *i*-Amylose-1, 90:10 Hexane/*i*PrOH, 0.5 mL/min, major enantiomer: $t_r = 21.2$ min, minor enantiomer $t_r = 15.2$ min.

Pale yellow solid; $[\alpha]_D^{25} = -70.7$ (c = 0.89, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.42 (1H, m, Ar), 7.37-7.28 (5H, m, Ar), 7.18 (1H, t, J = 7.5 Hz, Ar), 7.00-6.91 (4H, m, Ar), 6.83 (1H, d, J = 7.5 Hz, Ar), 6.75 (1H, bs, NH), 6.12 (1H, d, J = 7.1 Hz, Ar), 4.85 (1H, d, J = 15.3 Hz, CH-Ph), 4.41 (1H, d, J = 15.3 Hz, CH-Ph), 1.28 (9H, s, *t*-BuO); ¹⁹F NMR (282 MHz, CDCl₃) δ -176.1 ppm; ¹³C NMR (75 MHz, CDCl₃) δ 170.8 (d, J = 8.2 Hz, C), 169.6 (d, J = 22.6 Hz, C), 160.2 (d, J = 13.9 Hz, C), 153.4 (C), 143.2 (C), 134.7 (C), 131.0 (CH), 130.6 (CH), 128.8 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.0 (CH), 125.6 (CH), 125.5 (CH), 123.8 (C), 123.0 (CH), 108.9 (CH), 89.2 (C), 81.3 (CH), 65.7 (d, J = 22.6 Hz, C), 44.6 (CH₂), 28.0 (CH₃); **HRMS** (ESI) m/z: 516.1937 [M+H]⁺, C₂₉H₂₇FN₃O₅⁺ requires 516.1929.

Synthesis of *tert*-butyl (*S*)-(1-benzyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3yl)carbamate (5)

Compounds 1a (33.6 mg) and 2a (16.1 mg) were reacted in the presence of catalyst IV (6.0 mg, 0.01 mmol) as described in the general procedure omitting the methylation step. The crude was concentrated under reduced pressure and suspended in MeOH:H₂O

(1:1). Then, iron powder (56.1 mg, 1.0 mmol) and NH4Cl (53.5 mg, 1.0 mmol) were added, and the reaction was stirred at 60 °C overnight. The reaction mixture was filtered through a short celite pad eluting with DCM. The filtrate was concentrated under reduced pressure and purified by flash column chromatography eluting with 6:4 hexane:EtOAc to afford 41.2 mg (87%) of **5** were obtained from 3aa (49.7 mg). Enantiomeric excess (91%) was measured by HPLC (Phenomenex Lux® *i*-Amylose-1 (90:10 Hexane/*i*PrOH, 0.5 mL min⁻¹), major enantiomer: $t_r = 41.1$ min, minor enantiomer: $t_r = 10.8$ min.

Yellow oil; $[\alpha]_{D}^{25} = -65.7 \ (c = 0.95, CHCl_3)$, Lit.^[7] $[\alpha]_{D}^{25} = -50.7 \ (c = 0.1, CHCl_3, 90\%$ ee, for the *S* enantiomer), Lit.^[8] $[\alpha]_{D}^{25} = +52.34 \ (c = 0.34, CHCl_3, 95\%$ ee, for the *R* enantiomer); ¹H NMR (300 MHz, CDCl_3) δ 7.80 (1H, m, Ar), 7.54 (1H, m, Ar), 7.45-7.27 (7H, m, Ar), 7.14 (H, td, J = 7.7, 1.3 Hz, Ar), 6.92 (1H, td, J = 7.6, 1.0 Hz, Ar), 6.72 (1H, d, J = 7.8 Hz, Ar), 6.48 (1H, bs, Ar), 5.10 (1H, d, J = 15.7 Hz, CH-CO), 4.89 (1H, d, J = 15.7 Hz, CH-CO), 3.70 (1H, d, J = 15.3 Hz, CH-Ph), 3.36 (1H, d, J = 16.6 Hz, CH-Ph), 1.33 (9H, s, *t*-BuO); ¹³C NMR (75 MHz, CDCl_3) δ 197.4 (C), 176.1 (C), 154.0 (C), 142.5 (C), 136.6 (C), 135.9 (C), 133.7 (CH), 129.9 (CH), 128.9 (CH), 128.7 (CH), 128.6 (CH), 128.2 (CH), 127.5 (CH), 127.4 (CH), 124.2 (CH), 122.7 (CH), 109.3 (CH), 80.2 (C), 60.0 (C), 44.2 (CH₂), 43.7 (CH₂), 28.1 (CH₃); HRMS (ESI) *m/z*: 457.2141 [M+H]⁺, C₂₈H₂₉N₂O⁴⁺ requires 457.2122.

¹H NMR and ¹³C NMR spectra for compounds 3-5

3aa ¹H NMR, CDCl₃, 300 MHz

140 130 120 110 100 f1 (ppm)

100 90 f1 (ppm)

— 1.22

¹H NMR, CDCl₃, 300 MHz

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR, CDCl₃, 300 MHz

- 1.25

3fb ¹H NMR, CDCl₃, 300 MHz

3ae ¹H NMR, CDCl₃, 300 MHz

— 1.23

¹H NMR, CDCl₃, 300 MHz

— 1.62 — 1.35

¹H NMR, CDCl₃, 300 MHz

— 1.28

Boc NH F N Bn

4 ¹H NMR, CDCl₃, 300 MHz

- 1.33

¹H, CDCl₃, 300 MHz

HPLC traces for compounds 3-5

Racemic

Enantioenriched

Enantioenriched

Enantioenriched

Enantioenriched

Enantioenriched

Absolute configuration analysis

Šebesta and co-workers describe the synthesis of compound $4^{[6]}$ with (*S*,*R*) configuration. They reported chiral HPLC chromatography as follows:

Authors	Column	Chiral Phase	Conditions	Retention times (min)
Šebesta	Chiralpak IA	Amylose tris-(3,5- dimethylphenylcarbamate) immobilized on SiO ₂	90:10 Hexane/ <i>i</i> PrOH, 0.5 mL/min, λ = 210 nm)	$t_{major} = 21.2$ $t_{minor} = 15.2$
This work	Phenomenex Lux® <i>i</i> - amylose-1	Amylose tris-(3,5- dimethylphenylcarbamate) immobilized on SiO ₂	90:10 Hexane/ <i>i</i> PrOH, 0.5 mL/min, λ = 210 nm)	$t_{major} = 27.9$ $t_{minor} = 18.5$

As the stationary phase and HPLC conditions are the same, one can consider than the same enantiomer is obtained. Unfortunately, the authors did not provide the $[\alpha]_D$ of this compound to be used as further evidence.

On the other hand compounds (*S*)-5 and (*R*)-5 have been described by Chimni^[7] and by Wu and Cao, ^[8] respectively. The absolute stereochemistry of compound 5 obtained in our work was ascertained by comparison of the optical rotation values as well as by comparison of the HPLC chiral chromatography.

Authors	Column	Chiral Phase	Conditions	Retention times (min)
Wu and Cao	Chiralpak IA	Amylose tris-(3,5- dimethylphenylcarbamate) immobilized on SiO ₂	80:20 Hexane/ <i>i</i> PrOH, 1 mL/min, $\lambda =$ 210 nm)	(R) $t_{major} = 8.9$ $t_{minor} = 32.9$
This work	Phenomenex Lux® <i>i</i> - amylose-1	Amylose tris-(3,5- dimethylphenylcarbamate) immobilized on SiO ₂	80:20 Hexane/ <i>i</i> PrOH, 1 mL/min, $\lambda =$ 210 nm)	$t_{major} = 41.0$ $t_{minor} = 10.8$

While the stationary phase and HPLC conditions are the same, one can consider than the opposite enantiomer is obtained.

Authors	Specific rotation	С	Solvent	Enantiomer
Wu and Cao	$[\alpha]^{28}D = +52.3$	0,34	CHCl ₃	(<i>R</i>)
Chimni	$[\alpha]^{25}D = -50.7$	0.1	CHCl ₃	(S)
This work	$[\alpha]^{25}D = -65.7$	0,95	CHCl ₃	(S)

This can be further proved by checking the specific rotation:

References

- [1] W. Yan, D. Wang, J. Feng, P. Li, D. Zhao, R. Wang, Org. Lett. 2012, 14, 2512– 2515.
- [2] N. Capreti, I. D. Jurberg Org. Lett. 2015, 17, 2490–2493.
- [3] T. Hellmuth, W. Frey, R. Peters, Angew. Chem. Int. Ed., 2015, 54, 2788–2791.
- [4] A. Terent'ev, V. Vil', E. Gorlov, O. Rusina, A. Korlyukov, G. Nikishin, W. Adam *ChemistrySelect* 2017, 2, 3334–3341.
- [5] W. Yang, D.-M. Du, Org. Lett. 2010, 12, 5450–5453.
- [6] D. Krištofiková, M. Mečiarová, E. Rakovský, R. Šebesta, ACS Sustainable Chem. Eng. 2020, 8, 14417–14424
- [7] J. Kaur, A. Kumari, V. K. Bhardwaj, S. S. Chimni, *Adv. Synth. Catal.* 2017, 359, 1725–1734.
- [8] C. Cheng, X. Lu, L. Ge, J. Chen, W. Cao, X. X. Wu, G. Zhao, Org. Chem. Front. 2017, 4, 101–114.