Supporting Information

Stereocontrolled Total Synthesis of Resolvin D4 and 17(R)Resolvin D4

Robert Nshimiyimana, ${ }^{*, a, b}$ Stephen J. Glynn, ${ }^{a}$ Charles N. Serhan, ${ }^{b}$ and Nicos A. Petasis ${ }^{*, a}$
${ }^{\text {a Department of }}$ Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA
${ }^{\mathrm{b}}$ Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
*E-mail: rnshimiyimana@bwh.harvard.edu (R. N.); petasis@usc.edu (N. A. P.)

37 Pages

CONTENTS

S2-S10 Experimental procedures
S11-S37 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and UV-LC-MS/MS spectra of selected compounds

General Methods

Unless otherwise stated, reactions were carried out in a flame-dried flask with stir bar under argon routed through a three-necked valve, using DriSolv solvents purchased from VWR. Except in cases where commercial building blocks were dried under high vacuum, all purchased reagents were used directly without further purification from Strem, Sigma Aldrich, Combi-Blocks, TCI America and Alfa Aesar. Reaction progress was monitored and recorded using EMD analytical thin layer chromatography (TLC) plates coated with Silica Gel 60 F254. TLC plates were visualized through UV absorbance, (254 nm), or staining such as vanillin, phosphomolybdic acid, potassium-permanganate, or ninhydrin followed by heating by a heat gun. Purification was carried out by flash column chromatography manually using Silica Gel (100-200 mesh) or using an automated system on a Biotage Isolera One.

Characterization was carried out using LC-MS, NMR and UV-VIS instrumentation. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were procured on Varian NMR instruments at 400,500 or 600 MHz , respectively, for ${ }^{1} \mathrm{H}$ NMR and at 101,126 or 151 MHz , for ${ }^{13} \mathrm{C}$ NMR data. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts, (δ), are recorded in parts per million, (ppm), and referenced to the residual protium and carbon solvent resonances converted by the TMS scale (e.g., Chloroform-d, ${ }^{1} \mathrm{H}=7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}=77.00 \mathrm{ppm}$; and Methanol-d, $\left.{ }^{1} \mathrm{H}=3.31 \mathrm{ppm} ;{ }^{13} \mathrm{C}=49.00 \mathrm{ppm}\right)$. Splitting patterns are denoted by $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{dd}, \mathrm{td}$, ddd , and m and refer to the respective multiplicities; singlet, doublet, triplet, doublet of doublets, triplet of doublets, doublet of doublet of doublet and multiplet. Liquid chromatography and tandem mass spectrometry data in negative polarity were recorded on a SCIEX QTRAP 6500+ coupled with an ExionLC analytical HPLC system using a C18 Kinetex $100 \times 4.6 \mathrm{~mm}$ column, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (0.1% formic acid) gradient at $0.5 \mathrm{~mL} / \mathrm{min}$. UV-Vis spectra were obtained in methanol on a Hewlett-Packard 8350 spectrophotometer.

Experimental Procedures

($4 S, 5 R$)-Methyl 4,5,6-trihydroxyhex-2-enoate (10). To a solution of D-erythrose (9) $(0.85 \mathrm{~g}, 7.1 \mathrm{mmol})$ in dry THF (10 mL) was added methyl (triphenylphosphoranylidene)acetate ($2.4 \mathrm{~g}, 7.1 \mathrm{mmol}$). The reaction mixture was stirred and refluxed at $65^{\circ} \mathrm{C}$ overnight (16 h). Without workup the solvent was removed in vacuo and the crude mixture was purified on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \%)$ as the eluent to afford an E / Z isomeric mixture of triol $10(1.1 \mathrm{~g}, 90 \%)$ as a clear colorless oil. E-isomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.14$ (dd, $\left.J=15.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10(\mathrm{dd}, J=15.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24$ (ddd, $J=6.5,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), 3.61 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d d_{4}) $167.20,148.69,120.25,74.35,71.25,62.92,50.66$.
(4S,5R)-Methyl 4,5,6-tris(tert-butyldimethylsilyloxy)hexanoate (11). To a solution of triol $10(740 \mathrm{mg}, 4.20 \mathrm{mmol})$ in EtOAc (12 mL) was added one scoop ($\sim 80 \mathrm{mg}$) of 5% palladium on charcoal. The reaction was stirred under H_{2} overnight. The reaction mixture was filtered through Celite and with no workup the solvent evaporated. To a flask with imidazole ($1.71 \mathrm{~g}, 25.2 \mathrm{mmol}$) and DMAP ($256 \mathrm{mg}, 2.10 \mathrm{mmol}$) in DMF (10 mL total volume) was added TBS-CI ($3.78 \mathrm{~g}, 25.2 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The triol ($220 \mathrm{mg}, 1.25$ mmol) was cannulated to the flask and stirred overnight (15 h) at room temperature. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 7 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and the solvent was removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAcHexanes (2%) as the eluent to afford the protected triol ester 11 ($1.86 \mathrm{~g}, 89 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.45(\mathrm{dd}, \mathrm{J}=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~m}, 24 \mathrm{H}), 0.03(\mathrm{~m}, 14 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 174.38,77.10,72.74,64.84,51.42,30.11,27.19$, 25.98, 25.97, 25.93, 25.89, 25.86, 25.64, 18.19, -4.11, -4.37, -4.68, -4.88, -5.38, -5.44.
(4S,5S)-Methyl 4,5-bis((tert-butyldimethylsilyl)oxy)-6-oxohexanoate (12). To a solution of protected triol $11(525 \mathrm{mg}, 1.00 \mathrm{mmol})$ in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(14$ mL) was added camphorsulfonic acid ($200 \mathrm{mg}, 0.86 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was monitored and quenched after 50 min with $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.10 \mathrm{mmol})$ and the solvent was removed in vacuo. The crude mixture was purified on silica gel using EtOAc-Hexanes (12%) as the eluent to afford the mono-deprotected triol ester ($285 \mathrm{mg}, 70 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) ס 3.80 ($\mathrm{q}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.59 (dd, $J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.38 (dd, $J=8.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 (dd, $J=7.3,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 14 \mathrm{H}), 0.03(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , Chloroform-d) δ 174.11, 74.98, 72.70, 63.71, 51.54, 29.18, 28.37, 25.89, 25.85, 18.10, 18.07, -4.45, -4.60. To a solution of the primary alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added pyridine $(\sim 350 \mu \mathrm{~L})$ and Dess-Martin periodinane ($445 \mathrm{mg}, 1.05 \mathrm{mmol}$) and the mixture was stirred at room temperature for 20 min . The reaction mixture was quenched with 1:1 mixture of saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(7 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 7 mL). The organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (10\%) as the eluent to afford aldehyde 12 ($227 \mathrm{mg}, 80 \%$) as clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) ס $9.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=3.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.67$
$(\mathrm{s}, 3 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 0.89(2 \mathrm{~s}, 18 \mathrm{H}), 0.07(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 203.06, 173.36, 80.59, 73.76, 51.34, 29.27, 28.14, 25.55, 25.54, 25.52, 17.99, 17.81, -4.66, -5.12.
(4S,5R,E)-Methyl 4,5-bis((tert-butyldimethylsilyl)oxy)-8-oxooct-6-enoate (13). To a flask with (triphenylphosphoranylidene)acetaldehyde ($426 \mathrm{mg}, 1.40 \mathrm{mmol}$) was cannulated aldehyde $12(227 \mathrm{mg}, 0.56 \mathrm{mmol})$ in 6.5 mL of THF. The mixture was refluxed at $65{ }^{\circ} \mathrm{C}$ overnight (16 h). The reaction mixture with no workup was condensed in vacuo followed by purification of the crude residue on silica gel using EtOAc-Hexanes (5\%) as the eluent to afford the homologated aldehyde (13) (180 mg, 75\%) as a dark red oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.57$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (dd, $J=15.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.25 (ddd, $J=15.7,7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27 (t, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (q, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (s, 3H), 2.39 (td, $J=7.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77$ (m, 2H), 0.88 ($2 \mathrm{~s}, 18 \mathrm{H}$), 0.04 (m, 12H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 193.26,173.66,157.17,132.42,75.63,75.07,51.55$, 29.42, 28.35, 25.86, 25.82, 18.09, -4.05, -4.48, -4.79, -4.81.
(4S,5R,6E,8E)-Methyl 4,5-bis((tert-butyldimethylsilyl)oxy)-9-iodonona-6,8dienoate (14). To a solution of CrCl_{2} ($516 \mathrm{mg}, 4.2 \mathrm{mmol}$) dissolved in THF (8 mL total volume) was cannulated a mixture of aldehyde 13 ($180 \mathrm{mg}, 0.42 \mathrm{mmol}$) and CHI_{3} (827 $\mathrm{mg}, 2.1 \mathrm{mmol}$) dissolved in anhydrous THF (3 mL) under argon at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 3 h and an additional 1 h at room temperature. The reaction mixture was quenched with brine (50 mL) extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. The organic phase was filtered, and the solvent was removed in vacuo to afford a crude oil which was purified on silica gel, first using pure pentanes and then EtOAc-Hexanes (2%) as the eluent to afford the (E)-vinyl iodide 14 ($150 \mathrm{mg}, 64 \%$) as a yellow oil, along with an insignificant amount (unquantified) of the (Z)-isomer. (E)-isomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.01$ (dd, $J=14.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (m, 1 H), 5.67 (dd, $J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddd, $J=6.9,4.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), $3.63(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{td}, J=7.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.87$ (2s, 18H), $0.04(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 174.19,144.63,135.19$, 131.16, 78.97, 74.97(2), 51.49, 29.53, 28.16, 25.97, 25.93, 25.90, 18.22, 18.13, -4.03, 4.72, -4.74.
(4S,5R,6E,8E)-Methyl 4,5-bis((tert-butyldimethylsilyl)oxy)-12-hydroxydodeca-6,8-dien-10-ynoate (15). To a solution of vinyl iodide 14 (283 mg, 0.51 $\mathrm{mmol})$ in Piperidine $(2 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}(40 \mathrm{mg}, 0.052 \mathrm{mmol})$ and propargyl alcohol ($0.32 \mathrm{~mL}, 5.6 \mathrm{mmol}$). The reaction was quenched after 1 h with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The solvent was removed in vacuo and the resulting crude mixture of compound 15 was taken into the next step without further chromatographic purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 6.58$ (dd, $J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.17 (m, 1H), 5.75 (dd, $J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (s, 2H), 3.96 (m, 1 H), 3.66 (s, 3H), 3.63 (q, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (dd, $J=9.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H})$, $0.88(2 \mathrm{~s}, 18 \mathrm{H}), 0.03(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 174.23,135.87$ (2), 127.54 (2), 111.20, 109.51, 91.21, 89.10, 73.80, 29.70, 27.02, 26.99, 25.93, 25.90, 20.55, 19.35, 18.21, 18.11, 14.07, -4.02, -4.09, -4.68, -4.76.
(4S,5R,6E,8E)-Methyl 12-bromo-4,5-bis((tert-butyldimethylsilyl)oxy)dodeca-6,8-dien-10-ynoate (4). To a solution of the propargyl alcohol 15 ($255 \mathrm{mg}, 0.53 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(125 \mathrm{mg}, 0.48 \mathrm{mmol})$ and N -bromosuccinimide (85 $\mathrm{mg}, 0.48 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 30 min the reaction was quenched with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$
and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo and the crude mixture was purified on silica gel using EtOAc-Hexanes (2%) as the eluent to afford propargyl bromide (4) as a clear colorless oil ($240 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 6.60$ (dd, $J=15.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.17 (dd, $J=15.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (dd, $J=15.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~m}$, 1 H), 3.65 (s, 3H), 3.59 (m, 1H), 2.38 (m, 2H), 1.81 (dd, J = 7.1, 1.7 Hz, 2H), 0.87 (2s, 18H), 0.03 (m, 12H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 174.16, 142.60, 138.10, 130.37, 109.92, 86.49, 86.04, 76.47, 75.02, 51.48, 29.43, 28.23, 25.95, 25.91, 25.88, 18.20, 18.10, 15.55, -4.04, -4.15, -4.70, -4.77.
(S)-tert-Butyldimethyl(oxiran-2-ylmethoxy)silane (6A). To a solution of TBS-CI ($15.3 \mathrm{~g}, 101.5 \mathrm{mmol}$), imidazole ($6.9 \mathrm{~g}, 101.5 \mathrm{mmol}$) and DMAP ($412 \mathrm{mg}, 3.4 \mathrm{mmol}$) dissolved in 125 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added R-glycidol ($5.0 \mathrm{~g}, 67.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was allowed to stir overnight at room temperature. It was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(125 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 125 \mathrm{~mL})$. The combined extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude clear oil which was then chromatographed on silica gel using EtOAc-Hexanes (0.5\%) as the eluent to afford the (S)-protected glycidol (6A) as a viscous and colorless oil ($12.2 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.84$ (dd, $J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=11.9,4.8 \mathrm{~Hz}$, 1 H), $3.05(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (dd, $J=5.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 63.72,52.38,44.42,25.84,18.33$, 5.34, -5.38.
(R)-tert-Butyldimethyl(oxiran-2-ylmethoxy)silane (6B). This compound was prepared from S-Glycidol similarly to its enantiomer 6A to furnish $\mathbf{6 B}(11.8 \mathrm{~g}, 93 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 3.84$ (dd, $J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=11.9$, 4.8 $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, \mathrm{J}=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.90$ (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 63.91$, 52.55, 44.55, 26.03, 18.51, -5.16, -5.21.

2S, 1-(tert-Butyldiphenylsilyloxy)hept-4-yn-2-ol (16). To a flask at $-78^{\circ} \mathrm{C}$ was added 1-butyne ($0.29 \mathrm{~g}, 5.3 \mathrm{mmol}$). $n-\mathrm{BuLi}(2.12 \mathrm{~mL}, 5.3 \mathrm{mmol})$ was added next, dropwise at $-78{ }^{\circ} \mathrm{C}$. After $0.25 \mathrm{~h} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.64 \mathrm{~mL}, 5.3 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$. To the reaction mixture was added protected glycidol ($0.5 \mathrm{~g}, 2.65 \mathrm{mmol}$) and stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (4\%) as the eluent to afford compound (16) ($600 \mathrm{mg}, 94 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 3.72$ (d, J=6.2 Hz, 1H), 3.68 (dd, $J=9.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (d, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=4.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89$ (s, 9H), 0.06 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 83.91,75.04$, 70.44, 65.62, 25.83, 23.36, 18.26, 14.14, 12.36, -5.43.

2R, 1-(tert-ButyIdiphenyIsilyloxy)hept-4-yn-2-ol (20). This compound was prepared from protected S-Glycidol (6B) similarly to its enantiomer, compound (16), to yield 20 ($611 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.77$ - 3.72 (m, 1H), 3.70 (dd, $J=9.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-$ $2.33(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 84.15,75.21,70.63,65.81,26.03,23.55,18.46,14.33,12.55,-$
(S), 2-(tert-Butyldiphenylsilyloxy)hept-4-yn-1-ol (17). To a flask with imidazole ($95 \mathrm{mg}, 1.39 \mathrm{mmol}$) and DMAP ($8 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL total volume) was added TBDPS-CI ($0.36 \mathrm{~mL}, 1.39 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The alcohol (16) ($280 \mathrm{mg}, 1.15$ mmol) was cannulated to the flask and stirred overnight at room temperature. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 7 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (1\%) as the eluent to afford the protected diol ($525 \mathrm{mg}, 90 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.85-7.65$ (m, 4H), $7.55-7.29(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{p}, J=5.5 \mathrm{~Hz}$, 1 H), $3.55(\mathrm{dd}, \mathrm{J}=5.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{qt}, \mathrm{J}=$ 7.5, $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.10 (t, 3H), 1.07 (s, 9H), 0.84 (s, 9H), -0.03 (s, 3H), -0.06 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) ס 136.10, 136.03, 134.47, 134.34, 129.69, 129.66, 127.62, 83.29, 76.47, 72.78, 65.80, 27.09, 26.05, 24.12, 19.54, 18.46, 14.34, 12.62, -5.34, -5.35. To a solution of protected diol ($0.5 \mathrm{~g}, 1.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added camphor sulfonic acid ($144 \mathrm{mg}, 0.62 \mathrm{mmol}$) at room temperature and monitored for 1 h . The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.09 \mathrm{~mL}, 0.62 \mathrm{mmol})$ and the solvent was evaporated in vacuo without workup. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (12\%) as the eluent to afford alcohol (17) ($370 \mathrm{mg}, 97 \%$) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.72$ (m, 4H), 7.43 (m, 6H), 3.93 (m, $1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 135.77$, 135.62, 133.52, 133.50, 129.82, 129.77, 127.73, 127.60, 75.26, 72.52, 65.54, 26.92, 23.81, 19.24, 13.99, 12.31
(R), 2-(tert-Butyldiphenylsilyloxy)hept-4-yn-1-ol (21). This compound was prepared from alcohol (20) similarly to its enantiomer, compound (17), to give 21 (378 $\mathrm{mg}, 89 \%$) over 2 steps. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.82-7.72$ (m, 4H), $7.57-$ 7.37 (m, 6H), $4.06-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47$ (ddt, $J=16.4,7.7,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36$ (ddt, $J=16.4,4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.16$ (s, 9H), 1.10 (t, J $=7.5 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 135.86,135.71$, 133.64, 133.62, 129.89, 129.85, 127.80, 127.68, 83.83, 75.43, 72.62, 65.56, 27.01, 23.91, 19.33, 14.10, 12.41 .

2S, 4Z, 2-(tert-Butyldiphenylsilyloxy)-1-oxohept-4-enal (18). To a solution of alcohol (17) (3.9 g, 10.6 mmol$)$ in EtOAc (100 mL) was added Lindlar catalyst (200 mg) and quinoline $(\sim 80 \mu \mathrm{~L})$. The reaction mixture was placed under a H_{2} atmosphere using a balloon (1 atm) and stirred for 2 h . The reaction was filtered through Celite and the solvent was removed in vacuo. To a solution of the crude alcohol residue ($0.5 \mathrm{~g}, 1.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added pyridine $(\sim 400 \mu \mathrm{~L})$ and Dess-Martin periodinane (1.189 g, 2.80 mmol) the mixture was stirred at room temperature for 20 minutes. The reaction mixture was quenched with $1: 1$ mixture of saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (10\%) as the eluent to afford the aldehyde (18) ($404 \mathrm{mg}, 81 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.57$ (d, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.52-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.06(\mathrm{td}, J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dt}, J=13.9$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101

MHz, Chloroform-d) δ 203.52, 135.95, 135.95, 135.11, 133.24, 133.12, 130.18, 130.13, 127.95, 127.89, 122.17, 77.94, 31.15, 27.08, 20.74, 19.49, 14.14.

2R, 4Z, 2-(tert-Butyldiphenylsilyloxy)-1-oxohept-4-enal (22). This compound was prepared from alcohol (21) similarly to its enantiomer, compound (18), to produce 22 ($425 \mathrm{mg}, 85 \%$) over 2 steps. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.59$ (d, J=1.7 Hz, 1H), $7.64(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{dt}, J=9.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddd, J = 6.4, $5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 203.27$, 135.77, 134.92, 133.06, 132.94, 130.00, 129.96, 127.77, 127.71, 122.00, 77.77, 30.97, 26.90, 20.56, 19.31, 13.97.
(S,2E,6Z)-4-((tert-Butyldiphenylsilyl)oxy)nona-2,6-dienal (19). To a flask with (Triphenylphosphoranylidene)acetaldehyde ($500 \mathrm{mg}, 1.63 \mathrm{mmol}$) was cannulated aldehyde (18) ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 7 mL of THF. The mixture was refluxed at $65{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture with no workup was condensed in vacuo followed by purification of the crude mixture on silica gel using EtOAc-Hexanes (5\%) as the eluent to afford the extended aldehyde (19) ($240 \mathrm{mg}, 75 \%$) as a dark red colored oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 9.46$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (m, 4H), 7.32 (m, 6H), 6.72 (dd, J = $15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (ddd, $J=15.6,8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 193.59, 158.94, 135.83, 135.75, 134.92, 133.49, 133.16, 130.93, 129.94, 129.92, 127.68, 127.65, 122.31, 72.34, 34.97, 26.96, 20.56, 19.30, 14.00.
(R,2E,6Z)-4-((tert-Butyldiphenylsilyl)oxy)nona-2,6-dienal (23). This compound was prepared from aldehyde 22 similarly to its enantiomer, compound (19), to obtain 23 ($232 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.46$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 ($\mathrm{m}, 4 \mathrm{H}$), $7.40(\mathrm{~m}, 6 \mathrm{H}), 6.73$ (dd, $J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (ddd, $J=15.6,8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$, 0.84 (t, J = 7.5 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 193.53, 158.92, 135.83, $135.75,134.92,133.49,133.16,130.93,129.94,129.92,127.68,127.65,122.31,72.34$, 34.97, 26.96, 20.56, 19.30, 14.02.
tert-Butyl(((S,3E,7Z)-deca-3,7-dien-1-yn-5-yl)oxy)diphenylsilane (5A). To a solution of $\mathrm{CBr}_{4}(440 \mathrm{mg}, 1.33 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ total volume) was cannulated $\mathrm{PPh}_{3}(692 \mathrm{mg}, 2.65 \mathrm{mmol})$ to give a clear yellow solution. To the reaction mixture at $0{ }^{\circ} \mathrm{C}$ was added aldehyde (19) ($278 \mathrm{mg}, 0.66 \mathrm{mmol}$). The reaction was run for 1 h . Upon completion and without workup, the solvent was evaporated in vacuo and the crude mixture was purified on silica gel using EtOAc-Hexanes (1\%) as the eluent to afford the dibromide intermediate ($351 \mathrm{mg}, 97 \%$) as a viscous and yellow colored oil. To a solution of this intermediate ($351 \mathrm{mg}, 64 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ in anhydrous THF (15 mL) was added 2.0 M solution of LDA ($1.92 \mathrm{~mL}, 3.84 \mathrm{mmol}$) dropwise and stirred for 0.5 h . The reaction was quenched with water (30 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried using MgSO_{4}, filtered and concentrated. The crude was then purified using silica gel with a EtOAc-Hexanes eluent (2\%) to afford the alkyne product ($213 \mathrm{mg}, 86 \%$) as a viscous and yellow colored oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.63$ (m, 4H), 7.39 (m, 6H), 6.26 (dd, $J=16.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=15.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H})$, 4.26 (q, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{td}, J=7.5,6.7,3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 147.18, 135.85, 135.83, 134.24, 133.96, 133.50, 129.72, 129.69, 127.56, 123.04, 108.22, 82.04, 73.01, 35.36, 27.00, 20.54, 19.33, 14.06. Following the above procedure for TBDPS-protected (5A), the silyl group of 5B was switched from TBDPS to TBS ether. In THF (4 mL) the residue ($255 \mathrm{mg}, 0.65 \mathrm{mmol}$) was added to a 1.0 M solution of TBAF ($1.6 \mathrm{~mL}, 1.60 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(7 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 7 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, then 2,6-lutidine (0.135 mL 1.16 mmol) and TBDMS triflate (0.27 mL 1.16 mmol) were added and the reaction mixture was allowed to stir overnight at room temperature. It was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(125 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 125$ mL). The combined extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give a crude yellow oil which was then chromatographed on silica gel using EtOAc-Hexanes (2\%) as the eluent to afford the TBS-protected terminal alkyne (5B) as a viscous and yellow oil (127 $\mathrm{mg}, 73 \%$) over two steps. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 6.25$ (dd, J=15.9, 5.1 Hz , $1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 147.66,133.76,123.48,107.31,107.30$, 81.76, 71.94, 35.41, 25.50, 20.41, 17.89, 13.81, -4.98, -5.14.

Methyl-(4S, 5R, 17R, 6E, 8E, 15E, 19Z)-tris-(tert-butyldimethylsilyloxy)-docosa-6,8,15,19-tetraen-10,13-diynoate (3B). To a flame dried flask with Cul (42 mg , 0.22 mmol), $\mathrm{NaI}(33 \mathrm{mg}, 0.22 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry DMF (5 mL total volume) was cannulated alkyne (5B) ($60 \mathrm{mg}, 0.22 \mathrm{mmol}$) and allylic bromide (4) (60 $\mathrm{mg}, 0.11 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. The reaction was allowed to warm up to room temperature and, stirred for 18 h , and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, rinsed with water to remove any DMF, and the organic layer was dried with MgSO_{4}, filtered and the solvent removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (1\%) as the eluent to afford compound (3B) as a clear colorless oil ($71 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 6.55$ (dd, $J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~m}, 2 \mathrm{H}), 5.72$ (dd, $J=10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (m, 2 H), 5.47 (m, 1H), 5.34 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=5.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=7.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}$, 2H), 1.97 (m, 2H), 1.77 (m, 2H), $0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 27 \mathrm{H}),-0.02(\mathrm{~m}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 174.20, 145.99, 141.09, 136.79, 133.89, 130.72, 124.01, 110.86, 108.44, 85.91, 83.29, 79.85, 79.06, 76.55, 75.01, 72.43, 35.84, 29.41, 28.24, 25.91, 20.72, 18.19, 18.09, 14.14, 11.29, -4.04, -4.12, -4.61, $-4.70,-4.78,-4.83$.

Methyl-(4S, 5R, 17R, 6E, 8E, 15E, 19Z)-4,5-bis((tert-butyldimethylsilyl)oxy)-17-((tert-butyldiphenylsilyl)oxy)docosa-6,8,15,19-tetraen-10,13-diynoate (3A). This compound was prepared from allylic bromide (4), and alkyne (5A) similarly to its epimer, compound (3B), in 84% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.63$ (m, 4H), 7.42 (m, $2 \mathrm{H}), 7.37(\mathrm{~m}, 4 \mathrm{H}), 6.55(\mathrm{dd}, J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.3,10.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.71$ (dd, $J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (dd, $J=7.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}$, 9 H), 0.89 (s, 15H), 0.82 (s, 3H), 0.03 (s, 12H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform-d) δ $174.25,145.26,141.11,135.86,134.09,129.63,127.54,123.24,110.86,109.01,85.94$,
83.31, 79.87, 79.11, 76.55, 75.01, 73.12, 51.48, 35.43, 29.43, 28.25, 27.01, 25.93, 20.54, 18.21, 18.11, 14.06, 11.32, -4.03, -4.10, -4.69, -4.77.
(4S,5R,6E,8E,10Z,13Z,15E,17R,19Z)-4,5,17-trihydroxydocosa-
6,8,10,13,15,19-hexaenoic acid (1B). Part 1: To a solution of compound (3B) (71 mg , 0.097 mmol) in EtOAc, (4 mL), Octene, (0.4 mL), and Pyridine (0.4 mL) was added Lindlar catalyst (20 mg) and the reaction mixture was allowed to stir at room temperature under a H_{2} atmosphere (1 atm). After 6 h the reaction mixture was filtered through Celite and the solvents were removed in vacuo. The crude reaction mixture was purified on silica gel using EtOAc-Hexanes (1%) as the eluent to afford compound (2B) as a clear colorless oil ($51 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 6.56$ (m, 2H), $6.23(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~m}$, $2 \mathrm{H}), 5.64(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~m}, 4 \mathrm{H}), 4.26$ (dd, $J=6.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, $J=7.7,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03(\mathrm{~m}, 3 \mathrm{H}), 1.83$ (dd, $J=13.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~m}, 27 \mathrm{H}), 0.03(\mathrm{~m}$, 15H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol- d_{4}) δ 175.78, 141.83, 137.98, 134.41, 133.63, 130.85, 129.82, 129.40, 129.11, 125.84, 78.48, 76.33, 74.36, 54.78, 37.31, 32.75, 30.41, 29.44, 27.56, 26.57, 26.54, 26.52, 26.42, 26.21, 23.70, 21.72, 19.17, 19.15, 19.06, 14.45, -3.60, -4.04, -4.34, -4.37, -4.42.
Part 2: To the hydrogenated material ($4 \mathrm{mg}, 5.5 \mu \mathrm{~mol}$) dissolved in THF (0.5 mL) was added dropwise 10 equiv of 1 M TBAF ($55 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction was monitored closely via thin layer chromatography and after 4 h the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$. The organic layer was rinsed with brine, dried over MgSO_{4} and filtered. The solvent was then concentrated and freshly prepared $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to convert any acid back to the methyl ester. The solvent was completely removed in vacuo and the compound was purified on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1\%) as the eluent to afford an ester/ lactone mixture which we also previously observed on a similar intermediate for Resolvin D3 (Org. Lett. 2013, 15, 1424, [ref. 12]). Without further chromatographic isolation, this product mixture was then suspended in a $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ system ($1: 1,1 \mathrm{~mL}$) and 10 equiv of LiOH ($1.34 \mathrm{mg}, 55 \mu \mathrm{~mol}$) were added. After 3 h the reaction mixture was dried and purified via $\mathrm{C}-18$ reversed Phase HPLC using $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ mixture (37%) to afford compound (1B) ($1.15 \mathrm{mg}, 58 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 6.61$ - 6.54 ($\mathrm{m}, 2 \mathrm{H}$), 6.37 (dd, $J=15.0$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (dd, $J=14.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.08-5.97$ (m, 2H), 5.83 (dd, $J=15.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, \mathrm{J}=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 3 \mathrm{H})$, $4.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{dd}, \mathrm{J}=15.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}$, 1H), 0.96 (t, J = 7.5 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , Methanol- d_{4}) $\delta 182.79,137.52,134.62$, 134.47, 134.18, 133.14, 132.34, 130.46, 130.24, 130.18, 129.57, 126.27, 125.49, 76.52, 76.22, 73.18, 36.25, 32.75, 27.48, 23.70, 21.68, 14.43. ESI-MS/MS for AT-Resolvin D4 (1B), $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5}^{-},[\mathrm{M}-\mathrm{H}]^{-}, \mathrm{m} / \mathrm{z} 375=\mathrm{M}-\mathrm{H}$ parent ion and daughter ions at $\mathrm{m} / \mathrm{z} 357=\mathrm{M}-\mathrm{H}-$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 339=\mathrm{M}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 313=\mathrm{M}-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}, \mathrm{~m} / \mathrm{z} 295=\mathrm{M}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}, \mathrm{~m} / \mathrm{z} 259$ $=277-\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 225=243-\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 215=277-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}, \mathrm{~m} / \mathrm{z} 131, \mathrm{~m} / \mathrm{z} 113=131-\mathrm{H}_{2} \mathrm{O}$, and m / z 101. UV (Methanol) $\lambda_{\text {max }} 228,276 \mathrm{~nm}$.
(4S,5R,6E,8E,10Z,13Z,15E,17S,19Z)-4,5,17-trihydroxydocosa-
 to its epimer (1B) to furnish 1A ($1.11 \mathrm{mg}, 56 \%$) over 3 steps. ${ }^{1} \mathrm{H}$ NMR (600 MHz ,

Methanol- d_{4}) $\delta 6.57(\mathrm{t}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=15.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=$ 14.8, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-5.97$ (m, 2H), 5.83 (dd, J = 15.2, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.69 (dd, J = $15.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=18.0,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.23$ (m, 4H), 2.06 (dt, $J=15.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.91-1.84$ (m, 1H), 1.66 (dd, $J=14.8,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, Methanol-d4) $\delta 182.81,137.49,134.63$, 134.44, 134.18, 133.12, 130.56, 130.43, 130.24, 130.18, 129.57, 126.27, 125.47, 76.54, 76.21, 73.16, 36.28, 32.78, 27.50, 23.70, 21.71, 14.62. UV (Methanol) $\lambda_{\max } 228,276 \mathrm{~nm}$. ESI-MS/MS for Resolvin D4 (1A), $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5}{ }^{-}$, $[\mathrm{M}-\mathrm{H}]^{-}, \mathrm{m} / \mathrm{z} 375=\mathrm{M}-\mathrm{H}$ parent ion and daughter ions at $m / z 357=\mathrm{M}-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 339=\mathrm{M}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}, \mathrm{m} / \mathrm{z} 313=\mathrm{M}-\mathrm{H}_{-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2} \text {, }}$, $m / z 295=\mathrm{M}-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}, m / z 259=277-\mathrm{H}_{2} \mathrm{O}, m / z 225=243-\mathrm{H}_{2} \mathrm{O}, m / z 215=277-\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{CO}_{2}, \mathrm{~m} / \mathrm{z}$ 131, and m / z 101. In comparison to the reported syntheses for Resolvin D4 by Kobayashi (J. Org. Chem. 2018, 83, 3906, ref. 7) and by us and collaborators (Sci. Rep. 2016, 6 (18972), ref. 5; and J. Leukoc. Biol. 2018, 103, 995, ref. 6), our ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1A were consistent with the published data.

Selected ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

MS/MS Spectrum of 17R-Resolvin D4 (1B)

UV Spectrum of AT-Resolvin D4 (1B)

UV Spectrum of Resolvin D4 (1A)

MS/MS Spectrum of Resolvin D4 (1A)

