Supporting Information for

Transition-Metal-Free Electrochemical Oxidative C(sp2)-H

Trifluoromethylation of Hydrazones

Yuan Shi^a, Kai Wang^b, Yuxin Ding^a, Yuanyuan Xie^{a,b*}

^a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China. ^b Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China. E-mail: xyycz@zjut.edu.cn (Y. Xie).

Table for Contents

General information	1
Experimental Section	
Characterization of the products	4
Copies of NMR spectra	14

General information

All reactions were carried out in dried sealed Schlenk tubes with magnetic stirring. All anhydrous and oxygen-free environments were performed under argon atmosphere in oven-dried glassware using Schlenk techniques. All the chemicals were obtained commercially and used without any prior purification. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using hexane and ethyl acetate. ¹ H, ¹³ C and ¹⁹ F NMR spectra were recorded on a Bruker Advance 400 spectrometer at ambient temperature with CDCl3 as solvent and tetramethylsilane (TMS) as the internal standard. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates.

F₃C

Optimized reaction conditions:

			H N) an ele	ode(+)-cathode(-) ctricity, electrolyte, addition	F ₃ C	N—		
		[+ •CF ₃ source	solvent undivided cell		\searrow		
			1a			34			
Entry	electrode	electricity	Solvent	•CF ₃ source	electrolyte	addition	atmosphere	Temperature(℃)	Yield(%) ^b
1	C(+)-Pt(-)	8mA	MeCN	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	none	air	50	32
2	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	none	air	50	45
3	C(+)-Ni(-)	8mA	MeCN	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	none	air	50	32
4[c]	C(+)-Ni(-)	8mA	MeCN	CF ₃ SO ₂ Na	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	none	air	50	37
5	Pt(+)- Pt(-)	8mA	MeCN	CF ₃ SO ₂ Na	$^{\prime\prime}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	none	air	50	37
6	RVC(+)-Pt(-)	8mA	MeCN	CF ₃ SO ₂ Na	$^{n}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	none	air	50	40
7	RVC(+)-Ni(-)	8mA	MeCN	CF3SO2Na	"Bu ₄ NBF ₄	none	air	50	37
8	C(+)- Cu(-)	8mA	MeCN	CF3SO2Na	$^{n}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	none	air	50	20
9	C(+)-Fe(-)	8mA	MeCN	CF ₃ SO ₂ Na	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	none	air	50	40
10	RVC(+)- RVC(-	8mA	MeCN	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	none	air	50	42
)								
11 ^[d]	C(+)-C(-)	3mA	MeCN	CF ₃ SO ₂ Na	"Bu4NBF4	none	Air	50	34
12 ^[d]	C(+)-C(-)	5mA	MeCN	CF ₃ SO ₂ Na	"Bu4NBF4	none	Air	50	47
13	C(+)-C(-)	12mA	MeCN	CF ₃ SO ₂ Na	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	none	Air	50	36
14	C(+)-C(-)	0mA	MeCN	CF3SO2Na	$^{\prime\prime}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	none	Air	50	N.D.
15	C(+)-C(-)	8mA	HFIP	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	none	Air	50	35
16	C(+)-C(-)	8mA	DMF	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	none	Air	50	Trace
17	C(+)-C(-)	8mA	MeCN: H ₂ O	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	none	Air	50	33
			= 1:1						
18	C(+)-C(-)	8mA	MeCN: H ₂ O	CF3SO2Na	$^{\prime\prime}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	none	Air	50	35
			= 3:1						
19	C(+)-C(-)	8mA	MeCN:	CF ₃ SO ₂ Na	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	none	Air	50	trace
			MeOH= 1:1						
20	C(+)-C(-)	8mA	acetone	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	none	Air	50	trace
21	C(+)-C(-)	8mA	DCE	CF ₃ SO ₂ Na	"Bu4NBF4	none	Air	50	35
22	C(+)-C(-)	8mA	HFIP: DCE	CF ₃ SO ₂ Na	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	none	Air	50	27

23	C(+)-C(-)	8mA	TFA: H2O	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	none	Air	50	15
			=10:1						
24 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NBF ₄	none	Air	50	71
25 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NPF ₆	none	Air	50	65
26	C(+)-C(-)	8mA	MeCN	Togni reagent	LiClO ₄	none	Air	50	22
27	C(+)-C(-)	8mA	MeCN	Togni reagent	$\rm NH_4BF_4$	none	Air	50	42
28 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	Et ₄ NBr	none	Air	50	60
29	C(+)-C(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NBF ₄	NaHCO ₃	Air	50	72
30	C(+)-C(-)	8mA	MeCN	Togni reagent	"Bu ₄ NBF ₄	NaOH	Air	50	42
31 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	NaOAc	Air	50	80
32	C(+)-C(-)	8mA	MeCN	Togni reagent	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	КОН	Air	50	30
33	C(+)-C(-)	8mA	MeCN	Togni reagent	$^n\mathrm{Bu}_4\mathrm{NBF}_4$	HOAc	Air	50	34
34 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	"Bu4NBF4	NaOAc	N_2	50	85
35[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	"Bu4NBF4	NaOAc	N_2	r.t.	64
36 ^[e]	C(+)-C(-)	8mA	MeCN	Togni reagent	"Bu4NBF4	NaOAc	N_2	70°C	82

^[a]Reaction conditions : 1 (0.3 mmol) , 3 (1.5 eq.), electrolyte (0.3 eq.), solvent (4 mL) ,constant current electricity, stirred, 2 h.

^(b)Isolated yield. ^[c]Nickel foam. ^[d]4 h. ^[e]1 h.

Optimized reaction conditions: substrates with para-electron-withdrawing groups

		O ₂ N ²	H N 1a	+ •CF ₃ source	anode(+)-cathode(-) electricity, electrolyte, addition solvent undivided cell	\rightarrow G_2N F_3C F_3			
Entry	electrode	electricity	Solvent	•CF ₃ source	electrolyte	addition	atmosphere	Temperature(°C)	Yield(%) ^[c]
1	C(+)-C(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NBF ₄	NaOAc	N ₂	50	48
2	C(+)-Pt(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NBF ₄	NaOAc	N_2	50	42
3	C(+)-Ni(-)	8mA	MeCN	Togni reagent	$^{n}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	NaOAc	N_2	50	40
4[c]	C(+)-Ni(-)	8mA	MeCN	Togni reagent	ⁿ Bu ₄ NBF ₄	NaOAc	N_2	50	42
5	RVC(+)- Pt(-)	8mA	MeCN	Togni reagent	"Bu ₄ NBF ₄	NaOAc	N_2	50	42
6	C(+)-C(-)	10mA	MeCN	Togni reagent	"Bu ₄ NBF ₄	NaOAc	N_2	50	48
7	C(+)-C(-)	8mA	Acetone	Togni reagent	$^{n}\mathrm{Bu}_{4}\mathrm{NBF}_{4}$	NaOAc	N_2	50	trace
8	C(+)-C(-)	8mA	Toluene	Togni reagent	ⁿ Bu ₄ NBF ₄	NaOAc	N_2	50	N.R.
9	C(+)-C(-)	8mA	DMF	Togni reagent	ⁿ Bu ₄ NBF ₄	NaOAc	N_2	50	30
^[b] 10	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	NaOAc	N_2	50	87
^[b] 11	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	KF	NaOAc	N_2	50	25
^[b] 12	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	"Bu ₄ NPF ₆	NaOAc	N_2	50	84
^[b] 13	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	LiClO ₄	NaOAc	N_2	50	42
^[b] 14	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	None	N_2	50	65
^[b] 15	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	NaOH	N_2	50	66
^[b] 16	C(+)-C(-)	8mA	MeCN	CF ₃ SO ₂ Na	ⁿ Bu ₄ NBF ₄	NaHCO ₃	N_2	50	75

^[a]Reaction conditions : 1 (0.3 mmol), 3 (1.5 eq.), electrolyte (0.3 eq.), solvent (4 mL) ,constant current electricity, stirred, 1 h. ^[b]2h

[c]Isolated yield.

Experimental Section General procedure for the synthesis of compounds 1

A mixture of hydrazine (2.4 mmol), aldehyde (2.0 mmol) and anhydrous $MgSO_4$ (2.0 mmol) in CH_2Cl_2 (10 mL) was stirred at room temperature in 6h. After filtration of $MgSO_4$, CH_2Cl_2 was removed under reduced pressure and the mixture was subjected to recrystallizate to give the desired product 1 with almost quantitative yields.

General procedure for the synthesis of Togni reagent (2b)

Add ortho-iodobenzoic acid (3.47 g, 14 mmol, 1.0 eq) into a 100mL three-neck flask in nitrogen atmosphere, add 30mL acetonitrile, heat to 75°C, then add trichloroisocyanuric acid (0.974 g, 4.74 mmol, 0.3 eq) in 5 minutes with a constant pressure drop funnel. After cool to room temperature, add dried potassium acetate (2.75 g, 28 mmol, 2.0 eq) at once. The reaction system was cooled to room temperature after 1.5 hours of reaction at 75°C. And then, $TMSCF_3$ (2.90 mL, 19.6 mmol, 1.4 eq) was added at once for 4.5h in room temperature. After concentration, the product crystallizes and is washed with cold acetonitrile to obtain white solid Togni reagent.

Cyclic voltammetry studies

The cyclic voltammograms experiments were conducted in a Schlenk tube that contained the substance dissolved in a 0.1 M solution of tetrabutylammonium hexafluorophosphate in acetonitrile. A glassy carbon electrode working electrode, a platinum wire counter electrode and an Ag/AgCl reference electrode were used. The reference electrode was stored in saturated potassium chloride solution for activation before use. The relevant parameters were controlled by an electrochemical workstation CHI600E.

Characterization of the products

(*E*)-2,2,2-trifluoro-*N*-morpholino-1-phenylethan-1-imine (3a)

Colorless solid; m.p.= 40.1-41.0°C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.28 (m, 5H), 3.88 – 3.37 (m, 4H), 3.20 – 2.55 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 136.35 (q, ²*J*_{C,F} = 33.84Hz), 131.73, 129.95, 128.95, 128.60, 121.37 (q, ¹*J*_{C,F} = 275.73Hz), 66.22, 54.37. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.75. Spectroscopic data are in accordance with those described in the literature.^[1]

(E)-2,2,2-trifluoro-N-morpholino-1-(4-nitrophenyl)ethan-1-imine (3b)

Yellow solid; m.p.= 161.8-163.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 7.91 (m, 2H), 7.76 – 7.45 (m, 2H), 4.02 – 3.42 (m, 4H), 3.18 – 2.70 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 148.47, 138.28, 132.54 (q, ²*J*_{C,F}= 34.34 Hz), 129.97, 121.04(q, ¹*J*_{C,F}= 275.73 Hz), 124.16, 66.07, 54.53. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.87. Spectroscopic data are in accordance with those described in the literature.^[2]

(*E*)-2,2,2-trifluoro-1-(4-fluorophenyl)-*N*-morpholinoethan-1-imine (3c)

Yellow solid; m.p.= 119.3- 121.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 2H), 7.17 – 7.05 (m, 2H), 3.71 – 3.55 (m, 4H), 3.08 – 2.86 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 163.39 (d, ¹*J*_{C,F} = 252.53Hz), 135.76 (q, ²*J*_{C,F} = 33.33Hz), 130.73 (d, ³*J*_{C,F} = 9.09Hz), 127.57 (d, ⁴*J*_{C,F} = 4.04Hz), 121.25(q, ¹*J*_{C,F} = 275.73Hz), 116.27 (d, ²*J*_{C,F} = 22.22Hz), 66.19, 54.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.86, -109.46. Spectroscopic data are in accordance with those described in the literature.^[3]

(E)-1-(4-chlorophenyl)-2,2,2-trifluoro-*N*-morpholinoethan-1-imine (3d)

Yellow solid; m.p.= 45.5- 47.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.32 (m, 4H), 3.72 – 3.51 (m, 4H), 3.14 – 2.86 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 136.17, 135.02 (q, ²*J*_{C,F} = 35.35Hz), 130.03, 129.35, 121.21(q, ¹*J*_{C,F} = 275.73Hz), 66.17, 54.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.23. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₂H₁₂ClF₃N₂O (293.0663), found 293.0668.

Br' (*E*)-1-(4-bromophenyl)-2,2,2-trifluoro-*N*-morpholinoethan-1-imine (3e) Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 3.63 (t, 4H), 3.00 (t, J = 4.9 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 134.92 (q, ² $J_{C,F} = 33.33$ Hz), 132.31, 130.53, 130.25, 124.43, 121.16 (q, ¹ $J_{C,F} = 275.73$ Hz), 66.15, 54.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.65. Spectroscopic data are in accordance with those described in the literature.^[1]

(E)-1-(4-(tert-butyl)phenyl)-2,2,2-trifluoro-N-morpholinoethan-1-imine (3f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 2H), 7.39 – 7.31 (m, 2H), 3.88 – 3.39 (m, 4H), 3.33 – 2.76 (m, 4H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 153.31, 136.99(q, ²*J*_{C,F}= 32.32Hz) 128.51, 128.24, 125.82, 120.06(q, ¹*J*_{C,F}= 275.73Hz), 66.25, 54.36, 34.98, 31.32. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.71. Spectroscopic data are in accordance with those described in the literature.^[2]

(E)-2,2,2-trifluoro-N-morpholino-1-(p-tolyl)ethan-1-imine (3g)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 3.71 – 3.54 (m, 4H), 3.08 – 2.92 (m, 4H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.16, 136.93 (q, ²*J*_{C,F}= 33.33 Hz), 129.64, 128.64, 128.43, 121.40 (q, ¹*J*_{C,F}= 275.73 Hz), 66.26, 54.33, 21.57. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.81. Spectroscopic data are in accordance with those described in the literature.^[4]

(E)-2,2,2-trifluoro-1-(4-methoxyphenyl)-N-morpholinoethan-1-imine (3h)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.7 Hz, 2H), 6.98 – 6.84 (m, 2H), 3.84 (s, 3H), 3.71 – 3.51 (m, 4H), 3.21 – 2.77 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 160.69, 137.31(q, ² $J_{C,F}$ = 33.33Hz), 129.98, 123.46, 121.39(q, ¹ $J_{C,F}$ = 276.74 Hz), 114.38, 66.28, 55.41, 54.30. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.81. Spectroscopic data are in accordance with those described in the literature. ^[1]

(*E*)-4-(2,2,2-trifluoro-1-(morpholinoimino)ethyl)benzonitrile (3i)

Yellow solid; m.p.= 149.4- 150.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.65 (m, 2H), 7.64 – 7.47 (m, 2H), 3.78 – 3.45 (m, 4H), 3.21 – 2.72 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 136.46, 133.09 (q, ²*J*_{C,F}= 33.33Hz), 132.69, 129.61, 121.09 (q, ¹*J*_{C,F}= 275.73Hz), 117.96, 114.02, 66.07, 54.55. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.22. HRMS (ESI) *m*/*z* [M+H]⁺ Calculated for C₁₃H₁₂F₃N₃O (283.0934), found 283.1005.

(E)-1-(3-bromophenyl)-2,2,2-trifluoro-N-morpholinoethan-1-imine (3j)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 8.1, 1.4 Hz, 1H), 7.73 (td, J = 7.5, 1.4 Hz, 1H), 7.65 (td, J = 7.8, 1.6 Hz, 1H), 7.49 (dd, J = 7.5, 1.6 Hz, 1H), 3.76 – 3.42 (m, 4H), 3.18 – 2.87 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 147.87, 134.04, 131.53(q, ² $J_{C,F}$ = 33.3Hz), 131.38, 131.29, 127.28, 125.20, 120.89(q, ¹ $J_{C,F}$ = 275.73Hz), 66.24, 53.86. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.48. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₂H₁₂F₃N₃O₃ (303.0836), found 303.0909.

(*E*)-1-(3-bromophenyl)-2,2,2-trifluoro-*N*-morpholinoethan-1-imine (3k)

White solid; m.p.= 49.0- 50.2°C.¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 2H), 7.46 – 7.27 (m, 2H), 3.83 – 3.45 (m, 4H), 3.19 – 2.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 133.89 (q, ²*J*_{C,F}= 33.3Hz), 133.68, 133.13, 131.56, 130.49, 127.35, 121.21 (q, ¹*J*_{C,F}= 275.73Hz), 123.05, 66.17, 54.45. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.54. HRMS (ESI) *m*/*z* [M+H]⁺ Calculated for C₁₂H₁₂BrF₃N₂O (336.0088), found 336.0061.

(**3**I)

Yellow solid; m.p.= 99.6- 101.3°C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 3.83 – 3.48 (m, 4H), 3.16 – 2.79 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 147.94, 134.01, 131.58 (q, ¹ $J_{C,F}$ = 35.35 Hz), 131.40, 131.28, 127.32, 125.20, 120.90 (q, ¹ $J_{C,F}$ = 275.73 Hz),66.25, 53.89. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.48. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₂H₁₂F₃N₃O₃ (303.0836), found 304.0860.

(E)-1-(2-bromophenyl)-2,2,2-trifluoro-N-morpholinoethan-1-imine (3m)

White solid; m.p.= 76.5- 77.2°C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, 1H), 7.42 – 7.27 (m, 3H), 3.79 – 3.48 (m, 4H), 3.22 – 2.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 134.09, 133.06, 131.32, 131.29, 129.20 (q, ²*J*_{C,F}= 35.35Hz), 127.57, 124.36, 121.50(q, ¹*J*_{C,F}= 276.74Hz), 66.57, 53.66. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.03. HRMS (ESI) *m*/*z* [M+H]⁺ Calculated for C₁₂H₁₂BrF₃N₂O (336.0088), found 336.0108.

^{Br} (*E*)-1-(3,5-dibromophenyl)-2,2,2-trifluoro-*N*-morpholinoethan-1-imine (3n) White solid; m.p.= 143.0- 143.7°C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (t, J = 1.8 Hz, 1H), 7.52 (d, J = 1.8 Hz, 2H), 3.73 - 3.61 (m, 4H), 3.11 - 2.99 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 135.68, 134.98, 131.46 (q, ${}^{2}J_{C,F}=$ 34.73Hz), 130.35, 121.06 (q, ${}^{1}J_{C,F}=$ 274.82Hz),123.58, 66.09, 54.47. ¹⁹F NMR (565 MHz, CDCl₃) δ -66.27. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₂H₁₁Br₂F₃N₂O (414.9263), found 416.9268.

(E)-2,2,2-trifluoro-1-mesityl-N-morpholinoethan-1-imine (30)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.94 – 6.82 (m, 2H), 3.73 – 3.44 (m, 4H), 3.27 – 2.86 (m, 4H), 2.39 (s, 1H), 2.29 (s, 3H), 2.23 (s, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 139.62, 137.36, 133.48 (q, ²*J*_{C,F}= 34.34 Hz), 129.69, 128.95, 128.64, 121.81(q, ¹*J*_{C,F}= 274.82Hz), 66.76, 53.37, 21.26. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.69. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₅H₁₉F₃N₂O (301.1522), found 301.1524.

(E)-2,2,2-trifluoro-N-morpholino-1-(naphthalen-2-yl)ethan-1-imine (3p)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 7.73 (m, 4H), 7.73 – 7.43 (m, 3H), 3.87 – 3.42 (m, 4H), 3.28 – 2.71 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 136.46 (q, ²*J*_{C,F}= 33.33Hz), 133.64, 133.00, 129.00, 128.72, 128.60, 128.37, 127.98, 127.63, 127.07, 125.35, 121.51(q, ¹*J*_{C,F}= 275.73Hz), 66.24, 54.48. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.39. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₆H₁₅F₃N₂O (309.1209), found 308.1215.

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 5H), 7.05 (d, J = 9.3 Hz, 1H), 7.02 – 6.96 (m, 1H), 3.82 – 3.72 (m, 4H), 3.09 – 2.99 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 132.17, 131.78 (q, ³ $J_{C,F}$ = 5.05 Hz), 131.52, 130.64 (q, ² $J_{C,F}$ = 30.30Hz), 129.96, 128.94, 128.73, 123.95 (q, ¹ $J_{C,F}$ = 272.7Hz), 66.23, 51.11. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.96. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₄H₁₅F₃N₂O (285.1138), found 285.1140.

$$\underbrace{ \overset{\mathsf{F}_{3}\mathsf{C}}_{\mathsf{N}} \overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{N}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\atop\mathsf{O}}{\underset{\mathsf{O}}{\underset{\mathsf{O}}{\atop\mathsf{O}}{\underset{\mathsf{O}}{\mathsf{O}}{\underset{\mathsf{O}}{\atop\mathsf{O}}{\atop\mathsf{O}}{\atop\mathsf{O}}{\atop\mathsf{O}}{\atop\mathsf{O}}{\atop\mathsf{O}}{{\mathsf{O}}{\atop\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{O}}{{O}}{{\mathsf{O}}{{\mathsf{O}}{{\mathsf{$$

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.76 (td, J = 7.8, 1.8 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.32 (ddd, J = 7.7, 4.9, 1.2 Hz, 1H), 3.77 – 3.48 (m, 4H), 3.13 – 2.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 151.08, 150.14, 136.80, 132.74 (q, ² $_{J_{C,F}}$ = 33.33Hz), 124.84, 124.28, 121.51 (q, ¹ $_{J_{C,F}}$ = 275.73Hz), 66.16, 54.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.49. Spectroscopic data are in accordance with those described in the literature.^[4]

White solid; m.p.= 97.3- 98.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 6.79 (d, *J* = 3.5 Hz, 1H), 6.54 (d, *J* = 3.5 Hz, 1H), 3.95 – 3.68 (m, 4H), 3.34 – 2.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 154.35, 141.08 (q, ²*J*_{C,F}= 42.42 Hz), 124.56, 119.25 (q, ¹*J*_{C,F}= 267.65 Hz), 113.37 (q, ³*J*_{C,F}= 3.03 Hz), 107.28, 66.35, 51.38. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.80. Spectroscopic data are in accordance with those described in the literature.^[1]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.29 (m, 5H), 3.18 – 2.80 (m, 4H), 1.60 – 1.38 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 132.63, 132.60 (q, ²*J*_{C,F}= 32.32 Hz), 132.12, 129.47, 128.74, 128.73, 121.87 (q, ¹*J*_{C,F}= 275.73 Hz), 55.01, 25.04, 24.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.02. Spectroscopic data are in accordance with those described in the literature.^[3]

(E)-1-phenyl-2-(2,2,2-trifluoro-1-phenylethylidene)hydrazine (3u)

Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.62 – 7.54 (m, 3H), 7.45 – 7.41 (m, 2H), 7.31 – 7.26 (m, 2H), 7.10 – 7.03 (m, 2H), 7.00 – 6.89 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.06, 131.74 (q, ${}^{2}J_{C,F}$ = 35.35 Hz), 130.68, 129.99, 129.46, 129.12, 127.23, 122.03, 121.61 (q, ${}^{1}J_{C,F}$ = 273.71Hz), 113.74. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.35. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₅H₁₂F₃N₂ (265.0947), found 265.0950.

$(E) \hbox{-} 1-(1-(4-chlorophenyl)-2,2,2-trifluoroethylidene)-2-phenyl hydrazine$

(3v)

Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.64 – 7.50 (m, 3H), 7.41 (dd, J = 7.5, 2.0 Hz, 2H), 7.25 – 7.17 (m, 2H), 7.04 – 6.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.70, 132.49 (q, ² $J_{C,F}$ = 35.35 Hz), 130.85, 130.06, 129.41, 129.03, 126.98, 126.82, 121.45 (q, ¹ $J_{C,F}$ = 273.71Hz), 114.92. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.54. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₄H₁₀ClF₃N₂ (299.0557), found 299.0560.

$(E) \hbox{-} 1-(1-(4-bromophenyl)-2,2,2-trifluoroethylidene)-2-phenyl hydrazine$

(3w)

Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.63 – 7.52 (m, 3H), 7.47 – 7.32 (m, 4H), 6.99 – 6.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.19, 132.65 (q, ²*J*_{C,F}= 35.35 Hz), 132.31, 130.86, 130.06, 129.02, 126.97, 121.45 (q, ¹*J*_{C,F}= 273.71Hz), 115.36, 114.15. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.55. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₄H₁₀BrF₃N₂ (343.0052), found 292.0059.

(E)-2,2,2-trifluoro-1-(4-(methylsulfonyl)phenyl)-N-morpholinoethan-1-

imine

Yellow solid; m.p.= 133.6- 135.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 7.79 (m, 2H), 7.74 – 7.49 (m, 2H), 3.69 – 3.54 (m, 4H), 3.09 (s, 3H), 3.03 – 2.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 141.92, 137.49, 132.51(q, ²*J*_{C,F}= 33.33Hz), 129.91, 128.01, 121.16(q, ¹*J*_{C,F}= 275.73Hz), 66.05, 54.53, 44.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.15. HRMS (ESI) m/z [M+H]⁺ Calculated for C₁₃H₁₅F₃N₂O₃S (337.0828), found 337.0835.

$$F_{3C}$$

(E)-2,2,2-trifluoro-N-morpholino-1-(4 (trifluoromethyl)phenyl)ethan-1-imine

White solid; m.p.= 92.6- 93.6°C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 3.73 – 3.46 (m, 4H), 3.14 – 2.72 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 135.55, 133.96(q, ² $J_{C,F}$ = 33.33Hz), 132.05(q, ² $J_{C,F}$ = 32.32Hz), 129.28, 123.73(q, ¹ $J_{C,F}$ = 273.71Hz), 121.22(q, ¹ $J_{C,F}$ = 275.73Hz), 125.98(q, ³ $J_{C,F}$ = 3.535Hz), 66.13, 54.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.05, -66.47. Spectroscopic data are in accordance with those described in the literature.^[4]

X. Crystal Data and Structure Refinement for 3n

CCDC number: 2178804

Table 1 Crystal data and structure refinement for 3n.

3n
$C_{12}H_{11}Br_2F_3N_2O$
416.05
169.0
monoclinic
$P2_1/c$
11.9638(4)
7.6176(2)
16.0976(6)
90
111.5740(10)
90
1364.28(8)
4
2.026
5.973
808.0

Crystal size/mm ³	$0.49 \times 0.32 \times 0.18$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 5.326 to 54.322
Index ranges	$\text{-15} \leq h \leq \text{15}, \text{-9} \leq k \leq 8, \text{-20} \leq \text{l} \leq 20$
Reflections collected	9355
Independent reflections	$3005 [R_{int} = 0.0580, R_{sigma} = 0.0644]$
Data/restraints/parameters	3005/0/181
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0494, wR_2 = 0.1232$
Final R indexes [all data]	$R_1 = 0.0567, wR_2 = 0.1276$
Largest diff. peak/hole / e Å-3	3 1.15/-1.99

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3n. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	2940.1(4)	9498.4(5)	810.4(3)	24.80(16)
Br2	6175.9(4)	9705.7(5)	4396.4(3)	27.41(16)
F1	2329(2)	2187(3)	3418.0(19)	35.6(6)
F2	3063(2)	3195(3)	2484.1(18)	34.2(6)
F3	4087(2)	3348(3)	3884.9(19)	37.4(6)
O1	-564(2)	9381(3)	3875(2)	24.9(6)
N1	1565(3)	5300(4)	3573(2)	17.6(6)
N2	1013(3)	6730(4)	3731(2)	18.2(6)
C1	2782(3)	7338(4)	2195(2)	17.8(7)
C2	3427(3)	8679(5)	2000(2)	17.6(7)
C3	4429(3)	9416(5)	2646(3)	20.5(8)
C4	4781(3)	8773(5)	3509(3)	18.5(7)
C5	4147(3)	7454(5)	3736(2)	17.1(7)
C6	3136(3)	6753(4)	3076(2)	15.7(7)
C7	2454(3)	5296(4)	3314(3)	18.4(8)
C8	2967(3)	3500(5)	3277(3)	23.8(8)
C9	1001(3)	8466(5)	3338(3)	23.0(8)
C10	571(4)	9812(5)	3847(3)	27.2(9)
C11	-486(4)	7734(5)	4313(3)	27.0(9)
C12	-132(3)	6293(5)	3819(3)	25.0(8)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 3n. The Anisotropic

-		-		-		-
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	27.4(2)	29.6(2)	15.5(3)	6.96(14)	5.65(19)	5.27(14)
Br2	22.8(2)	32.5(2)	20.8(3)	-3.96(15)	0.83(19)	-10.77(15)
F1	33.5(13)	18.2(10)	61.1(19)	4.3(11)	24.5(13)	-3.8(9)
F2	44.4(14)	28.5(12)	36.5(16)	-1.9(11)	23.0(13)	7.5(11)
F3	23.3(12)	30.6(12)	45.3(17)	9.1(12)	-2.8(12)	6.8(10)
01	20.6(14)	23.4(13)	33.2(18)	-0.9(12)	12.7(13)	1.1(10)
N1	16.8(15)	20.6(14)	11.1(17)	0.6(11)	0.1(13)	-1.9(11)
N2	18.6(15)	18.6(13)	18.6(17)	2.1(12)	8.2(13)	0.1(11)
C1	17.8(17)	19.1(15)	12.5(18)	-1.3(14)	0.9(15)	0.7(13)
C2	16.1(16)	22.7(16)	13.9(19)	2.8(14)	5.4(15)	3.9(13)
C3	18.7(18)	16.9(16)	27(2)	-2.0(14)	10.0(18)	-1.0(13)
C4	15.7(16)	21.1(16)	14.6(19)	-1.8(14)	0.7(15)	-0.8(13)
C5	17.0(16)	20.6(16)	13.1(18)	0.2(14)	5.0(15)	0.7(13)
C6	15.2(16)	16.7(15)	16.0(19)	-3.0(13)	6.6(15)	-0.5(13)
C7	14.3(17)	18.8(16)	17(2)	1.0(14)	0.5(15)	-2.6(12)
C8	19.6(18)	20.5(17)	31(2)	2.3(16)	8.9(17)	-2.7(14)
С9	25.2(19)	17.9(16)	29(2)	5.7(15)	14.0(18)	1.5(14)
C10	21.8(19)	21.2(17)	42(3)	0.5(17)	15(2)	-2.3(15)
C11	29(2)	28.9(19)	30(2)	-1.5(17)	18.4(19)	-2.0(16)
C12	24.0(19)	23.7(18)	31(2)	-2.4(16)	14.3(18)	-3.8(15)

displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table 4 Bond Lengths for 3n.

Atom Atom		Length/Å	Aton	n Atom	Length/Å
Br1	C2	1.891(4)	C1	C2	1.385(5)
Br2	C4	1.892(4)	C1	C6	1.395(5)
F1	C8	1.327(4)	C2	C3	1.385(5)
F2	C8	1.342(5)	C3	C4	1.383(5)
F3	C8	1.343(5)	C4	C5	1.386(5)
01	C10	1.414(4)	C5	C6	1.391(5)
01	C11	1.425(5)	C6	C7	1.508(5)
N1	N2	1.346(4)	C7	C8	1.510(5)
N1	C7	1.278(5)	C9	C10	1.515(5)
N2	C9	1.464(4)	C11	C12	1.505(5)
N2	C12	1.465(4)			

Atom	n Atom	Atom	Angle/°	Atom	Atom	n Atom	Angle/°
C10	01	C11	109.3(3)	C5	C6	C1	120.5(3)
C7	N1	N2	126.1(3)	C5	C6	C7	119.2(3)
N1	N2	С9	125.2(3)	N1	C7	C6	132.4(3)
N1	N2	C12	112.1(3)	N1	C7	C8	114.5(3)
C9	N2	C12	112.7(3)	C6	C7	C8	113.1(3)
C2	C1	C6	118.7(3)	F1	C8	F2	106.7(3)
C1	C2	Br1	118.9(3)	F1	C8	F3	107.0(3)
C1	C2	C3	122.0(3)	F1	C8	C7	114.1(3)
C3	C2	Br1	119.1(3)	F2	C8	F3	105.5(3)
C4	C3	C2	118.1(3)	F2	C8	C7	111.8(3)
C3	C4	Br2	118.9(3)	F3	C8	C7	111.1(3)
C3	C4	C5	121.8(3)	N2	C9	C10	109.2(3)
C5	C4	Br2	119.3(3)	01	C10	C9	112.4(3)
C4	C5	C6	118.9(3)	01	C11	C12	111.1(3)
C1	C6	C7	120.2(3)	N2	C12	C11	109.9(3)

Table 5 Bond Angles for 3n.

Table 6 Torsion Angles for 3n.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
Br1	C2	C3	C4	-178.8(3)	C2	C3	C4	C5	-1.3(5)
Br2	C4	C5	C6	-178.8(3)	C3	C4	C5	C6	0.6(5)
01	C11	C12	2 N2	57.1(5)	C4	C5	C6	C1	1.5(5)
N1	N2	C9	C10	-165.8(4)	C4	C5	C6	C7	178.9(3)
N1	N2	C12	2C11	159.4(3)	C5	C6	C7	N1	91.3(5)
N1	C7	C8	F1	7.5(5)	C5	C6	C7	C8	-85.4(4)
N1	C7	C8	F2	128.8(4)	C6	C1	C2	Br1	-179.2(2)
N1	C7	C8	F3	-113.6(4)	C6	C1	C2	C3	1.9(5)
N2	N1	C7	C6	-2.3(7)	C6	C7	C8	F1	-175.2(3)
N2	N1	C7	C8	174.3(3)	C6	C7	C8	F2	-53.9(4)
N2	C9	C10	001	-55.7(5)	C6	C7	C8	F3	63.7(4)
C1	C2	C3	C4	0.0(5)	C7	N1	N2	C9	24.2(6)
C1	C6	C7	N1	-91.3(5)	C7	N1	N2	C12	166.9(4)
C1	C6	C7	C8	92.1(4)	C9	N2	C12	2C11	-53.0(4)
C2	C1	C6	C5	-2.7(5)	C10	001	C11	C12	-60.9(4)
C2	C1	C6	C7	179.9(3)	C11	01	C1()C9	60.6(5)
C2	C3	C4	Br2	178.0(3)	C12	2 N2	C9	C10	51.6(4)

Atom	x	У	z	U(eq)
H1	2111.25	6825.53	1738.3	21
H3	4861.99	10336.67	2502.05	25
H5	4399.39	7037.27	4333.14	20
H9A	459.04	8457.17	2702.26	28
H9B	1819.71	8772.32	3369.1	28
H10A	1165.67	9900.2	4464.61	33
H10B	519.91	10973.63	3559.37	33
H11A	-1273.61	7449.74	4350.75	32
H11B	114.98	7814.92	4928.97	32
H12A	-51.28	5173.22	4148.31	30
H12B	-763.24	6143.62	3219.27	30

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3n.

Copies of NMR spectra:¹H-, ¹³C- and ¹⁹F-NMR spectra

3a

¹H NMR

¹³C NMR

F₃C 3d ^{Cl}

¹H NMR

¹³C NMR

¹³C NMR

F₃C N 3i NC

¹H NMR

--1000 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4-氰基.2.fid	ន ទី -	12000
	1	11000
		10000
		- 9000
		8000
		7000
		6000
		5000
		- 5000
		- 4000
		- 3000
		2000
		- 1000
		-0

3k Br

¹³C NMR

¹H NMR

¹³C NMR

¹³C NMR

______30000 ______20000 _______10000 ________0

3t

¹H NMR

3u

3w Br

SY21122901 4-so2ch3.1.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR

Reference

- [1] P. Aryal, R. Rafiu, V. P. Reddy, *Journal of Fluorine Chemistry* **2022**, *261-262*.
- [2] E. Pair, N. Monteiro, D. Bouyssi, O. Baudoin, Angew Chem Int Ed Engl 2013, 52, 5346-5349.
- B. Huang, X.-S. Bu, J. Xu, J.-J. Dai, Y.-S. Feng, H.-J. Xu, Asian Journal of Organic Chemistry 2018, 7, 137-140.
- [4] Z. Tan, S. Zhang, Y. Zhang, Y. Li, M. Ni, B. Feng, *J Org Chem* **2017**, *82*, 9384-9399.