Supporting Information

Catalytic divergent synthesis of imidazoles via reaction conditiondependent [3+2] cyclization of TosMIC

Cheng Zhao, ${ }^{\text {at }}$ Man-Zhen Gu, ${ }^{\text {at }}$ Yi-Yuan Chen, ${ }^{\text {a }}$ Xiao-Wei Hu, ${ }^{\text {a }}$ Yi-Bing Xu, ${ }^{\text {a }}$ Xiao-Min Lin, ${ }^{\text {a }}$ Xin-Ni Liu, ${ }^{\text {a }}$ Long Chen, ${ }^{\text {d Guo-Shu Chen, }{ }^{\text {a }} \text { and Yun-Lin Liu*a,b,c }}$

Email: ylliu@gzhu.edu.cn

Table of Contents

1) General Information S2
2) General procedure and spectral data of products $\mathbf{2}$ and $\mathbf{6}$ S3
3) General procedure and spectral data of product 3 S8
4) Further transformations of product 2a S9
5) X-Ray crystallographic data for compounds 2a and 3 S10
6) Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 2-6 S12

1. General Information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker DPX-400 spectrometer. Chemical shifts are reported in ppm from CDCl_{3} with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

Anhydrous solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, THF, toluene, and EtOAc , and the catalysts such as $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DABCO}$, $\mathrm{DBU}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, ${ }^{\mathrm{t}} \mathrm{BuOLi}$, ${ }^{\mathrm{t}} \mathrm{BuONa}$, and ${ }^{t} \mathrm{BuOK}$ were purchased from Energy Chemical. Unless otherwise stated, all purchased reagents were used without further purification. The; All reactions involving air- or moisture-sensitive compounds were carried out under nitrogen atmosphere in dried Schlenk tube. The ketenimines $1^{[1]}$ was prepared using the literature procedures.

References

[1] (a) P. Lu and Y. Wang, Chem. Soc. Rev., 2012, 41, 5687; (b) Y. Cheng, Y.-G. Ma, X.-R. Wang and J.-M. Mo, J. Org. Chem., 2009, 74, 850.

2. General procedure and spectral data of products 2.

General Procedure: Under nitrogen atmosphere, ketenimines 1 (0.1 mmol), p-toluenesulfonylmethyl isocyanide (TosMIC) (0.12 mmol), 'BuONa ($30 \mathrm{~mol} \%$), and EtOAc (1.0 mL) were successively added to a oven-dried 10 mL schlenk tube. The reaction mixture was then stirred at $50{ }^{\circ} \mathrm{C}$ for $4-24 \mathrm{~h}$, and monitored by TLC. After completion, the reaction mixture was cooled down to room temperature and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/EtOAc (5:1 to 1:1) as the eluent to afford the 1,4,5-trisubstituted imidazoles 2.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 a}$ in 97% yield as a yellow solid (44.6 mg , m.p. $176-178{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.36 (s, 3H), 2.43 (s, 3H), 3.71 (s, 3H), 6.10 (s, 1H), 6.78 (ABd, $J=8.0 \mathrm{~Hz}$, 2H), 6.89 (ABd, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05$ (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.09-7.18(\mathrm{~m}$, $3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{ABd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.00 , 144.16, 140.02, 139.27, 138.25, 134.62, 133.41, 131.99, 129.66, 129.62, 128.94, 128.14, 128.00, 127.22, 52.58, 46.24, 21.63, 21.13; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 461.1530, Found: 461.1530.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 b}$ in 84% yield as
 a yellow solid (39.8 mg , m.p. 180-183 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $6.13(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.16(\mathrm{~m}$, 5 H), 7.33 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (ABd, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.04,146.27,144.16,139.25,138.24,134.55,133.40$, 132.15, 129.62, 128.89, 128.49, 128.12, 127.97, 127.29, 127.16, 52.58, 46.27, 28.47, 21.63, 15.53; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 475.1686$, Found: 475.1674.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 c}$ in 90% yield as a yellow solid (41.4 mg , m.p. $81-84^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 2.20 (s, $3 \mathrm{H}), 2.43$ (s, 3H), 3.72 (s, 3H), 6.12 (s, 1H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (d, J=7.2 Hz, 2H), 7.10 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14-7.18$ ($\mathrm{m}, 3 \mathrm{H}$), 7.34 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.99144 .20$, $139.28,139.10,138.20,134.50,134.41,133.31,130.44,129.64,128.93,128.83,128.09,128.07$, 127.97, 127.16, 124.49, 52.58, 46.29, 21.63, 20.99; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ [M+H]: 461.1530, Found: 461.1517.

The reaction was run at $50^{\circ} \mathrm{C}$ for 8 h , affording product $\mathbf{2 d}$ in 58% yield as a yellow solid (27.6 mg , m.p. 191-193 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.43 (s, 3H), 3.72 (s, 3H), 3.80 (s, 3H), 6.13 (s, 1H), 6.73 (ABd, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80$ (ABd, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (ABd, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10-7.18 (m, $3 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.04, 160.29, 144.19, 139.51, 138.17, 138.13, 134.59, 133.58, 129.64, 128.86, 128.74, 128.17, 127.95, 127.23, 127.10, 114.08, 55.56, 52.61, 46.21, 21.64; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 477.1479$, Found: 477.1431.

The reaction was run at $50^{\circ} \mathrm{C}$ for 14 h , affording product $\mathbf{2 e}$ in 45% yield as a yellow solid (24.2 mg , m.p. 114-116 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.43 (s, 3H), 3.74 (s, 3H), 6.24 (s, 1H), 6.78-6.84 (m, 4H), 6.88 (d, J = 6.8 $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.09, 158.67, 155.79, 144.26, 139.48, 138.47, 138.23, 134.55, 133.50, 130.04, 129.69, 129.11, 129.05, 128.79, 128.25, 127.98, 127.28, 124.43, 119.64, 118.13, 52.65, 46.26, 21.64; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 539.1635, Found: 539.1623.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 f}$ in 87% yield as a brown solid (40.4 mg , m.p. $189-191^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44$ (s, 3H), 3.74 (s, 3H), 6.31 (s, 1H), 6.80 (ABd, J= $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83-6.91 (m, 4 H), 7.07-7.17 (m, 3H), 7.35 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (s, 1H), 7.96 (ABd, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 170.08, $162.83(\mathrm{~d}, \mathrm{~J}=249.1 \mathrm{~Hz}$), 144.33, 139.45, 138.75, 138.19, 134.40, 133.37, 130.70 (d, J=3.3 Hz), 129.72, 129.69, 129.60, 128.57, 128.30, 127.95, 127.32, $115.86(\mathrm{~d}, \mathrm{~J}=22.9 \mathrm{~Hz}), 52.65,46.25$, 21.64; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 465.1279, Found: 465.1272.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 g}$ in 84% yield as a yellow solid (40.3 mg , m.p. $191-193{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44$ (s, 3H), 3.74 (s, 3H), 6.31 (s, 1H), 6.79-6.82 (m, 4H), 7.08-7.12 (m, 2H), $7.14-7.18$ (m, 3H), 7.34 (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (s, 1H), 7.95 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.08,144.36,139.26,138.90,138.16,135.84,134.36,133.28$, 133.23, 129.73, 129.07, 128.99, 128.60, 128.33, 127.97, 127.37, 52.68, 46.28, 21.65; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 481.0983$, Found: 481.0972 .

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 h}$ in 93% yield as a yellow solid (44.6 mg , m.p. $142-144^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 2.43 (s , $3 \mathrm{H}), 3.75$ (s, 3H), 6.33 (s, 1H), 6.74 (s, 1H), 6.79 (d, J = $3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 3 \mathrm{H})$, 7.42 (s, 1H), 7.96 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.98,144.38$, 139.10, 138.76, 138.06, 135.63, 134.49, 134.04, 133.19, 129.90, 129.83, 129.72, 128.52, 128.26, 128.00, 127.89, 127.45, 125.97, 52.69, 46.25, 21.63; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{CIN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 481.0983, Found: 481.0972.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 i}$ in 92% yield as a yellow solid (48.2 mg , m.p. $178-180^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.43 (s, 3H), 3.74 (s, 3H), 6.31 (s, 1H), 6.74 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.79 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08-7.12 (m, 2H), 7.14-7.18 (m, 1H), 7.32-7.36 (m, 4H), 7.42 (s, 1H), 7.95 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.06,144.36,139.18,138.89,138.14$, 134.33, 133.74, 133.22, 132.07, 129.73, 129.24, 128.59, 128.33, 127.95, 127.37, 123.88, 52.68, 46.27, 21.65; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ [M+H]+: 525.0478, Found: 525.0477.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product 2 j in 88% yield as a yellow solid (50.3 mg , m.p. $152-154{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 2.43 (s, 3H), 3.74 (s, 3H), 6.28 (s, 1H), 6.60 (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.80 (ABd, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{ABd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.05,144.36,139.09,138.80,138.07$, 134.38, 134.26, 133.15, 129.71, 129.31, 128.58, 128.31, 127.91, 127.34, 95.47, 52.70, 46.26, 21.64; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{IN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 573.0340, Found: 573.0330.

The reaction was run at $50^{\circ} \mathrm{C}$ for 4 h , affording product $\mathbf{2 k}$ in 91% yield as a brown solid (42.8 mg , m.p. $218-220^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44$ (s, 3H), 3.77 (s, 3H), 6.46 (s, 1H), 6.72 (d, J=7.2 Hz, 2H), 7.00 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz} 2 \mathrm{H}$), 7.42 (s, 1H), 7.47 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.96 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.13,144.60,139.49,138.98,138.63,137.90,134.09,133.05,132.57,129.83,128.73$, 128.46, 128.31, 127.91, 127.55, 117.36, 113.48, 52.82, 46.26, 21.67; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 472.1326$, Found: 472.1308 .

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $\mathbf{2 l}$ as an inseparable mixture of two diastereoisomers (2.4:1 ratio) in 67% yield (30.8 mg , yellow solid, m.p. $\left.62-64^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35$ (s, 3 H), 1.57 ($\mathrm{s}, 1.3 \mathrm{H}$), $2.44(\mathrm{~s}, 4.1 \mathrm{H}), 3.70(\mathrm{~s}, 1.25 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.39(\mathrm{~s}, 0.36 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.79$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.93 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 0.37 \mathrm{H}$), 6.98-7.04 (m, 3.7H), 7.11-7.23 (m, 4.85H), 7.33-7.45 (m, 6H), 7.97-8.01 (m, 2.7H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 170.26, 169.87, 144.21, 138.93, 138.61, 138.35, 138.04, 137.97, 136.82, 134.64, 133.57, 133.20, 131.33, 130.89, $130.38,129.70,129.57,129.40,129.35,128.63$, 128.39, 128.25, 128.20, 128.19, 128.03, 127.96, 127.61, 127.31, 126.88, 126.51, 99.88, 91.57, 52.63, 46.20, 21.67, 16.66; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+: 461.1530$, Found: 461.1536.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $\mathbf{2 m}$ as an inseparable mixture of two diastereoisomers (1.4:1 ratio) in 57% yield (27.8 mg , yellow solid, m.p. $\left.189-191^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.49(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.82$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.8 \mathrm{~Hz} 2 \mathrm{H}), 1.03$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 2.07 (sep , $J=6.8 \mathrm{~Hz}, 0.8 \mathrm{H}$), $2.24(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 5 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 5.20(\mathrm{~s}, 0.64 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.0,0.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.02-7.05(\mathrm{~m}$, 1.4H), 7.11-7.16 (m, 3H), 7.17-7.23 (m, 4H), 7.31-7.38 (m, 5.5H), 7.43-7.49 (m, 3.7H), 7.98 (d, J=8.4 $\mathrm{Hz}, 2 \mathrm{H}), 8.02$ (d, $J=8.0 \mathrm{~Hz}, 1.4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.12,170.02,147.08,146.73$, $144.16,144.15,138.92,138.83,138.25,138.22,138.04,137.97,134.10,134.05,133.61,133.40$, $131.75,131.48,130.93,130.75,129.59$, 129.54, 129.52, 129.34, 128.50, 128.40, 128.38, 128.21, 128.16, 127.56, 127.48, 127.26, 126.99, 126.68, 126.43, 52.86, 52.70, 47.32, 46.84, 27.71, 27.49, 25.80, 25.51, 22.25, 21.66, 21.64, 21.39; HRMS (ESI): Exact mass calcd for $\left.\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]\right]^{+}$ 489.1843, Found: 489.1836.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $\mathbf{2 n}$ in 54% yield as an inseparable mixture of two diastereoisomers ($3: 1$ ratio) (28.3 mg , yellow solid, m.p. 68-70 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, 1 H), 3.78 (s, 3H), 5.73 (s, 0.3 H), 6.27 (s, 1H), 6.75 (d, J= $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.12(\mathrm{~m} \mathrm{1H}), 7.17-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.40 (m, 6H), 7.43-7.46 (m, 1H), 7.51 (s, 0.3H), $7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.99 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.58,144.26,139.36,138.34,136.22,134.63$, $134.08,133.25,132.94,132.66,131.60$, 131.43, 131.41, 130.50, 130.16, 129.79, 129.73, 129.58, 129.15, 129.05, 128.45, 128.37, 128.19, 128.14, 127.89, 127.81, 127.58, 127.26, 123.25, 52.71, 46.54, 46.30, 21.67; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 525.0478, Found: 525.0472.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product 2 o as an inseparable mixture of two diastereoisomers (3.3:1 ratio) in 68% yield (35.0 mg , yellow solid, m.p. $\left.149-151^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (s, 1H), 3.77 (s, 3H), $5.73(\mathrm{~s}, 0.3 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, J=8.0 Hz, 0.3H), 7.01-7.05 (m, 2.7H), 7.09-7.12 (m, 1H), 7.16-7.22 (m, 1H), $7.33-7.38(\mathrm{~m}, 3.8 \mathrm{H}), 7.44-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.99(\mathrm{~d}, J$
$=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.45, 169.30, 144.30, 139.48, 139.29, 139.27, 139.01, 138.89, 138.59, 138.18, 137.90, 134.31, 133.47, 133.15, 132.95, 132.71, 132.47, 131.82, 131.26, $130.65,130.59,130.57$, 129.69, 129.58, 129.22, 128.91, 128.32, 128.19, 128.07, 127.92, 127.70, $127.59,127.39,127.33,127.28,121.98(q, J=272.6 \mathrm{~Hz}$), $52.79,52.66,47.06,46.17,21.66$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 515.1247$, Found: 515.1237.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $\mathbf{2 p}$ an inseparable mixture of two diastereoisomers (2.7:1 ratio) in 66% yield (34.5 mg , yellow solid, m.p. $\left.158-160{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.62$ (s, 1H), 3.67 (s, 3H), 5.43 (s, 1H), 5.64 (s, 0.36 H), 6.56 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.21(\mathrm{~m}$, 10 H), 7.32 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.08,143.95,140.06,139.31,139.03,138.41,138.39$, $137.55,137.54,136.37,134.47,133.81,131.79$, 131.40, 130.72, 129.69, 129.42, 128.58, 128.53, 128.38, 128.29, 128.29, 128.16, 128.09, 128.03, 127.96, 127.89, 127.73, 127.64, 52.74, 52.70, 47.20, 47.09, 21.64, 21.59; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 523.1686$, Found: 523.1673.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $\mathbf{2 q}$ an inseparable mixture of two diastereoisomers (2.6:1 ratio) in 51% yield (25.3 mg , yellow solid, m.p. $68-70{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.45$ (s, 1H), 2.46 (s, 3H), $3.35(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 5.82(\mathrm{~s}, 0.36 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.72(\mathrm{~m}, 6 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.05(\mathrm{~m}, 1.6 \mathrm{H}), 7.13(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.45 \mathrm{H}), 7.20$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 1.6 \mathrm{H}), 7.38-7.49(\mathrm{~m}, 5.5 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 0.43 \mathrm{H}), 7.78$ (d, J= $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.43 \mathrm{H}), 7.92-7.97(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.25,169.39,144.27,144.23,139.86,139.82,138.33,138.12,138.05,134.74,134.41$, 134.17, 133.76, 133.51, 133.20, 130.82, 130.77, 130.65, 130.41, 130.21, 130.14, 129.73, 129.61, 129.10, 128.79, 128.20, 128.10, 128.04, 128.00, 127.73, 127.65, 127.56, 127.32, 127.04, 126.79, 126.69, 126.63, 126.24, 124.79, 124.52, 122.29, 121.66, 52.64, 52.35, 46.53, 46.51, 22.66, 21.68; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 497.1530$, Found: 497.1522.

$2 r$

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording product $2 r$ in 40% yield as a red solid (36.2 mg , m.p. $\left.108-110^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ $2.42(\mathrm{~s}, 6 \mathrm{H})$, $3.69(\mathrm{~s}, 6 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 6.83-6.87(\mathrm{~m}$, 8H), 7.02-7.06 (m, 8H), 7.09-7.13 (m, 2H), 7.33 (d, $J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.45 (s, 2H), 7.93 (ABd, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.01,146.27$, 144.31, 141.95, 141.91, 139.22, 138.56, 138.08, 134.50, 133.20, 133.09, 129.67, 129.44, 129.43, 128.78, 128.77, 128.14, 127.96, 127.68, 127.21, 52.63, 46.18, 40.82, 21.64; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{51} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 905.2673$, Found: 905.2680.

The reaction was run at $50^{\circ} \mathrm{C}$ for 24 h , affording

2s product $\mathbf{2 s}$ in 10% yield as a dark-blue oil (7.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 2.43 (s, 3H), 3.71 (s, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.78-$ $6.85(\mathrm{~m}, 4 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.23 (m, 3H), 7.32-7.35 (m, 6H), 7.44 (s, 1H), 7.53-7.55 (m, 2H), 7.94 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.80,170.01,168.04,144.22,142.31,141.06,139.23,138.57,138.24$, $134.99,134.53,133.28,133.03,130.20$, 129.94, 129.65, 129.39, 129.34, 129.21, 128.80, 128.62, 128.14, 127.99, 127.70, 127.50, 127.34, 127.19, 126.46, 125.04, 52.60, 51.83, 46.25, 41.04, 21.63; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 710.2319$, Found: 710.2312.

6

The reaction was run at $80^{\circ} \mathrm{C}$ for 1.5 h by using $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{~mol} \%$) as the catalyst and $\mathrm{MeOH} / \mathrm{DME}$ (2:1) as the solvent, affording product 6 in 81% yield as a yellow oil (24.1 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.34$ (s, 3H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.62$, 158.18, 145.10, 133.94, 132.73, 129.65, 129.43, 128.37, 127.76, 121.01, 54.01, 52.66, 51.76, 20.80; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 298.1438$, Found: 298.1433.

3. General procedure and spectral data of product 3.

General Procedure: Under nitrogen atmosphere, p-toluenesulfonylmethyl isocyanide (TosMIC) (0.10 mmol), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(30 \mathrm{~mol} \%)$, $\mathrm{DBU}(10 \mathrm{~mol} \%)$, and $\mathrm{EtOAc}(1.0 \mathrm{~mL})$ were successively added to a ovendried 10 mL schlenk tube. The reaction mixture was then stirred at $50^{\circ} \mathrm{C}$ for 8 h , and monitored by TLC. After completion, the reaction mixture was cooled down to room temperature and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/EtOAc (3:1) as the eluent to afford the 1,4-disubstituted imidazole 3.

3

The reaction was run at $50^{\circ} \mathrm{C}$ for 8 h , affording product 3 in 71% yield as a white solid (27.7 mg , m.p. $184-186{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43$ (s, 6H), 5.14 (s, 2H), 7.22 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.32$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (s , $1 \mathrm{H}), 7.44$ (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.90,144.50,143.21,139.46,137.30,131.20,130.49,129.77,128.64$, 127.90, 123.72, 66.34, 21.80, 21.63.

4. Further transformations of product 2a.

2a

2a

61 \% yield

The preparation of 4: Under nitrogen atmosphere, $\mathbf{2 a}(46.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and toluene (3.0 mL) were added to an oven-dried 10 mL Schlenk tube. The reaction mixture was then cooled down to $-10{ }^{\circ} \mathrm{C}$ followed by the drop wise addition of DIBAL-H (0.8 mmol). After the full consumption of $\mathbf{2 a}$ (ca. 3 h), 1 $\mathrm{mol} / \mathrm{L}$ of sodium hydroxide solution (5 mL) was added to quench the reaction. The resulting mixture was extracted with ethyl acetate for three times ($8 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/EtOAc (3:2) as the eluent to afford the desired product 4 in 45% yield as a yellow solid (19.4 mg, m.p. 82-84 ${ }^{\circ} \mathrm{C}$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37$ (s, 3H), 2.42 (s, 3H), 2.70 (s, 1H), 4.18$4.22(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (dd, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08-7.15 (m, 5H), 7.30 (d, J = 8.0 $\mathrm{Hz}, 2 \mathrm{H}$), 7.42 (s, 1H), 7.82 (ABd, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 144.24,140.10,138.93,138.53,137.96,137.80,136.38,132.18$, 129.77, 129.65, 128.31, 128.10, 127.88, 127.29, 126.81, 63.32, 43.20, 21.64, 21.15; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 433.1580$, Found: 433.1572 .

The preparation of $\mathbf{5}$: $\mathbf{2 a}(46.0 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{MeOH}(3.0 \mathrm{~mL})$, and hydrazine hydrate were added to a 25 mL sealed tube. The reaction mixture was then stirred at $100^{\circ} \mathrm{C}$ for 3 d . After completion, the sealed tube was cooled down to room temperature, and the solution was extracted with ethyl acetate for three times ($10 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography using $\mathrm{MeOH} / \mathrm{EtOAc}(1: 3)$ as the eluent to afford the desired product 5 in 61% yield as a yellow solid ($28.1 \mathrm{mg}, \mathrm{m} . \mathrm{p} .82-84^{\circ} \mathrm{C}$)

5
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77$ (s, 1H), 2.36 (s, 3H), 2.42 (s, 3H), 3.88 (s, 1H), 5.46 (s, 1H), 6.86 (ABd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06-7.10 (m, 4 H), 7.15 (s, 1H), 7.20-7.22 (m, 3H), 7.33 (d, J=7.6 Hz, 2H), 7.47 (s, 1 H), 7.98 ($\mathrm{ABd}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.02$, $144.25,140.13,139.12,138.19,137.90,134.13,133.40,131.71$, 129.70, 129.62, 129.20, 128.89, 128.19, 127.98, 127.36, 47.51, 21.65, 21.14; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 461.1642$, Found: 461.1647.

5. X-Ray crystallographic data for compounds 2 a and 3.

Data intensity of compound $\mathbf{2 a}$ was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 179.99 (10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the SheIXS structure solution program using direct methods and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC 2209195.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
y^{10}
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mid>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
460.53
179.99(10)
monoclinic
P2 $1_{1} / n$
9.4115(7)
17.4920(18)
13.8909(10)

90
94.077(7)

90
2281.0(3)

4
1.341
0.178
968.0
$0.14 \times 0.12 \times 0.11$
Mo Ka ($\lambda=0.71073$)
4.658 to 59.292
$-12 \leq h \leq 11,-24 \leq k \leq 15,-18 \leq 1 \leq 19$
11730
$5383\left[\mathrm{R}_{\text {int }}=0.0395, \mathrm{R}_{\text {sigma }}=0.0733\right]$
5383/0/301
1.020
$R_{1}=0.0878, w R_{2}=0.1989$
$R_{1}=0.1321, w R_{2}=0.2275$
1.53/-0.68

Data intensity of compound 3 was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 180.00 (10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC 2209196.

X-ray structure of product 3 CCDC 2209196

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
$a / A ̊$
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
V^{10}
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(1)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
390.46
180.00(10)
monoclinic
P2 ${ }_{1} / \mathrm{c}$
5.9384(2)
19.6239(8)
15.6970(7)

90
99.037(4)

90
1806.54(13)

4
1.436
2.908
816.0
$0.14 \times 0.1 \times 0.08$
$\mathrm{CuKa}(\lambda=1.54184)$
7.268 to 147.738
$-6 \leq h \leq 7,-24 \leq k \leq 17,-16 \leq 1 \leq 19$
6926
$3569\left[\mathrm{R}_{\text {int }}=0.0553, \mathrm{R}_{\text {sigma }}=0.0761\right]$
3569/0/237
1.092
$R_{1}=0.0806, w R_{2}=0.2106$
$R_{1}=0.0971, w R_{2}=0.2253$
0.98/-0.63
6. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 2-6.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\%.

N尺

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

©

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\overline{e x}}{\dot{\sim}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

육
$\underset{\text { N゙ }}{\text { N }}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N゙N. $\stackrel{\text { 8 }}{\stackrel{\circ}{6}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

すโ ⿷匚

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

N會

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllll}145 & 144 & 143 & 142 & 141 & 140 & 139 & 138 & 137 & 136 & 135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127\end{array}$ f1 (Dpm)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ค骨医
2tc $99-$
등

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: |
| f 1 | (ppm) | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 6 |

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

N N $\stackrel{\circ}{8}$	 $\because T T^{2}$		

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$

