Controllable Synthesis of Disulfides and Thiosulfonates from Sodium Sulfinates Mediated by Hydroiodic Acid using Ethanol and H$_2$O as Solvent Respectively

Shengnan Sun, Junchen Li, Li Pan, Haibo Liu, Yongbiao Guo, Zhenhua Gao, Xiaojing Bi*

State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China

Table of contents

General Information ...1
Experimental Procedure ...1
Analytical Data for the Products ..2
Copies of 1H NMR, 13C NMR and 19F NMR…………………………………………………………9
References...48
1. General Information

All reactions were performed in sealed tube with magnetic stirring. Unless otherwise stated, all commercially available reagents were used without further purification. 1H and 13C NMR spectra were recorded at ambient temperature on Bruker Advance III HD 600 or UltrasoundTM 300 instruments. All spectra were referenced to CDCl$_3$ (1H δ 7.26 ppm and 13C NMR δ 77.00 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet), coupling constants (Hz) and integration.

2. Experimental Procedure

(1) Synthesis of symmetric disulfide (2a-2o)

A 10 mL sealed tube was charged with substituted sodium sulfinate (0.6 mmol), EtOH (4 mL) and HI (55%-57% aqueous solution, 5 eq). The mixture was allowed to stir at room temperature and monitored by TLC until the reaction was complete. Saturated aqueous Na$_2$SO$_3$ solution was added to the reaction mixture and the aqueous phase was further extracted with DCM (3×10 mL). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated under a vacuum to give the crude product. The residue was purified by column chromatography on silica gel using petroleum and n-hexane as eluent to provide the desired product.

(2) Synthesis of asymmetric disulfide (3a-3k)

A 10 mL sealed tube was charged with substituted sodium sulfinate (1, 0.3 mmol) and another sodium sulfinate (2, 0.3 mmol), EtOH (4 mL), HI (55%-57% aqueous solution, 5 eq). The mixture was allowed to stir at room temperature and monitored by TLC until the reaction was complete. Saturated aqueous Na$_2$SO$_3$ solution was added to the reaction mixture and the aqueous phase was further extracted with DCM (3×10 mL). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated under a vacuum to give the crude product. The residue was purified by column chromatography on silica gel using petroleum, acetonitrile, and H$_2$O as eluent to provide the desired products.

(3) Synthesis of symmetric thiosulfonate

The general procedure for thiosulfonates (4a, 4d-4i)

A 10 mL sealed tube was charged with substituted sodium sulfinate (0.6 mmol) in H$_2$O (4 mL), HI (55%-57% aqueous solution, 5 eq) was added to the mixture. The reaction mixture was allowed to stir at 50°C and monitored by TLC until the reaction was complete. The solid crude product is filtered, washed with saturated Na$_2$SO$_3$, water, and dried in vacuo to obtain the target compound.

The general procedure for thiosulfonates (4b-4c, 4j-4k)

A 10 mL sealed tube was charged with substituted sodium sulfinate (0.6 mmol) in H$_2$O (4 mL), then HI (55%-57% aqueous solution, 5 eq) was added. The mixture was allowed to stir at 50°C and monitored by TLC until the reaction was complete. Saturated aqueous Na$_2$SO$_3$ solution was
added to the mixture and the aqueous phase was further extracted with DCM (3×10 mL). The combined organic layers was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using petroleum/n-hexane/ethyl acetate as eluent to provide the desired product.

3. Analytical Data for the Products

![1,2-Di-p-tolydisulfide (2a)](image)

1,2-Di-p-tolydisulfide (2a)\(^\text{[1]}\). White solid. 71 mg, yield 95%.
\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.39 (d, \(J = 8.2\) Hz, 4H), 7.11 (d, \(J = 8.0\) Hz, 4H), 2.33 (s, 6H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 137.58, 134.04, 129.92, 128.68, 21.2.

![1,2-Diphenyldisulfide (2b)](image)

1,2-Diphenyldisulfide (2b)\(^\text{[1]}\). Pale yellow solid, 68 mg, yield 92%.
\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.49 (d, \(J = 7.2\) Hz, 4H), 7.29 (t, \(J = 7.7\) Hz, 4H), 7.24 – 7.20 (q, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 137.17, 129.20, 127.65, 127.29.

![1,2-bis(4-isopropylphenyl) disulfide (2c)](image)

1,2-bis(4-isopropylphenyl) disulfide (2c)\(^\text{[1]}\). White solid, 85 mg, yield 94%.
\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.43 (d, \(J = 7.3\) Hz, 4H), 7.17 (d, \(J = 7.6\) Hz, 4H), 2.88 (h, \(J = 6.9\) Hz, 2H), 1.23 (dd, \(J = 6.9, 1.3\) Hz, 12H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 148.45, 134.43, 128.38, 127.36, 33.90, 24.05.

![1,2-Di(1,1'-biphenyl-4-yl) disulfide (2d)](image)

1,2-Di(1,1'-biphenyl-4-yl) disulfide (2d)\(^\text{[1]}\). Pale yellow solid, 58 mg, yield 52%.
\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.60 (d, \(J = 8.4\) Hz, 4H), 7.57 – 7.54 (t, 8H), 7.43 (t, \(J = 7.6\) Hz, 4H), 7.36 – 7.33 (t, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 140.52, 140.35, 136.18, 129.00, 128.36, 127.95, 127.68, 127.13.
1,2-Bis(4-(trifluoromethoxy) phenyl) disulfide (2e)[1]. Colourless oil, 94 mg, yield 81%.
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.53 - 7.49 (m, 4H), 7.18 (d, } J = 7.9 \text{ Hz, 4H). } ^{13}C \text{NMR (151 MHz, CDCl}_3 \delta 148.83, 148.82, 135.32, 129.43, 121.87.} \]

1,2-Bis(4-(trifluoromethyl) phenyl) disulfide (2f)[1]. Yellow solid, 91 mg, yield 81%.
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.60 - 7.56 (m, 8H). } ^{13}C \text{NMR (151 MHz, CDCl}_3 \delta 140.8, 129.4 (q, } J = 33.0 \text{ Hz), 126.6, 126.1 (q, } J = 3.7 \text{ Hz), 123.9 (q, } J = 273.0 \text{ Hz). } ^{19}F \text{NMR (565 MHz, CDCl}_3 \delta -62.60.} \]

1,2-bis(4-fluorophenyl) disulfide (2g)[1]. Colourless oil, 71 mg, yield 92%.
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.47 - 7.43 (m, 4H), 7.03 - 6.99 (m, 4H). } ^{13}C \text{NMR (151 MHz, CDCl}_3 \delta 163.56, 161.92, 132.32, 132.30, 131.44, 131.38, 116.49, 116.34. } ^{19}F \text{NMR (565 MHz, CDCl}_3 \delta -113.43 (ddd, } J = 14.0, 8.7, 5.1 \text{ Hz).} \]

1,2-Bis(4-chlorophenyl) disulfide (2h)[1]. Pale yellow solid, 62 mg, yield 72%.
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.39 (d, } J = 8.7 \text{ Hz, 4H), 7.26 (d, } J = 8.7 \text{ Hz, 4H). } ^{13}C \text{NMR (151 MHz, CDCl}_3 \delta 135.26, 133.76, 129.45, 129.42.} \]

1,2-Bis(4-bromophenyl) disulfide (2i)[1]. Pale yellow solid, 91 mg, yield 81%.
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.44 - 7.41 (m, 4H), 7.35 - 7.32 (m, 4H). } ^{13}C \text{NMR (151 MHz, CDCl}_3 \delta 135.85, 132.33, 129.50, 121.66.} \]
1,2-Bis (4-nitrophenyl) disulfide (2j)\(^2\). Yellow solid, 77 mg, yield 83%.
1\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta 8.21 – 8.17\) (m, 4H), 7.64 – 7.60 (m, 4H). \(^1\)C NMR (151 MHz, CDCl\(_3\)) \(\delta 147.14, 144.20, 126.54, 124.61, 77.37, 76.95\).

1,2-di-\(m\)-tolyldisulfide (2k)\(^2\). White solid, 65 mg, yield 88%.
1\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta 7.29\) (d, \(J = 7.1\) Hz, 4H), 7.17 (t, \(J = 7.9\) Hz, 2H), 7.03 – 6.99 (m, 2H), 2.30 (s, 6H). \(^1\)C NMR (151 MHz, CDCl\(_3\)) \(\delta 139.02, 137.04, 129.01, 128.13, 128.12, 124.68, 21.50\).

1,2-Bis(3-bromophenyl) disulfide (2l)\(^2\). Colourless oil, 81 mg, yield 72%.
1\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta 7.63\) (t, \(J = 1.8\) Hz, 2H), 7.40 (ddd, \(J = 7.9, 1.9, 0.9\) Hz, 2H), 7.37 (ddd, \(J = 8.0, 1.9, 1.0\) Hz, 2H), 7.18 (t, \(J = 7.9\) Hz, 2H). \(^1\)C NMR (151 MHz, CDCl\(_3\)) \(\delta 138.76, 130.61, 130.05, 126.01, 123.26\).

1,2-Di(naphthalen-2-yl) disulfide (2m)\(^2\). White solid, 78 mg, yield 82%.
1\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.99\) (d, \(J = 1.6\) Hz, 2H), 7.82 – 7.71 (m, 6H), 7.62 (dd, \(J = 8.7, 1.9\) Hz, 2H), 7.50 – 7.42 (m, 4H). \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 134.35, 133.57, 132.59, 129.11, 127.90, 127.59, 126.87, 126.60, 126.36, 125.74\).
1,2-Bis(5-chlorothiophen-2-yl) disulfide (2n)\[^2\]. Yellow oil, 67 mg, yield 75%.
\[^1\]H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 6.97 (d, \(J = 3.9\) Hz, 2H), 6.84 (s, 2H). \[^13\]C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 136.02, 135.87, 134.01, 127.28.

\[\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}
\]

1,2-Di(thiophen-2-yl) disulfide (2o)\[^2\]. Yellow solid, 65 mg, yield 93%.
\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.50 (dd, \(J = 5.3, 1.3\) Hz, 2H), 7.15 (dd, \(J = 3.6, 1.2\) Hz, 2H), 7.01 (q, \(J = 5.3, 3.6\) Hz, 2H). \[^13\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 135.73, 135.68, 132.36, 127.80.

\[\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}
\]

1-cyclopropyl-2-(\(p\)-tolyl) disulfide (2p)\[^3\]. White solid. 34 mg, yield 57%.
\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.47 (d, \(J = 8.2\) Hz, 2H), 7.17 – 7.11 (d, 2H), 2.35 (s, 3H), 2.33 – 2.26 (m, 1H), 0.97 – 0.71 (m, 4H). \[^13\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 137.38, 134.44, 129.83, 129.31, 21.21, 19.32, 9.67.

\[\text{\chem{\begin{array}{c} \text{H}_3\text{CO} \\
\text{S} \\
\text{S}
\end{array}}}\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}
\]

1-cyclopropyl-2-(4-methoxyphenyl) disulfide (2q)\[^3\]. White solid. 38 mg, yield 60%.
\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.52 (d, \(J = 8.7\) Hz, 2H), 6.86 (d, \(J = 8.8\) Hz, 2H), 3.81 (s, 3H), 2.29 (tt, \(J = 7.6, 4.3\) Hz, 1H), 0.97 – 0.68 (m, 4H). \[^13\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 159.82, 132.68, 128.71, 114.71, 55.53, 19.25, 9.55.

\[\text{\chem{\begin{array}{c} \text{Cl} \\
\text{S} \\
\text{S}
\end{array}}}\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}
\]

1-(4-chlorophenyl)-2-cyclopropyl disulfide (2r)\[^3\]. White solid. 34 mg, yield 53%.
\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.50 (dd, \(J = 8.4, 1.4\) Hz, 2H), 7.35 – 7.27 dd, 2H), 2.33 – 2.25 (m, 1H), 0.97 – 0.73 (m, 4H). \[^13\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 136.54, 133.09, 129.75, 129.19, 19.30, 9.78.

\[\text{\chem{\begin{array}{c} \text{Cl} \\
\text{S} \\
\text{S}
\end{array}}}\text{\chem{\begin{array}{c} \text{S} \\
\text{S}
\end{array}}}
\]

2-chloro-5-(cyclopropyldisulfaneyl) thiophene (2s)\[^3\]. Colourless oil, 32 mg, yield 47%.
\[^1\]H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.50 (d, \(J = 8.6\) Hz, 2H), 7.29 (d, \(J = 8.5\) Hz, 2H), 2.28 (tt, \(J = 7.4, 4.3\) Hz, 1H), 0.96 – 0.93 (m, 2H), 0.75 – 0.72 (m, 2H). \[^13\]C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 136.52, 133.06, 129.72, 129.17, 19.29, 9.78.
S-(p-tolyl) 4-methylbenzenesulfonothioate (3a)\(^4\). White solid, 79 mg, yield 95%.

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 8.3\) Hz, 2H), 7.22 (t, \(J = 7.4\) Hz, 4H), 7.14 (d, \(J = 8.0\) Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 144.70, 142.16, 140.59, 136.61, 130.32, 129.48, 127.72, 124.72 21.79, 21.61.

\[\text{\includegraphics[width=0.5\textwidth]{s-p-tolyl-4-methylbenzenesulfonothioate}}\]

S-phenyl benzenesulfonothioate (3b)\(^4\). Colorless oil, 61 mg, yield 81%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.57 (dd, \(J = 11.1, 7.4\) Hz, 3H), 7.47 (t, \(J = 7.0\) Hz, 1H), 7.43 – 7.40 (m, 2H), 7.36 – 7.31 (m, 4H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 143.07, 136.71, 133.76, 131.54, 129.56, 128.93, 127.96, 127.68.

\[\text{\includegraphics[width=0.5\textwidth]{s-phenyl-benzenesulfonothioate}}\]

S-4-(Isopropyl) phenyl-4-isopropylbenzenesulfonothioate (3c)\(^4\). Colourless oil. 62 mg, yield 62%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.48 (d, \(J = 8.4\) Hz, 2H), 7.28 – 7.26 (m, 2H), 7.24 (d, \(J = 8.4\) Hz, 2H), 7.18 (d, \(J = 8.2\) Hz, 2H), 2.99 – 2.89 (m, 2H), 1.25 (dd, \(J = 10.1, 6.9\) Hz, 12H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 155.40, 152.91, 140.74, 136.79, 127.90, 127.69, 126.91, 125.0, 34.39, 34.18, 23.91, 23.77.

\[\text{\includegraphics[width=0.5\textwidth]{s-4-isopropyl-phenyl-4-isopropylbenzenesulfonothioate}}\]

S-(4-methoxyphenyl)4-methoxybenzenesulfonothioate (3d)\(^4\). White solid, 86 mg, yield 92%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.50 (d, \(J = 5.5\) Hz, 2H), 7.29 – 7.25 (m, 2H), 6.92 – 6.81 (m, 4H), 3.85 (d, \(J = 21.6\) Hz, 6H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 163.66, 162.34, 138.51, 135.12, 130.05, 119.10, 115.05, 113.97, 55.84, 55.61.

\[\text{\includegraphics[width=0.5\textwidth]{s-4-methoxyphenyl-4-methoxybenzenesulfonothioate}}\]
S-((1,1′-biphenyl)-4-yl)-(1,1′-biphenyl)-4-sulphonothioate (3e) [5]. White solid, 97 mg, yield 81%.

1H NMR (300 MHz, CDCl$_3$) δ 7.67 – 7.57 (m, 9H), 7.52 – 7.31 (m, 9H). 13C NMR (75 MHz, CDCl$_3$) δ 146.60, 144.40, 141.80, 139.51, 139.00, 137.15, 129.24, 129.14, 128.90, 128.45, 128.25, 128.18, 127.49, 127.47, 127.33, 126.62.

S-(4-fluorophenyl) 4-fluorobenzenesulphonothioate(3f) [5]. White solid, 79 mg, yield 92%.

1H NMR (600 MHz, CDCl$_3$) δ 7.59 (dd, J = 8.8, 5.0 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.12 (t, J = 8.5 Hz, 2H), 7.06 (t, J = 8.5 Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 166.61, 165.87, 164.90, 164.19, 139.01, 138.95, 130.63, 130.57, 117.16, 117.02, 116.43, 116.28, 5.19 1F NMR (565 MHz, CDCl$_3$) δ -102.49, -106.82.

S-(4-chlorophenyl) 4-chlorobenzenesulphonothioate (3g) [5]. White solid, 86 mg, yield 90%.

1H NMR (600 MHz, CDCl$_3$) δ 7.52 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.38 – 7.29 (m, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 141.46, 140.72, 138.72, 137.84, 130.07, 129.42, 129.09, 126.18.

S-(4-bromophenyl) 4-bromobenzenesulphonothioate (3h) [5]. White solid, 107 mg, yield 88%.

1H NMR (600 MHz, CDCl$_3$) δ 7.60 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 5.3 Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 142.03, 137.99, 133.08, 132.44, 129.35, 129.10, 127.18, 126.76.
S-(4-(trifluoromethyl) phenyl) 4-(trifluoromethyl) benzenesulfonothioate (3i)\[^5\]. White solid, 106 mg, yield 92%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.73 (s, 4H), 7.65 (d, \(J = 8.0\) Hz, 2H), 7.54 (d, \(J = 7.9\) Hz, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\): 122.9 (q, \(J = 272\) Hz), 123.3 (q, \(J = 272\) Hz), 126.3 (q, \(J = 4\) Hz), 126.5 (q, \(J = 4\) Hz), 127.9, 131.6, 133.6 (q, \(J = 33\) Hz), 135.5 (q, \(J = 33\) Hz), 136.7, 146.1. \(^{19}\)F NMR (565 MHz, CDCl\(_3\)) \(\delta\) -63.11, -63.21.

S-(naphthalen-2-yl) naphthalene-2-sulfonothioate (3j)\[^5\]. White solid, 63 mg, yield 60%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.94 (s, 1H), 7.89 (dd, \(J = 8.4, 5.0\) Hz, 2H), 7.85 – 7.82 (m, 2H), 7.74 (d, \(J = 8.5\) Hz, 1H), 7.69 – 7.62 (m, 4H), 7.59 – 7.52 (m, 2H), 7.50 – 7.47 (m, 1H), 7.35 (dd, \(J = 8.5, 1.8\) Hz, 1H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 139.84, 137.85, 135.27, 134.26, 133.41, 132.00, 131.77, 129.62, 129.51, 129.48, 129.45, 129.26, 128.55, 128.37, 128.02, 127.87, 127.80, 127.04, 125.33, 122.58.

S-(Thiophen-2-yl) thiophene-2-sulfonothioate (3k)\[^5\]. Yellow oil, 61 mg, yield 78%.

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.26 (d, \(J = 4.2\) Hz, 2H), 7.10 (d, \(J = 4.0\) Hz, 2H), 6.96 (dd, \(J = 9.1, 4.1\) Hz, 4H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 140.75, 140.12, 139.81, 139.70, 134.31, 128.20, 127.00, 123.29.

S-(5-Chlorothiophen-2-yl)5-chlorothiophene-2-sulfonothioatea (3l)\[^5\]. Yellow oil, 71 mg, yield 72%.

\(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.27 (s, 1H), 7.10 (d, \(J = 4.0\) Hz, 1H), 6.97 (d, \(J = 4.0\) Hz, 1H), 6.94 (d, \(J = 4.1\) Hz, 1H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 140.79, 140.31, 139.82, 139.75, 134.30, 128.21, 127.00, 123.43.
Copies of 1H NMR, 13C NMR and 19F NMR spectra

1H NMR of 1,2-Di-p-tolydisulfane (2a)$^{[1]}$

13C NMR of 1,2-Di-p-tolydisulfane (2a)$^{[1]}$
1H NMR of 1,2-Diphenyldisulfide (2b)$^{[1]}$

13C NMR of 1,2-Diphenyldisulfide (2b)$^{[1]}$
1H NMR of 1,2-Bis(4-isopropylphenyl) disulfide (2c)$^{[1]}$

13C NMR of 1,2-Bis(4-isopropylphenyl) disulfide (2c)$^{[1]}$
1H NMR of 1,2-Di([1,1'-biphenyl]-4-yl) disulfide (2d) $^{[1]}$

[Chemical structure image]

1H NMR data:
- f1 (ppm): 2.00, 4.01, 8.01, 4.00
- CDCl$_3$ 7.26, 7.33, 7.35, 7.36, 7.42, 7.43, 7.45, 7.54, 7.56, 7.57, 7.59, 7.61

13C NMR of 1,2-Di([1,1'-biphenyl]-4-yl) disulfide (2d) $^{[1]}$

[Chemical structure image]

13C NMR data:
- f1 (ppm): 76.95, 77.16, 77.37
- CDCl$_3$ 127.13, 127.68, 127.95, 128.36, 129.00, 136.18, 140.35, 140.52
1H NMR of 1,2-Bis(4-(trifluoromethoxy) phenyl) disulfide (2e) 1

13C NMR of 1,2-Bis(4-(trifluoromethoxy) phenyl) disulfide (2e) 1
^{1}H NMR of 1,2-Bis(4-(trifluoromethyl)phenyl) disulfide (2f)$^{[1]}$

^{13}C NMR of 1,2-Bis(4-(trifluoromethyl)phenyl) disulfide (2f)$^{[1]}$
19F NMR of 1,2-Bis(4-(trifluoromethyl) phenyl) disulfide (2f)$^{[1]}$

1H NMR of 1,2-bis(4-fluorophenyl) disulfide (2g)$^{[1]}$
\[{\text{13C NMR of 1,2-bis(4-fluorophenyl) disulfide (2g)}} \]

\[{\text{19F NMR of 1,2-bis(4-fluorophenyl) disulfide (2g)}} \]
1H NMR of 1,2-Bis(4-chlorophenyl) disulfide (2h)$^{[1]}$

13C NMR of 1,2-Bis(4-chlorophenyl) disulfide (2h)$^{[1]}$
1H NMR of 1,2-Bis(4-bromophenyl) disulfide (2i)

13C NMR of 1,2-Bis(4-bromophenyl) disulfide (2i)$^{[1]}$
1H NMR of 1,2-Bis(4-nitrophenyl) disulfide (2j)$^{[2]}$
1H NMR of 1,2-di-m-tolyldisulfide (2k)2

13C NMR of 1,2-di-m-tolyldisulfide (2k)2
1H NMR of 1,2-Bis(3-bromophenyl) disulfide (2l) $^{[2]}$

13C NMR of 1,2-Bis(3-bromophenyl) disulfide (2l) $^{[2]}$
1H NMR of 1,2-Di(naphthalen-2-yl) disulfide (2m)$^{[2]}$

13C NMR of 1,2-Di(naphthalen-2-yl) disulfide (2m)$^{[2]}$

1H NMR of 1,2-Bis(5-chlorothiophen-2-yl) disulfide (2n) \[^2\]

13C NMR of 1,2-Bis(5-chlorothiophen-2-yl) disulfide (2n) \[^2\]
1H NMR of 1,2-Di(thiophen-2-yl) disulfide (2o)$^{[2]}$

13C NMR of 1,2-Di(thiophen-2-yl) disulfide (2o)$^{[2]}$
1H NMR of 1-cyclopropyl-2-(p-tolyl) disulfide (2p) \[^3\]

13C NMR of 1-cyclopropyl-2-(p-tolyl) disulfide (2p) \[^3\]
1H NMR of 1-cyclopropyl-2-(4-methoxyphenyl) disulfide (2q)[3]

13C NMR of 1-cyclopropyl-2-(4-methoxyphenyl) disulfide (2q)[3]
1H NMR of 1-(4-chlorophenyl)-2-cyclopropyldisulfide (2r)[3]

13C NMR of 1-(4-chlorophenyl)-2-cyclopropyldisulfide (2r)[3]
1H NMR of 2-chloro-5-(cyclopropyldisulfaneyl) thiophene (2s)3

13C NMR of 2-chloro-5-(cyclopropyldisulfaneyl) thiophene (2s)3
1H NMR of S-(p-tolyl) 4-methylbenzenesulfonothioate (3a)$^{[4]}$

13C NMR of S-(p-tolyl) 4-methylbenzenesulfonothioate (3a)$^{[4]}$
1H NMR of S-phenyl benzenesulfonothioate (3b) [4]

13C NMR of S-phenyl benzenesulfonothioate (3b) [4]
1H NMR of S-4-(Isopropyl)phenyl-4-isopropylbenzenesulfonothioate (3c)$^{[4]}$
1H NMR of S-(4-methoxyphenyl) 4-methoxybenzenesulfonothioate (3d) $^{[4]}$

13C NMR of S-(4-methoxyphenyl) 4-methoxybenzenesulfonothioate (3d) $^{[4]}$
1H NMR of S-([1,1′-biphenyl]-4-yl)-[1,1′-biphenyl]-4-sulfonothioate (3e)$^{[5]}$

13C NMR of S-([1,1′-biphenyl]-4-yl)-[1,1′-biphenyl]-4-sulfonothioate (3e)$^{[5]}$
1H NMR of S-(4-fluorophenyl) 4-fluorobenzenesulfonothioate (3f)[5]

13C NMR of S-(4-fluorophenyl) 4-fluorobenzenesulfonothioate (3f)[5]
\(^{19}\)F NMR Of S-(4-fluorophenyl) 4-fluorobenzenesulfonothioate (3f)\(^{[5]}\)

\(^{1}\)H NMR of S-(4-chlorophenyl) 4-chlorobenzenesulfonothioate (3g)\(^{[5]}\)
13C NMR of S-(4-chlorophenyl) 4-chlorobenzenesulfonothioate (3g) 5

1H NMR of S-(4-bromophenyl) 4-bromobenzenesulfonothioate (3h) 5
13C NMR of S-(4-bromophenyl) 4-bromobenzenesulfonothioate (3h) $^{[5]}$

1H NMR of S-(4(trifluoromethyl)phenyl)4(trifluoromethyl)benzenesulfonothioate (3i) $^{[5]}$
13C NMR of S-(4-(trifluoromethyl)phenyl) 4-(trifluoromethyl)benzenesulfonothioate (3i) [5]

19F NMR of S-(4-(trifluoromethyl)phenyl) 4-(trifluoromethyl) benzenesulfonothioate (3i) [5]
1H NMR of S-(naphthalen-2-yl) naphthalene-2-sulfonothioate (3j)$^{[5]}$

13C NMR of (naphthalen-2-yl) naphthalene-2-sulfonothioate (3j)$^{[5]}$
1H NMR of S-(Thiophen-2-yl)thiophene-2-sulfonothioate ($3k$)5

13C NMR of S-(Thiophen-2-yl) thiophene-2-sulfonothioate ($3k$)5
1H NMR of S-(5-Chlorothiophen-2-yl)5-chlorothiophene-2-sulfonothioate (3l) 5

13C NMR of S-(5-Chlorothiophen-2-yl)5-chlorothiophene-2-sulfonothioate (3l) 5
References