Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Nickel-Catalyzed Alkylation of Ketones and Nitriles with Primary Alcohols

Sertaç Genç, Burcu Arslan, Derya Gülcemal, Süleyman Gülcemal, and Salih Günnaz*

Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey

* E-mail: <u>salih.gunnaz@ege.edu.tr</u>

Contents

1. Monitoring of the reaction by ¹ H NMR in toluene- d_8	S2
2. Time course of the	
reactionS2	
3. Traces of ¹ H and ¹³ C NMR spectra of products	

Figure S1. Monitoring of the reaction by ¹H NMR in toluene- d_8

Figure S2. Time course of the reaction

Figure S3. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of L_a

Figure S4. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of L_b

Figure S5. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of L_c

Figure S6. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of 1a

Figure S7. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of 1b

Figure S8. ¹H (400 MHz, DMSO- d_6) and ¹³C (100.6 MHz, DMSO- d_6) NMR spectra of 1c

Figure S9. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4a

Figure S10. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4b

Figure S11. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4c

Figure S12. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4d

Figure S13. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4e

Figure S14. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4f

Figure S15. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4g

Figure S16. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4h

Figure S17. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4i

Figure S18. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4j

Figure S19. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4k

Figure S20. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4I

Figure S21. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4m

Figure S22. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4n

Figure S23. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 40

Figure S24. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4p

Figure S25. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4q

Figure S26. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4r

Figure S27. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 4s

Figure S28. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 4t

Figure S29. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 6a

Figure S30. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of **6b**

Figure S31. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 6c

Figure S32. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 6d

Figure S33. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 8a

Figure S34. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8b

Figure S35. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8c

Figure S36. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8d

Figure S37. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 8e

Figure S38. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8f

Figure S39. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8g

Figure S40. 1 H (400 MHz, CDCl₃) and 13 C (100.6 MHz, CDCl₃) NMR spectra of 8h

Figure S41. ¹H (400 MHz, CDCl₃) and ¹³C (100.6 MHz, CDCl₃) NMR spectra of 8i