Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Tak	ble of contents	
1.	General methods	2
2.	Synthesis and characterizations of intermediates	3
3.	Catalysis	3
4.	Electrochemistry	10
5.	¹ H and ¹³ C NMR spectra	18
6.	GC/MS records	52
7.	References	54

1. General methods

All commercial chemicals, reagents and solvents were purchased from Aldrich (Merck), Acros, TCI, and Penta and were used as received. Column chromatography was carried out with silicagel 60 (particle size 0.040-0.063 mm, 230-400 mesh; Merck) and commercially available solvents. Thin-layer chromatography (TLC) was conducted on aluminium sheets coated with silica gel 60 F254, obtained from Merck, with visualization by a UV lamp (254 or 360 nm). ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively, with a Bruker AVANCE400 instrument or at 500 and 125 MHz, respectively, with a Bruker Ascend TM 500 at 25 °C. Chemical shifts are reported in ppm relative to the signal of Me₄Si. The residual solvent signal in the ¹H and ¹³C NMR spectra was used as an internal reference (CDCl₃ δ = 7.25 and 77.23 ppm; d_{e} acetone $\delta = 2.05$ and 206.68 ppm). Apparent resonance multiplicities are described as s (singlet), d (doublet), dd (doublet of doublet) and m (multiplet), apparent coupling constants of multiplets are given in Hz. High-resolution MALDI MS spectra were measured with a MALDI mass spectrometer LTQ Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany) equipped with nitrogen UV laser (337 nm, 60 Hz). The LTQ Orbitrap instrument was operated in positive-ion mode over a normal mass range (m/z 50-2000) with resolution 100 000 at m/z = 400. The survey crystal positioning system (survey CPS) was set for the random choice of shot position by automatic crystal recognition. trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidenelmalononitrile (DCTB) and 2.5-dihydroxybenzoic acid (DHB) were used as a matrix. Mass spectra were averaged over the whole MS record for all measured samples. Absorption and fluorescence spectra were measured on a Duetta™ HORIBA spectrophotometer in DMSO at room temperature. Voltammetric measurements were performed by using an integrated potentiostat system ER466 (eDAQ Europe, Warszawa, Poland) operated with EChem Electrochemistry software.

2. Synthesis and characterizations of intermediates

In a Schlenk flask under argon atmosphere, thiazole (0.2 ml, 2.82 mmol) was dissolved in dry THF (15 ml). The resulting reaction mixture was cooled at -78 °C and *n*BuLi (2.3 ml, 1.6 M sol. In hexane) was added dropwise. After one hour, solution of ZnBr₂ in THF (10 ml) was added and the mixture was heated to room temperature. Addition of I₂ (0.9 g, 7.1 mmol) was followed by stirring for additional 18 hours. Subsequently, K₂S₂O₃ (sat. aq. sol. 10 ml) was poured into the mixture and additional Et₂O (20 ml) and poured into citric acid (10% aq. Sol., 50 ml). Combined organic layers were washed with NaCl (sat. Aq. Sol. 20 ml), dried (Na₂SO₄) and the solvents were evaporated *in vacuo*. The crude product was purified by flash chromatography (SiO₂, DCM:Hex 1:1). 2-Iodohiazole **10** is orange-brown liquid (50 mg; 84 %); *n*_D²⁵ = 1.6553 (lit.¹ 1.6662). *R*_f = 0.87 (SiO₂; DCM:Hex = 1:1).. ¹H-NMR (400 MHz, 25 °C, CDCl₃): δ = 7.59 (d, *J* = 2.4 Hz, 1H), 7.32 (d, *J* = 2.4 Hz, 1H) ppm. Spectral data according to the literature.²

In a Schlenk flask under argon atmosphere, oxazole (0.19 ml, 2.82 mmol) was dissolved in dry THF (15 ml). The resulting reaction mixture was cooled at -78 °C and *n*BuLi (2.3 ml, 1.6 M sol. In hexane) was added dropwise. After one hour, solution of ZnBr₂ in THF (10 ml) was added and the mixture was heated to room temperature. Addition of I₂ (0.9 g, 7.1 mmol) was followed by stirring for additional 1 hour. Subsequently, Na₂SO₃ (sat. aq. sol. 10 ml) was poured into the mixture and extraxted with Et₂O (3 × 20 ml). Combined organic layers were washed with NaCl (sat. aq. sol. 20 ml), dried (Na₂SO₄) and the solvents were evaporated *in vacuo*. The crude product was purified by flash chromatography (SiO₂, DCM:Hex 1:1). 2-lodooxazole **11** is yellow liquid (13 mg; 23 %); $n_D^{25} = 1.561$. $R_f = 0.45$ (SiO₂; DCM:Hex = 1:1). ¹H-NMR (500 MHz, 25 °C, CDCl₃): $\delta = 7.75$ (d, J = 0.85 Hz, 1H), 7.09 (d, J = 0.6 Hz, 1H) ppm. Spectral data according to the literature.³

3. Catalysis

General procedure A: The substrate (1.95 × 10⁻⁴ mol, 1 eq) and photoredox catalyst DPZ (10 mol%) were dissolved in DMSO (2 ml). Subsequently, DIPEA (3.9×10^{-4} mol, 2 eq) and the trapping reagent (3.9×10^{-3} mol, 20 eq) were added. Resulting reaction mixture was irradiated by Royal Blue LED from 5 cm distance at room temperature for 24 hours. All reactions were performed in a Schlenk flask under argon atmosphere. Addition of water (10 ml) was followed by extraction with DCM (3×10 ml). The combined organic extracts were dried over Na₂SO₄ and the solvents were evaporated *in vacuo*. The crude product was purified by column chromatography.

General procedure B: The procedure was analogous to the *General procedure A* without the use of photoredox catalyst DPZ.

The title compound was prepared from **1** (27 mg) and **16** (270 µL) following the general methods A and B with the yields 16 mg (50 %) and 6 mg (18 %), respectively. The compound **21** was isolated as a violet-brown viscous liquid. $R_f = 0.49$ (SiO₂; PE:EtAc = 5:1). ¹H-NMR (500 MHz, 25 °C, CDCl₃): $\delta = 9.21$ (s, 1H), 7.67–7.66 (m, 1H), 7.66–7.65 (m, 1H), 7.59–7.56 (t, J = 7.5 Hz, 1H),

7.28–7.26 (m, 1H), 6.99 (s, 1H), 6.84 (s, 1H), 6.37–6.36 (m, 1H) ppm. ¹³C-NMR (100 MHz, 25 °C, CDCl₃): δ = 135.90; 134.28; 133.36; 128.42; 126.91; 126.11; 121.11; 120.41;110.60; 110.57; 106.17 ppm. HR-FT-MALDI-MS (DHB): *m/z* calcd. for C₁₁H₈N₂ ([M+H]⁺): 169.07603; found: 169.07602. Spectral data according to the literature.⁴

The title compound was prepared from **2** (40 mg) and **16** (270 μ L) following the general methods A and B with the yields 20 mg (72 %) and 6 mg (23 %), respectively. The compound **22** was isolated as a brown viscous liquid. $R_f = 0.2$ (SiO₂; EtAc:Hex = 5:1). ¹H-NMR (400 MHz, 25 °C, CDCl₃): $\delta = 8.83$ (s, 1H), 8.53 (d, J = 6 Hz, 2 H), 7.34–7.33 (m, 2H), 6.97– 6.95 (m, 1H),

6.75–6.74 (m, 1H), 6.35–6.33 (q, J = 2.5 Hz) ppm. ¹³C-NMR (125 MHz, 25 °C, CDCl₃): δ = 150.15; 140.00; 129.28; 121.47; 118.01; 111.04; 109.31 ppm. HR-FT-MALDI-MS (DCTB): *m/z* calcd for C₉H₈N₂ ([M+H]⁺): 145.07602; found: 145.07600. Spectral data according to the literature.⁵

The title compound was prepared from **2** (40 mg) and **17** (346 μ L) following the general methods A and B with the yields 22 mg (71 %) and 13 mg (43 %), respectively. The compound **23** was isolated as a brown viscous liquid. $R_f = 0.39$ (SiO₂; EtAc). ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): $\delta = 8.55-8.53$ (m, 2H), 7.43–7.42 (m, 2H), 6.89–6.88 (t, J = 2 Hz, 1H), 6.44–6.43 (m, 1H),

6.14–6.13 (q, J = 2.7 Hz, 1 H); 3.81 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): $\delta = 151.70$; 151.28; 141.64; 132.50; 127.91; 122.88; 122.18; 112.08; 109.46; 36.42 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₁₀H₁₀N₂ ([M+H]⁺): 159.09167; found: 159.09166. Spectral data according to the literature.⁶

The title compound was prepared from **2** (40 mg) and **18** (689 µL) following the general methods A and B with the yields 41 mg (80 %) and 0 mg (0 %), respectively. The compound **24** was isolated as a yellow-orange viscous liquid. $R_f = 0.45$ (SiO₂; EtAc:DCM = 1:1). ¹H-NMR (500 MHz, 25 °C, CDCl₃): $\delta = 8.41$ (d, J = 6 Hz, 2H), 7.30–7.27 (m, 4H), 7.22–7.19 (m, 6H), 6.96 (d, J = 6 Hz, 2H), 4.27–4.24 (t, J = 8 Hz, 1H), 3.38 (d, J = 8 Hz, 2H) ppm. ¹³C-NMR (100 MHz, 25 °C, CDCl₃): $\delta = 149.62$; 149.51; 143.75; 128.73; 128.07; 126.74; 124.66; 60.59; 52.29; 41.58 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₁₉H₁₇N ([M+H]⁺):

260.14338; found: 260.14316. Spectral data according to the literature.⁷

The title compound was prepared from **2** (40 mg) and **19** (313 µL) following the general methods A and B with the yields 5 mg (19 %) and 0 mg (0 %), respectively. The compound **25** was isolated as a brown viscous liquid. $R_f = 0.46$ (SiO₂; EtAc:Hex = 5:2). ¹H-NMR (500 MHz, 25 °C, CDCl₃): $\delta = 8.60$ (s, 2H), 7.51–7.50 (dd, J = 1 and 3.7 Hz, 1H), 7.49–7.48 (m, 2H), 7.42–7.41 (dd,

J = 1 and 5 Hz, 1H), 7.14–7.13 (dd, J = 3.7 and 5 Hz, 1H) ppm. ¹³C-NMR spectrum was not measured due to the low amount of **25**. HR-FT-MALDI-MS (DCTB): m/z calcd for C₉H₇NS ([M+H]⁺): 162.03720; found: 162.03708. Spectral data according to the literature.⁸

The title compound was prepared from **2** (40 mg) and **20** (315 µL) following the general methods A and B with the yields 14 mg (45 %) and 6 mg (20 %), respectively. The compound **26** was isolated as a yellow viscous liquid. $R_f = 0,25$ (SiO₂; EtAc:Hex = 10:1). ¹H-NMR (500 MHz, 25 °C, d_{6} -acetone): $\delta =$

8.74 (d, J = 4 Hz, 1H), 8.74–8.69 (m, 2H), 8.07–8.04 (m, 3H), 7.96–7.93 (td, J = 2 and 8 Hz, 1H), 7.46–7.43 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): $\delta = 155.89$; 151.99; 151.60; 147.61; 138.81; 125.55; 122.29; 122.24 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₁₀H₈N₂ ([M+H]⁺): 157.07602; found: 157.07603. Spectral data according to the literature.⁹

The title compound was prepared from **3** (40 mg) and **16** (270 µL) following the general methods A and B with the yields 6 mg (20 %) and 2 mg (6 %), respectively. The compound **27** was isolated as a brown viscous liquid. $R_f = 0.33$ (SiO₂; EtAc). ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): $\delta = 10.65$ (s, 1H), 8.44 (d, J = 4.8 Hz, 1H), 7.71–7.67 (m, 1H), 7.65–7.63 (m, 1H), 7.08–7.06 (t,

1H), 6.94 (s, 1H), 6.75 (s, 1H), 6.19–6.18 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): δ = 152.53; 150.29; 137.76; 132.85; 121.56; 121.56; 121.56; 119.05; 110.85; 108.63 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₉H₈N₂ ([M]⁺): 144.06820; found: 144.06808. Spectral data according to the literature.¹⁰

The title compound was prepared from **4** (40 mg) and **16** (270 µL) following the general methods A and B with the yields 17 mg (60%) and 6 mg (20 %), respectively. The compound **28** was isolated as a brown viscous liquid. $R_f = 0.44$ (SiO₂; EtAc). ¹H-NMR (500 MHz, 25 °C, CDCl₃): $\delta = 8.82$ (s, 1H), 8.78 (d, J = 1.95 Hz, 1H), 8.43–8.42 (m, 1H), 7.76–7.74 (m, 1H), 7.29–7.26 (m, 1H),

6.93–6.92 (q, J = 2.55 Hz, 1H), 6.59–6.58 (q, J = 3.7, 1H), 6.33–6.32 (q, J = 2.65, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, CDCl₃): $\delta = 147.27$; 145.47; 131.26; 129.12; 128.97; 123.92; 120.26; 110.76; 107.56 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₉H₉N₂ ([M+H]⁺): 145.07603; found: 145.07595. Spectral data according to the literature.¹¹

The title compound was prepared from **7** (31 mg) and **16** (270 μ L) following the general methods A and B with the yields 16 mg (56 %) and 0 mg (0 %), respectively. The compound **29** was isolated as a yellow solid. $R_f = 0.30$ (SiO₂; EtAc:Hex = 1:1); mp > 150 °C (decomp). ¹H-NMR (500 MHz, 25 °C, d_6 -

acetone): δ = 10.85 (s, 1H), 9.01 (s, 2H), 8.92 (s, 1H), 7.02–7.02 (m, 1H), 6.78–6.76 (m, 1H), 6.27–6.25 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, *d*₆-acetone): δ = 156.38; 152.25; 128.18; 126.03; 122.15; 110.95; 108.79 ppm. HR-FT-MALDI-MS (DCTB): *m/z* calcd. for C₈H₇N₃⁺ ([M+H]⁺), 146.07127; found 146.07115. Spectral data according to the literature.¹²

The title compound was prepared from **8** (31 mg) and **16** (270 μ L) following the general methods A and B with the yields 18 mg (63 %) and 0 mg (0 %), respectively. The compound **30** was isolated as a yellow solid. $R_f = 0.25$ (SiO₂; EtAc:Hex = 1:1); mp > 195 °C (decomp). ¹H-NMR (500 MHz, 25 °C, d_{6^-}

acetone): $\delta = 10.81$ (s, 1H), 8.94–8.94 (m, 1H), 8.42–8.42 (m, 1H), 8.28 (d, J = 2.5 Hz, 1H), 7.04–7.04 (m, 1H), 6.94 (s, 1H), 6.27–6.25 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): $\delta = 147.90$; 144.48; 141.59; 141.37; 129.56; 122.80; 111.02; 109.82 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₈H₇N₃⁺ ([M+H]⁺), 146.07127; found: 146.07118.

The title compound was prepared from 9 (41 mg) and 16 (270 µL) following the general methods A and B with the yields 20 mg (70 %) and 12 mg (43 %), respectively. The compound **31** was isolated as a brown viscous liquid. $R_f = 0.28$ (SiO₂; EtAc). ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): δ = 10.93 (s, 1H), 7.03 (s,

1H), 6.90 (s, 2H), 6.48 (s, 1H), 6.19 (d, J = 2 Hz, 1H), 3.83 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_8 -acetone): δ = 143.32; 128.16; 124.14; 122.84; 120.50; 110.09; 108.03; 35.12 ppm. HR-FT-MALDI-MS (DCTB): *m*/*z* calcd for C₈H₉N₃ ([M+H]⁺): 148.08692; found: 148.08675.

The title compound was prepared from 10 (41mg) and 16 (270 µL) following the general methods A and B with the yields 23 mg (80 %) and 15 mg (51 %), respectively. The compound **32** was isolated as a brown viscous liquid. $R_f = 0.15$ (SiO₂; DCM:Hex = 5:1). ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): δ = 10.86 (s, 32 1H), 7.69 (d, J = 3 Hz, 1H), 7.38 (d, J = 3 Hz, 1H), 6.97 (s, 1H), 6.68 (s, 1H), 6.20 (d, J = 2.5 Hz, 1H) ppm. ¹³C-NMR (100 MHz, 25 °C, d_6 -acetone): δ = 161.94; 143.89; 127.83; 122.11; 117.57; 110.88; 110.63 ppm. HR-FT-MALDI-MS (DCTB): *m*/*z* calcd for C₇H₆N₂S ([M+H]⁺): 151.03245; found: 151.03239. Spectral data according to the literature.¹³

The title compound was prepared from 11 (38 mg) and 16 (270 µL) following the general methods A and B with the yields 20 mg (78 %) and 9 mg (36 %), respectively. The compound 33 was isolated as a yellowish solid. $R_f = 0.65$ (SiO₂; EtAc:Hex = 1:1); mp = 117–118 °C. ¹H-NMR (500 MHz, 25 °C, $d_{6^{-1}}$ acetone): δ = 10.98 (s, 1H), 7.85 (s, 1H), 7.17 (s, 1H), 7.02–7.00 (m, 1H), 6.75– 6.73 (m, 1H), 6.24–6.22 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_{6} -acetone): δ = 158.02, 138.37, 128.56, 122.38, 121.40, 110.65, 110.40 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd for C₇H₆N₂O ([M+H]⁺): 135.05529; found: 135.05519.

The title compound was prepared from **9** (41 mg) and **17** (346 μ L) following the general methods A and B with the yields 26 mg (85 %) and 12 mg (39 %), respectively. The compound 34 was isolated as a brown viscous liquid. $R_f =$ 0,34 (SiO₂; EtAc). ¹H-NMR (500 MHz, 25 °C, d_{c} -acetone): δ = 7.09 (s, 1H), 6.97 (s, 1H), 6.81–6.79 (t, J = 2 Hz, 1H), 6.32–6.31 (m, 1H), 6.11–6.09 (t, J = 3.5 Hz, 1H), 3.78 (s, 3H), 3.72 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_{6} -acetone): δ = 142.52; 128.86; 125.61; 124.11; 122.69; 111.54; 108.40; 36.25; 34.90 ppm. HR-FT-MALDI-MS (DCTB): *m/z* calcd. for C₉H₁₁N₃ ([M+H]⁺): 162.10257; found: 162.10254. Spectral data according to the literature.¹⁴

The title compound was prepared from 10 (41 mg) and 17 (346 µL) following the general methods A and B with the yields 30 mg (93 %) and 15 mg (46 %), respectively. The compound 35 was isolated as a brown viscous liquid. R_f =

0.13 (SiO₂; DCM:Hex = 5:1). ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): δ = 7.74 (d, J = 3 Hz, 1H), 7.40 (d, J = 3.5 Hz, 1H), 6.87 (s, 1H), 6.64–6.63 (m, 1H), 6.10–6.09 (m, 1H), 4.01 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_{6} -acetone): δ = 162.34; 144.19; 128.08; 127.84; 118.01; 113.51; 109.43; 37.37 ppm. HR-FT-MALDI-MS (DCTB): *m/z* calcd. for C₈H₈N₂S ([M]⁺): 164.04027; found: 164.04014. Spectral data according to the literature.¹⁵

The title compound was prepared from **11** (38 mg) and **17** (346 µL) following the general methods A and B with the yields 30 mg (93 %) and 15 mg (46 %), respectively. The compound **36** was isolated as a yellow oil. $R_f = 0.9$ (SiO₂; EtAc:Hex = 1:2); $n_D^{25} = 1.4052$. ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): $\delta = 7.86$ (s, 1H), 7.20 (s, 1H), 6.91–6.90 (m, 1H), 6.74–6.73 (m, 1H), 6.13–6.12 (m, 1H),

4.01 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): δ = 157.78, 138.10, 128.50, 127.89, 122.10, 112.77, 108.86, 36.80 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₈H₈N₂O ([M+H]⁺): 149.07094; found: 149.07087.

The title compound was prepared from **12** (43 mg) and **16** (270 μ L) following the general methods A and B with the yields 31 mg (95 %) and 0 mg (0 %), respectively. The compound **37** was isolated as a white solid. $R_f = 0.68$ (SiO₂; DCM:Hex = 2:1); mp = 120–122 °C (lit.¹⁶ 119–120 °C) . ¹H-

NMR (500 MHz, 25 °C, d_6 -acetone): δ = 10.48 (s, 1H), 7.66–7.62 (m, 2H), 7.14–7.09 (m, 2H), 6.86–6.84 (m, 1H), 6.49–6.47 (m, 1H), 6.16–6.14 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): δ = 162.42 (d, J = 241 Hz); 132.13; 126.64 (d, J = 7.5 Hz); 120.41; 120.24; 116.80 (d, J = 21 Hz); 110.69; 110.65; 106.91 ppm. ¹⁹F-NMR (470 MHz, 25 °C, d_6 -acetone): δ = –119.05 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₁₀H₈NF⁺ ([M]⁺), 161.06353; found 161.06357. Spectral data according to the literature. ¹⁷

The title compound was prepared from **13** (55 mg) and **16** (270 μ L) following the general methods A and B with the yields 27 mg (63 %) and 4 mg (10 %), respectively. The compound **38** was isolated as a beige solid. $R_f = 0.84$ (SiO₂; DCM:Hex = 2:1); mp = 137 °C, decomp. (lit.¹⁸ 158 °C).

¹H-NMR (500 MHz, 25 °C, d_{δ} -acetone): δ = 10.60 (s, 1H), 7.59–7.56 (m, 2H), 7.51–7.49 (m, 2H), 6.89–6.88 (m, 1H), 6.57–6.56 (m, 1H), 6.18–6.16 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_{δ} -acetone): δ = 133.57, 132.60, 131.37, 126.20, 119.25, 110.47, 107.26 ppm. HR-FT-MALDI-MS (DCTB): *m*/*z* calcd. for C₁₀H₈BrN ([M]⁺), 220.98346; found: 220.98336. Spectral data according to the literature.¹⁹

The title compound was prepared from **14** (64 mg) and **16** (270 μ L) following the general methods A and B with the yields 45 mg (87 %) and 3 mg (5 %), respectively. The compound **39** was isolated as a white solid. R_f = 0.68 (SiO₂; DCM:Hex = 2:1); mp = 183–185 °C. ¹H-NMR (500 MHz, 25

°C, d_6 -acetone): δ = 10.59 (s, 1 H), 7.69–7.68 (m, 2H); 7.46–7.43 (m, 2H); 6.89-6.88 (m, 1H), 6.58–6.57 (m, 1H), 6.18–6.16 (q, J = 2.5 Hz, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): δ = 138.98; 134.36; 131.78; 126.75;121.01; 110.83;107.65; 90.54 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₁₀H₈IN ([M]⁺): 268.96959; found: 268.96951. Spectral data according to the literature. ²⁰

The title compound was prepared from **15** (57 mg) and **16** (270 μ L) following the general methods A and B with the yields 37 mg (68 %) and 0 mg (0 %), respectively. The compound **40** was isolated as a red solid. R_f = 0.46 (SiO₂; EtAc:Hex = 1:7); mp = 122–124 °C. ¹H-NMR (500 MHz, 25 °C, d_6 -acetone): δ = 11.16 (s, 1H), 7.95 (d, J = 10 Hz, 1H), 7.85 (d, J = 10

Hz, 1H), 7.16–7.15 (m, 1H), 7.14–7.12 (m, 1H), 6.31–6.30 (m, 1H) ppm. ¹³C-NMR (125 MHz, 25 °C, d_6 -acetone): δ = 154.68; 152.33; 133.91; 128.70; 126.12; 123.19; 122.48; 110.96; 110.75; 109.59 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₁₀H₆BrN₃S⁺ ([M]⁺), 278.946024; found 278.94588.

The title compound was prepared from **40** (55 mg) and **17** (346 μ L) following the general methods A and B with the yields 25 mg (45 %) and 0 mg (0 %), respectively. The compound **41** was isolated as a dark red solid. $R_f = 0.44$ (SiO₂; EtAc:Hex = 1:7); mp = 48–50 °C. ¹H-NMR (500 MHz, 25 °C, d_c -acetone): $\delta = 11.21$ (s, 1H), 7.99 (d, J = 7.5 Hz,

1H), 7.62 (d, J = 7,5 Hz, 1H), 7.14–7.11 (m, 2H), 6.91–6.90 (m, 1H), 6.47–6.45 (m, 1H), 6.32–6.29 (m, 1H), 6.19–6.18 (m, 1H), 3.69 (s, 3H) ppm. ¹³C-NMR (125 MHz, 25 °C, $d_{6^{-1}}$ acetone): $\delta = 155.79$; 153.32; 131.54; 130.85; 129.86; 126.01; 125.28; 124.53; 123.37; 122.24; 122.06; 112.79; 110.94; 110.90; 110.39; 109.07; 36.37 ppm. HR-FT-MALDI-MS (DCTB): m/z calcd. for C₁₅H₁₂N₄S⁺ ([M]⁺), 280.07772; found 280.07757.

Base	Atmosphere	LED	Isolated yield [%]
DIPEA	Ar	Royal-Blue	23
TEA	Ar	Royal-Blue	10
TMEDA	Ar	Royal-Blue	0
No	Ar	Royal-Blue	0
DIPEA	Ar	Blue	0
DIPEA	Ar	Red-Orange	0
DIPEA	Ar	No	0
DIPEA	Air	Royal-Blue	traces

Table S1. Optimization of reaction conditions of non-catalysed C-C coupling between 2 and 16 inDMSO with DPZ.

Figure S1. Absorption spectra of 1*H*-pyrrole 16 after 1, 6 and 24 hours of irradiation by Royal Blue LED.

Figure S2. Absorption spectra of starting materials (2 and 16), product 22 and reaction mixture after irradiation by Royal Blue LED.

Figure S3. Absorption spectrum od (oligo)pyrrole 16 and DPZ.

Figure S4. Absorption spectrum of 2 and DIPEA in DMSO. Picture of the solution as an inset.

4. Electrochemistry

The electrochemical behavior of selected (hetero)aromatics were investigated by cyclic voltammetry in DMSO containing 0.1 M Bu₄NPF₆ in a three electrode cell by cyclic voltammetry (CV). The working electrode was glassy carbon disk (1 mm in diameter). As the reference and auxiliary electrodes were used leakless Ag/AgCl electrode (SSCE) containing filling electrolyte (3.4 M KCl) and titanium rod with a thick coating of platinum, respectively. Voltammetric measurements were performed by using an integrated potentiostat system ER466 (eDAQ Europe) operated with EChem Electrochemistry software. Potential window of the aforementioned electrolyte ranges between -2.8 to +1.55 V vs. SSCE. Determined peak potentials of the first oxidations and reductions are given *vs.* silver chloride electrode (SSCE; +0.205 V vs. SHE) as well.

Compound	Oxidations	Reductions
Compound	<i>E</i> p ^a (V)	<i>E</i> p ^c (V)
Pyrrole	+1.32	/
N-methylpyrrole	+1.35	/
2-iodo- <i>N</i> -methylimidazole	1	-1.93
		-2.55
2-iodothiazole	/	-1.36
		-2.67
Dibromobenzothiadiazole	/	-1.02 ^b
		-1.92
2-chlorobenzonitrile	1	-1.76
		-2.22
2-iodopyridine	/	-1.90
		-2.59
3-iodopyridine	1	-1.92
3-iodopyridine	/	-2.59
1-iodopyridine	1	-1.91
4-10000991101116	,	-2.59
4-bromopyridine	/	-2.12
		-2.54
4-chloropyridine	/	-2.19
		-2.55
1-fluoro-4-iodobenzene	/	-2.08
		/
2-bromopyrazine	/	-1.56
		-2.04
2-bromopyrimidine	/	-1.75
		-2.24
5-bromonyrimidino	1	-1.79
о-ы отторупппаше	/	-2.23

^a *E*_p^a and *E*_p^c are anodic or cathodic peak potentials of the irreversible first oxidations and reductions, respectively, measured by CV at scan rate 100 mVs⁻¹; all potentials are given vs. SSCE.^b Reversible first reduction.

Figure S5. CV diagram of compound 1 at GC electrode in DMSO containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S6. CV diagram of compound **2** at GC electrode in DMSO containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S7. CV diagram of compound **3** at GC electrode in DMSO containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S8. CV diagram of compound **4** at GC electrode in DMSO containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S9. CV diagram of compound **5** at GC electrode in DMSO with DIPEA containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S10. CV diagram of compound **6** at GC electrode in DMSO with DIPEA containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S11. CV diagram of compound 7 at GC electrode in DMSO containing 0.1 M Bu_4NBF_4 ; v=100mV/s.

Figure S12. CV diagram of compound 8 at GC electrode in DMSO containing 0.1 M Bu_4NBF_4 ; v=100mV/s.

Figure S13. CV diagram of compound 9 at GC electrode in DMSO containing 0.1 M Bu_4NBF_4 ; v=100mV/s.

Figure S14. CV diagram of compound **10** at GC electrode in DMSO containing 0.1 M Bu₄NBF₄; v=100mV/s.

Figure S15. CV diagram of compound **12** at GC electrode in DMSO containing 0.1 M Bu_4NBF_4 ; v=100mV/s.

Figure S16. CV diagram of compound **15** at GC electrode in DMSO containing 0.1 M Bu_4NBF_4 ; v=100mV/s.

5.¹H and ¹³C NMR spectra

Figure S17. ¹H NMR spectrum of 21 (500 MHz, CDCl₃, 25 °C).

Figure S18. ¹³C NMR APT spectrum of 21 (100 MHz, CDCl₃, 25 °C).

Figure S19. ¹H NMR spectrum of 22 (400 MHz, CDCl₃, 25 °C).

Figure S20. ¹³C NMR APT spectrum of 22 (125 MHz, CDCl₃, 25 °C).

Figure S21. ¹H NMR spectrum of 23 (500 MHz, *d*₆-acetone, 25 °C).

Figure S22. ¹³C NMR APT spectrum of 23 (125 MHz, *d*₆-acetone, 25 °C).

Figure S23. ¹H NMR spectrum of 24 (500 MHz, CDCl₃, 25 °C).

Figure S24. ¹³C NMR APT spectrum of 24 (100 MHz, CDCl₃, 25 °C).

Figure S25. ¹H NMR spectrum of 25 (500 MHz, CDCl₃, 25 °C).

Figure S26. ¹H NMR spectrum of 26 (500 MHz, *d*₆-acetone, 25 °C).

Figure S27. ¹³C NMR APT spectrum of 26 (125 MHz, *d*₆-acetone, 25 °C).

Figure S28. ¹H NMR spectrum of 27 (500 MHz, *d*₆-acetone, 25 °C).

Figure S29. ¹³C NMR APT spectrum of 27 (125 MHz, *d*₆-acetone, 25 °C).

Figure S30. ¹H NMR spectrum of 28(500 MHz, CDCl₃, 25 °C).

Figure S31. ¹³C NMR APT spectrum of 28 (125 MHz, CDCl₃, 25 °C).

Figure S32. ¹H NMR spectrum of **29** (500 MHz, *d*₆-acetone, 25 °C).

Figure S33. ¹³C NMR APT spectrum of 29 (125 MHz, *d*₆-acetone, 25 °C).

Figure S34. ¹H NMR spectrum of **30** (500 MHz, *d*₆-acetone, 25 °C).

Figure S35. ¹³C NMR spectrum of **30** (125 MHz, *d*₆-acetone, 25 °C).

Figure S36. ¹H NMR spectrum of **31** (500 MHz, *d*₆-acetone, 25 °C).

Figure S37. ¹³C NMR APT spectrum of 31 (125 MHz, *d*₆-acetone, 25 °C).

Figure S38. ¹H NMR spectrum of 32 (500 MHz, *d*₆-acetone, 25 °C).

Figure S39. ¹³C NMR APT spectrum of 32 (125 MHz, *d*₆-acetone, 25 °C).

Figure S40. ¹H NMR spectrum of 34 (500 MHz, *d*₆-acetone, 25 °C).

Figure S41. ¹³C NMR APT spectrum of 34 (125 MHz, *d*₆-acetone, 25 °C).

Figure S42. ¹H NMR spectrum of 35 (500 MHz, *d*₆-acetone, 25 °C).

Figure S43. ¹³C NMR APT spectrum of 35 (125 MHz, *d*₆-acetone, 25 °C).

Figure S44. ¹H NMR spectrum of 37 (500 MHz, *d*₆-acetone, 25 °C).

Figure S45. ¹³C NMR spectrum of 37 (125 MHz, *d*₆-acetone, 25 °C).

Figure 46. ¹⁹F NMR spectrum of **37** (470 MHz, *d*₆-acetone, 25 °C).

Figure S47. ¹H NMR spectrum of 40 (500 MHz, *d*₆-acetone, 25 °C).

Figure S48. ¹³C NMR APT spectrum of 40 (125 MHz, *d*₆-acetone, 25 °C).

Figure S49. ¹H NMR spectrum of 41 (500 MHz, *d*₆-acetone, 25 °C).

Figure S50. ¹³C NMR APT spectrum of 41 (125 MHz, *d*₆-acetone, 25 °C).

6. GC/MS records

m/z-->

Figure S51. Representative GC/MS record of the reaction between 2-iodopyridine (2) and 1*H*-pyrrole (16) affording product 22.

Figure S52. GC/MS record of the reaction between 2-iodopyridine (2) and 1*H*-pyrrole (16) in the presence of TEMPO (2 eq.).

7. References

- 1. A. R. Katritzky, A. F. Eweiss, P. L. Nie, J. Chem. Soc. Perkin. Trans, 1979, 433-435.
- A. Keeley, P. Ábrányi-Balogh, G. M. Keseru, *Med. Chem. Commun.*, **2019**, *10*, 263-267.
- O. Bayh, H. Awad, F. Mongin, C. Hoarau, L. Bischoff, F. Trécourt, G. Quéguiner, F. Marsais, F. Blanco, B. Abarca, R. Ballesteros, *J. Org. Chem.*, 2005, 70, 5190-5196.
- 4. Y. Zhou, S. Deng, S. Mai, Q. Song, Org. Lett. 2018, 20, 6161-6165.
- 5. I. E. D. Vega, P. A. Gale, M. E. Light, S. J. Loeb, Chem. Commun. 2005, 4913-4915.
- 6. M. J. Shiao, L. H. Shih, W. L. Chia, T. Y. Chau, *Heterocycles* 1991, 32, 2111-2118.
- 7. J. Li, L. He, X. Liu, X. Cheng, G. Li, Angew. Chem. Int. Ed., 2019, 58, 1759-1763.
- 8. S. Ge, J. F. Hartwig, Angew. Chem. Int. Ed., 2012, 51, 12837-12841.
- W. C. Chen, Y. C. Hsu, W. C. Shih, C. Y. Lee, W. H. Chuang, Y. F. Tsai, P. Y. Chen, T. G. Ong, *Chem. Commun.*, **2012**, *48*, 6702-6704.
- D. Gao, F. Wang, X. Y. Liu, K. R. Feng, J. Y. Zhao, Y. H. Wang, X. D. Yang, P. Tian,
 G. Q. Lin, *Adv. Synth. Catal.*, **2020**, *362*, 4384-4390.
- 11. I. El Drubi Vega, P. A. Gale, M. E. Light, S. J. Loeb, *Chem. Commun.*, **2005**, 4913-4915.
- 12. M. Obst, R. S. Shaikh, B. Konig, *React. Chem. Eng.*, 2017, 2, 472-478.
- T. Nußbaumer, C. Krieger, R. Neidlein, *European J. Org. Chem.*, **2000**, 2000, 2449-2457.
- 14. P. T. F. McLoughlin, M. A. Clyne, F. Aldabbagh, Tetrahedron, 2004, 60, 8065-8071.
- F. Bilodeau, M. C. Brochu, N. Guimond, K. H. Thesen, P. Forgione, *J. Org. Chem.*, 2010, 75, 1550-1560.
- A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reibenspies, K. Burgess, F. Bergstroem, L. B. A. Johansson, *J. Org. Chem.*, **1999**, *64*, 7813-7819.
- 17. C. A. Figueira, P. S. Lopes, P. T. Gomes, Tetrahedron, 2015, 71, 4362-4371.
- 18. T. Severin, B. Brueck, Chem. Ber., 1965, 98, 3847-3853.
- 19. W. Du, M. N. Zhao, Z. H. Ren, Y. Y. Wang, Z. H. Guan, *Chem. Commun.*, **2014**, *50*, 7437-7439.
- 20. D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc., 2005, 127, 11260-11261.