Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Total Syntheses of *Ganoderma*-derived Meroterpenoids, (–)-Oregonensin A, (–)-Chizhine E, (–)-Applanatumol U, and (–)-*ent*-Fornicin A

Kazuki Hori, Shogo Kamo*, and Kazuyuki Sugita*

Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Index

1. General	2
2. Experimental Procedures	2
3. Additional Results	13
4. ¹ H and ¹³ C NMR spectroscopic data	14
5. References	61

All reactions were carried out in a round-bottom flask or a test tube fitted with a 3-way glass stopcock under an Ar atmosphere unless otherwise stated. Reagents were purchased from commercial suppliers and used as received unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 F_{254} , 0.25 mm). Flash chromatography was performed using silica gel CHROMATOREX PSQ60B (neutral, 60 µm; Fuji Silysia Chemical LTD.). Melting point (Mp) data were determined using a Yanaco MP apparatus and were uncorrected. Optical rotation was measured on JASCO P-2200. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. ¹H and ¹³C NMR spectra were recorded on JEOL ECA-600 spectrometers. Chemical shift values are reported in δ (ppm) relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H and 77.00 ppm for ¹³C, acetone-*d*₆: 2.04 ppm for ¹H and 29.8 ppm for ¹³C, CD₃OD: 3.30 ppm for ¹H and 49.0 ppm for ¹³C). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, quin: quintet, m: multiplet, br: broad signal), coupling constant, and integration. High-resolution mass spectra (ESI-TOF) were measured on JEOL JMS-T100LP. Analytical chiral HPLC was performed by LC-NetII/ADC system (JASCO, pump: PU-4180; UV detector: MD4017) with CHIRAL ART Cellulose-SB (YMC, 4.6 mm × 250 mm).

2. Experimental Procedures

Known compound 13

Compound 13 was prepared according to the literature reported by Wang and co-workers with slight modification^{S1}.

2',5'-dimethoxyacetophenone (2.50 g, 13.9 mmol) and glyoxylic acid monohydrate (1.35 g, 14.7 mmol) were dissolved in acetic acid (28 mL) at rt. After the mixture was refluxed for 26 h, the reaction mixture was cooled to rt and concentrated to give a crude carboxylic acid which was used next reaction without further purification.

To a suspension of the crude carboxylic acid (prepared above) and K_2CO_3 (9.63g, 69.7 mmol) in acetone (46 mL) was added MeI (2.2 mL, 35.3 mmol) at rt. The mixture was stirred for 3 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 9/1 to 7/3) to give **13** (1.79 g, 7.15 mmol, 52%) as an orange solid.

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 15.6 Hz, 1H), 7.23 (d, *J* = 3.6 Hz, 1H), 7.08 (dd, *J* = 9.0, 3.6 Hz, 1H), 6.93 (d, *J* = 9.0 Hz, 1H), 6.76 (d, *J* = 15.6 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.7, 166.4, 153.60, 153.56, 141.1, 129.4, 127.6, 121.2, 114.1, 113.3, 56.2, 55.8, 52.1.

methyl 4-(2-hydroxy-5-methoxyphenyl)-4-oxo-2-(phenylthio)butanoate (14)

To a solution of **13** (1.70 g, 6.79 mmol) in CH_2Cl_2 (68 mL) was added Et_3N (94.2 µL, 680 µmol) and PhSH (728 µL, 7.14 mmol) at rt. The mixture was stirred for 20 min at rt and then cooled to 0 °C. To the solution was added AlCl₃ (3.21 g, 24.1 mmol) and the resulting mixture was stirred for further 2.5 h at rt. The reaction mixture was poured into ice cold 1 M HCl aq. (100 mL) and diluted with CH_2Cl_2 . The aqueous layer was extracted with CH_2Cl_2 . The combined organic solution was washed with brine, dried over Na_2SO_4 , filtered, and concentrated to give **14** (2.39 g, 6.90 mmol, quant.) as a yellow solid.

Mp = 50–53 °C; IR (KBr) v_{max} = 3451, 2948, 2912, 2842, 1735, 1647, 1485, 1341, 1272, 1232, 1164, cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 11.48 (s, 1H), 7.54-7.51 (m, 2H), 7.36-7.34 (m, 3H), 7.13-7.11 (m, 2H), 6.92 (dd, *J* = 8.4, 1.2 Hz, 1H), 4.22 (dd, *J* = 9.6, 4.2 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 3.69 (dd, *J* = 18.0, 9.6 Hz, 1H), 3.41 (dd, *J* = 18.0, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 201.9, 171.8, 156.8, 151.8, 133.8 (2C), 132.0, 129.1 (2C), 128.8, 124.8, 119.5, 118.3, 112.1, 56.0, 52.6, 44.9, 40.7; HRMS (ESI) *m/z* calcd. for C₁₈H₁₉O₅S ([M+H]⁺) 347.0948, found 347.0953.

methyl 4-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-4-oxo-2-(phenylthio)butanoate (12)

To a solution of **14** (2.35 g, 6.78 mmol) in DMF (22.5 mL) was added imidazole (1.15 g, 16.9 mmol), DMAP (82.7 mg, 677 μ mol), and TBSCl (1.25 g, 8.29 mmol) at rt. The mixture was stirred for 2 h at 50 °C. The reaction mixture was cooled to rt and quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 9/1 to 4/1) to give **12** (2.98 g, 6.47 mmol, 95%) as a yellow solid.

Mp = 57–59 °C; IR (KBr) v_{max} = 2952, 2933, 2891, 2858, 1730, 1663, 1489, 1419, 1321, 1274, 1224, 1153, 1019, 915, 839, 788, 751 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.31-7.29 (m, 3H), 7.17 (d, *J* = 3.0 Hz, 1H), 6.94 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.80 (d, *J* = 9.0 Hz, 1H), 4.20 (dd, *J* = 9.6, 4.8 Hz, 1H), 3.76 (s, 3H), 3.70 (dd, *J* = 18.6, 9.6 Hz, 1H), 3.68 (s, 3H), 3.51 (dd, *J* = 10.6, 4.8 Hz, 1H), 0.99 (s, 9H), 0.27 (s, 3H), 0.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.7, 172.2, 153.6, 149.3, 133.2 (2C), 132.8, 129.2, 129.0 (2C), 128.2, 121.2, 120.9, 112.9, 55.7, 52.3, 45.9, 45.7, 26.0 (3C), 18.5, -3.9 (2C); HRMS (ESI) *m*/*z* calcd. for C₂₄H₃₃O₅SSi ([M+H]⁺) 461.18120, found 461.1802.

(5S)-5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(phenylthio)dihydrofuran-2(3H)-one (11)

To a solution of **11** (465.3 mg, 1.01 mmol) and in CH₂Cl₂ (10.0 mL) was added (*S*)-Me-CBS catalyst (1 M in toluene, 400 μ L, 400 μ mol) at rt. After the mixture was cooled to -40 °C, BH₃•SMe₂ (90%, 120 μ L, 1.14 mmol) was added dropwise via syringe. The solution was stirred for 19 h at -10 °C. The reaction mixture was quenched by the addition of MeOH and concentrated to give a crude alcohol. To a solution of the crude alcohol in CH₂Cl₂ (10.0 mL) was added DBU (30 μ L, 201 μ mol) at rt. After being stirred for 20 min at rt, the solution was concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 19/1 to 17/3) to give **11** (382.5 mg, 888 μ mol, 88%, dr = 1:1.1) as a yellow oil.

[α]_D²⁴ -8.3 (*c* 0.40, CHCl₃); IR (neat) v_{max} = 2953, 2934, 2895, 2858, 1779, 1497, 1437, 1270, 1175, 1041, 904, 840 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, diastereomer mixture, dr = 1:1.1) δ 7.58-7.54 (m, 4.2H), 7.36-7.31 (m, 6.3H), 6.84 (brd, *J* = 2.4 Hz, 1H), 6.74-6.69 (m, 4.2H), 6.66 (brd, *J* = 1.2 Hz, 1.1H), 5.78 (dd, *J* = 7.8, 6.6 Hz, 1H), 5.65 (dd, *J* = 9.0, 6.0 Hz, 1.1H), 4.06 (dd, *J* = 10.8, 9.0 Hz, 1H), 3.97 (dd, *J* = 8.4, 4.8 Hz, 1.1H), 3.75 (s, 3H), 3.70 (s, 3.3H), 3.05-3.00 (m, 1.1H), 2.72-2.68 (m, 1H), 2.53-2.48 (m, 1H), 2.12-2.06 (m, 1.1H), 1.00 (s, 9H), 0.98 (s, 9.9H), 0.25 (s, 3H), 0.23 (s, 3H), 0.22 (s, 3.3H), 0.20 (s, 3.3H); ¹³C NMR (150 MHz, CD₃OD, diastereomer mixture, dr = 1:1.1) δ 176.9, 176.4, 155.7, 155.6, 147.4, 147.3, 134.6 (2C), 133.9 (2C), 133.6, 133.5, 131.2, 131.1, 130.4 (2C), 130.3 (2C), 129.6, 129.5, 120.5, 120.4, 115.6, 115.4, 112.3, 112.1, 77.3, 76.2, 56.13, 56.10, 47.1, 46.3, 38.5, 38.2, 26.40 (3C), 26.37 (3C), 19.1 (2C), -3.85, -3.90, -4.1, -4.2; HRMS (ESI) *m/z* calcd. for C₂₃H₃₀O₄SSiNa ([M+Na]⁺) 453.1526, found 453.1538.

The enantiomeric excess of (-)-11 was determined by chiral HPLC analysis [CHIRAL ART Cellulose-SB (4.6 × 250 mm), hexane/2-propanol = 90/10 v/v, 1.0 mL/min, UV 254 nm, RT, t_{R1} = 6.1 min (39.0%), t_{R2} = 6.4 min (5.3%), t_{R3} = 7.0 min (6.4%), t_{R4} = 7.9 min (49.2%)] to be 76% ee.

Ρ	Peak Information							
#	tR [min]	Area [µV·sec]	Area%	Height%	Symmetry Factor			
1	6.120	5697023	38.999	46.267	1.247			
2	6.390	779728	5.338	5.922	N/A			
3	7.040	939959	6.435	6.637	1.108			
4	7.877	7191331	49.229	41.174	1.489			
_								

Racemic 11 was preparade from compound 12 *via* reduction of ketone using $NaBH_4$ and subsequent lactonization mediated by DBU.

Peak Info.								
#	tR [min]	Area [µV·sec]	Area%	Height%	Symmetry Factor			
1	6.433	11845166	26.147	31.004	N/A			
2	6.723	12330734	27.219	28.519	N/A			
3	7.493	10481107	23.136	22.029	1.530			
4	8.343	10644853	23,498	18,448	1.812			

(5*S*)-5-(2-((*tert*-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(4-methylpent-3-en-1-yl)-3-(phenylthio)dihydrofuran-2(3*H*)-one (8)

To a solution of **11** (210.5 mg, 489 µmol) in THF (2.4 mL) was added LDA (2.0 M in THF, prepared from *i*Pr₂NH and *n*BuLi, 320 µL, 640 µmol) dropwise via syringe at -78 °C. The mixture was stirred for 30 min at 0 °C, and then cooled to -78 °C. To the reaction mixture was added a solution of **10**^{S2} (345 µL, 2.46 mmol) in DMPU (1.9 mL) dropwise via syringe at -78 °C. The solution was stirred for 3 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 99/1 to 9/1) to give **8** (191.3 mg, 373 µmol, 76%, dr = 3.3:1) as a yellow oil.

 $[\alpha]_D^{23}$ –25.4 (*c* 0.50, CHCl₃); IR (neat) ν_{max} = 3059, 2954, 2933, 2858, 1771, 1496, 1469, 1438, 1268, 1177, 1038, 916, 887, 839, 809 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, diastereomer mixture, dr = 3.3:1) δ 7.58-7.54 (m, 2.6H), 7.44-7.31 (m, 3.9H), 6.92 (d, *J* = 3.0 Hz, 1H), 6.76-6.72 (m, 2H), 6.67 (s, 0.3H), 6.668 (brs, 0.3H), 6.43 (brs, 0.3H), 5.94 (dd, *J* = 10.2, 6.0 Hz, 1H), 5.62 (dd, *J* = 7.8, 8.4 Hz, 0.3H), 5.09-5.07 (m, 0.3H), 5.04-5.01 (m, 1H), 3.76 (s, 3H), 3.65 (s, 0.9H), 2.81 (dd, *J* = 13.8, 7.8Hz, 0.3H), 2.69 (dd, *J* = 13.8, 6.0 Hz, 1H), 2.37-2.31 (m, 1.3H), 2.25-2.13 (m, 1.6H), 2.02-1.95 (m, 1H), 1.94-1.81 (m, 1.6H), 1.70 (s, 0.9H), 1.70-1.65 (m, 1H), 1.65 (s, 3H), 1.63 (s, 0.9H), 1.58 (s, 3H), 1.05 (s, 9H), 0.99 (s, 2.7H), 0.27 (s, 3H), 0.25 (s, 3H), 0.23 (s, 0.9H), 0.19 (s, 0.9H); ¹³C NMR (150 MHz, CDCl₃, diastereomer mixture, dr = 3.3:1) δ 176.8, 174.9, 154.2, 153.9, 146.0, 145.6, 137.1 (2C), 137.0 (2C), 133.2, 132.6, 130.4, 130.2, 129.9, 129.7, 129.2 (2C), 129.0, 128.9 (3C), 122.7, 122.3, 119.1, 118.7, 114.8, 114.3, 110.7, 110.4, 74.1, 73.1, 56.3, 55.8, 55.7, 55.6, 42.4, 40.7, 36.2, 34.2, 25.9 (3C), 25.8, 25.7, 25.6 (3C), 23.5, 23.2, 18.2, 18.2, 17.76, 17.74, -3.9, -4.0, -4.3, -4.4; HRMS (ESI) *m/z* calcd. for C₂₉H₄₁ O₄SSi ([M+H]⁺) 513.2489, found 513.2494.

To a solution of **8** (129.0 mg, 252 μ mol) in dichloroethane (2.5 mL) was added *m*CPBA (65%, 70.2 mg, 264 μ mol) at 0 °C. After being stirred for 80 min at 0 °C, the solution was refluxed for further 23 h. The reaction mixture was cooled to rt and quenched by the addition of sat. NaHCO₃ aq. and diluted with CH₂Cl₂. The aqueous layer was

extracted with CH_2Cl_2 . The combined organic solution was washed with brine, dried over Na_2SO_4 , filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 99/1 to 9/1) to give **6** (84.3 mg, 209 µmol, 83%) as a yellow oil.

[α]_D²³ –35.4 (*c* 0.40, CHCl₃); IR (neat) v_{max} = 2954, 2932, 2859, 1764, 1496, 1469, 1431, 1269, 1216, 1049, 936, 904, 842, 810, 783 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.13 (brd *J* = 1.2 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.74 (dd, *J* = 8.4, 3.0 Hz, 1H), 6.65 (d, *J* 3.0 Hz, 1H), 6.19 (brd, *J* = 1.2 Hz, 1H), 5.10-5.07 (m, 1H), 3.73 (s, 3H), 2.40-2.32 (m, 2H), 2.31-2.22 (m, 2H), 1.67 (d, *J* = 1.2 Hz, 3H), 1.58 (s, 3H), 1.01 (s, 9H), 0.28 (s, 3H), 0.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 154.3, 148.0, 146.6, 133.2, 132.9, 126.6, 122.8, 119.2, 114.9, 111.3, 77.8, 55.8, 25.9 (4C), 25.7, 25.4, 18.3, 17.9, -3.9, -4.3; HRMS (ESI) *m/z* calcd. for C₂₃H₃₅O₄Si ([M+H]⁺) 403.2299, found 403.2316.

ent-fornicin A (ent-4)

To a solution of **6** (61.5 mg, 153 µmol) in a mixture of MeCN/H₂O (2:1 v/v, 1.5 mL) was added CAN (180.1 mg, 329 µmol) at **0** °C. The mixture was stirred for 1 h at 0 °C. The reaction mixture was quenched by the addition of H₂O and sat. Na₂S₂O₄ aq., and then diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 9/1 to 1/1) to give *ent*-**4** (28.8 mg, 105 µmol, 69%) as a yellow oil.

[α]_D²⁴ -36.2 (*c* 0.71, MeOH); IR (neat) v_{max} = 3364, 2968, 2920, 2855, 1733, 1507, 1455, 1357, 1302, 1200, 815 cm⁻¹; ¹H NMR (600 MHz, acetone-*d*₆) δ 8.26 (s, 1H), 7.80 (s, 1H), 7.35 (d, *J* = 1.8 Hz, 1H), 6.75 (d, *J* = 9.0 Hz, 1H), 6.65 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.53 (d, *J* = 2.4 Hz, 1H), 5.13 (brt, *J* = 7.2 Hz, 1H), 2.33-2.30 (m, 2H), 2.29-2.25 (brm, 2H), 1.64 (d, *J* = 1.2 Hz, 3H), 1.58 (s, 3H); ¹³C NMR (150 MHz, acetone-*d*₆) δ 174.4, 151.5, 149.4, 148.2, 133.2, 132.8, 124.0, 123.8, 117.1, 116.8, 113.2, 78.2, 26.7, 26.0, 25.7, 17.7; HRMS (ESI) *m/z* calcd. for C₁₆H₁₈O₄Na ([M+Na]⁺) 297.1097, found 297.1106.

(E)-tert-butyl((5-iodo-2-methylpent-2-en-1-yl)oxy)dimethylsilane (9)

To a solution of $S1^{S3}$ (1.01 g, 4.47 mmol) and imidazole (662.6 mg, 9.37 mmol) in CH₂Cl₂ (8.9 mL) was added TBSCl (734.8 mg, 4.88 mmol) at 0 °C. The mixture was stirred for 50 min at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The

combined organic solution was washed with brine, dried over Na_2SO_4 , filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 97/3) to give **9** (1.50 g, 4.41 mmol, 99%) as a colorless oil.

IR (neat) $v_{max} = 2953$, 2930, 2892, 2856, 1466, 1254, 1115, 1071, 839.8, 777 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 5.38 (tdd, J = 7.2, 1.2, 1.2 Hz, 1H), 4.00 (br s, 2H), 3.13 (t, J = 7.2 Hz, 2H), 2.63 (q, J = 7.2 Hz, 2H), 1.60 (br s, 3H), 0.91 (s, 9H), 0.07 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 137.1, 122.4, 68.0, 31.9, 25.9 (3C), 18.4, 13.6, 5.4, -5.3 (2C); HRMS (ESI) *m/z* calcd. for C₁₂H₂₅IOSiNa ([M+Na]⁺) 363.0612, found 363.0607.

(5*S*)-3-((*E*)-5-((*tert*-butyldimethylsilyl)oxy)-4-methylpent-3-en-1-yl)-5-(2-((*tert*-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(phenylthio)dihydrofuran-2(3*H*)-one (7)

To a solution of **11** (90.0 mg, 209 μ mol) in THF (2.0 mL) was added LDA (2.0 M in THF, prepared from *i*Pr₂NH and *n*BuLi, 135 μ L, 270 μ mol) dropwise via syringe at -78 °C. The mixture was stirred for 30 min at 0 °C, and then cooled to -78 °C. To the reaction mixture was added a solution of **9** (145.2 mg, 427 μ mol) in DMPU (1.6 mL) dropwise via syringe at -78 °C. The solution was stirred for 2 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 99/1 to 9/1) to give 7 (93.3 mg, 145 μ mol, 69%, dr = 5:1) as a yellow oil.

 $[\alpha]_D^{26}$ –18.7 (*c* 0.20, CHCl₃); IR (neat) v_{max} = 2953, 2933, 2895, 2857, 1773, 1497, 1469, 1258, 1177, 1112, 1044, 917, 839, 779 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, diastereomer mixture, dr = 5:1) & 7.59-7.52 (m, 2.4H), 7.44-7.31 (m, 3.6H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.75 (d, *J* = 9.0 Hz, 1H), 6.73 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.671 (br s, 0.2H), 6.669 (br s, 0.2H), 6.43 (s, 0.2H), 5.95 (dd, *J* = 10.2, 5.4 Hz, 1H), 5.63 (t, *J* = 7.8 Hz, 0.2H), 5.36 (td, *J* = 7.8, 1.2 Hz, 0.2H), 5.31 (td, *J* = 7.8, 1.2 Hz, 1H), 4.01 (br s, 0.4H), 3.96 (br s, 2H), 3.76 (s, 3H), 3.65 (s, 0.6H), 3.79 (dd, *J* = 13.8, 7.8 Hz, 0.2H), 2.70 (dd, *J* = 14.4, 5.4 Hz, 1H), 2.45-2.29 (m, 1.4H), 2.26-2.18 (m, 1.2H), 2.06-2.00 (m, 1H), 1.96-1.83 (m, 1.2H), 1.72-1.66 (m, 1H), 1.64-1.56 (m, 0.2H), 1.61 (s, 0.6H), 1.57 (s, 3H), 1.05 (s, 9H), 0.98 (s, 1.8H), 0.91 (1.8H), 0.88 (s, 9H), 0.27 (s, 3H), 0.25 (s, 3H), 0.23 (s, 0.6H), 0.19 (s, 0.6H), 0.06 (s, 1.2H), 0.02 (s, 6H); ¹³C NMR (150 MHz, CDCl₃, diastereomer mixture, dr = 5:1) & 176.4, 174.8, 154.2, 153.9, 146.0, 145.6, 137.1 (2C), 136.9 (2C), 136.0, 135.5, 130.3, 130.1, 130.0, 129.7, 129.1, 129.0 (2C), 128.9 (3C), 122.4, 121.8, 119.1, 118.7, 114.8, 114.3, 110.7, 110.3, 74.1, 73.1, 68.2, 68.1, 56.3, 55.8, 55.7, 55.5, 42.5, 40.8, 35.9, 34.0, 25.9 (6C), 25.7 (6C), 23.0, 22.6, 18.39, 18.36, 18.2, 18.1, 13.5 (2C), -3.9, -4.0, -4.3, -4.4, -5.28 (2C), -5.32 (2C); HRMS (ESI) *m/z* calcd. for $C_{35}H_{54}O_5SSi_2Na$ ([M+Na]⁺) 665.3123, found 665.3100.

(*S*,*E*)-3-(5-((*tert*-butyldimethylsilyl)oxy)-4-methylpent-3-en-1-yl)-5-(2-((*tert*-butyldimethylsilyl)oxy)-5-methoxyphenyl)furan-2(5*H*)-one (5)

To a solution of **7** (87.1 mg, 135 μ mol) in dichloroethane (1.4 mL) was added *m*CPBA (65%, 38.5 mg, 145 μ mol) at 0 °C. The mixture was stirred for 1 h at 0 °C, and then refluxed for further 14 h. The reaction mixture was cooled to rt and quenched by the addition of sat. NaHCO₃ aq. and diluted with CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 99/1 to 9/1) to give **5** (59.9 mg, 112 μ mol, 83%) as a yellow oil.

[α]_D²⁶ -18.7 (*c* 0.25, CHCl₃); IR (neat) $v_{max} = 2953$, 2933, 2896, 2858, 1765, 1496, 1468, 1259, 1109, 1056, 904, 840, 780 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, *J* = 1.8 Hz, 1H), 6.77 (d, *J* = 9.0 Hz, 1H), 6.74 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.64 (d, *J* = 3.0 Hz, 1H), 6.19 (d, *J* = 1.8 Hz, 1H), 5.38 (tdd, *J* = 6.0, 1.2, 1.2 Hz, 1H), 3.97 (br s, 2H), 3.72 (s, 3H), 2.39 (td, *J* = 7.8 Hz, 1.2 Hz, 2H), 2.32 (dd, *J* = 14.4, 7.8 Hz, 2H), 1.58 (br s, 3H), 1.01 (s, 9H), 0.89 (s, 9H), 0.28 (s, 3H), 0.24 (s, 3H), 0.031 (s, 3H), 0.038 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 154.1, 147.9, 146.5, 135.9, 132.8, 126.4, 122.3, 119.2, 114.8, 111.2, 77.7, 68.2, 55.7, 25.9 (3C), 25.8 (3C), 25.3, 25.2, 18.4, 18.2, 13.5, -4.0, -4.4, -5.3 (2C); HRMS (ESI) *m/z* calcd. for C₂₉H₄₈O₅Si₂Na ([M+Na]⁺) 555.2932, found 555.2929.

(S,E)-3-(5-hydroxy-4-methylpent-3-en-1-yl)-5-(2-hydroxy-5-methoxyphenyl)furan-2(5H)-one (15)

To a solution of **5** (100.2 mg, 188 μ mol) in THF (625 μ L) was added AcOH (33.0 μ L, 577 μ mol) and TBAF (1.0 M in THF, 565 μ L, 565 μ mol) at 0 °C. The mixture was stirred for 17 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 7/3 to 1/4) to give **15** (52.1 mg, 171 μ mol, 91%) as a yellow oil.

[α]_D²³ –12.1 (*c* 0.30, CHCl₃); IR (neat) v_{max} = 3400, 2935, 2865, 1737, 1508, 1435, 1278, 1208, 1043, 815 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 7.36 (d, *J* = 2.4 Hz, 1H), 6.76 (d, 9.0 Hz, 1H), 6.74 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.54 (d, *J* = 3.0 Hz, 1H), 6.23 (d, *J* = 2.4 HZ, 1H), 5.39 (br td, *J* = 7.2, 1.2 Hz, 1H), 3.88 (br s, 2H), 3.68 (s, 3H), 2.38-2.36 (m, 2H), 2.35-2.29 (m, 2H), 1.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.8, 153.5, 148.9, 147.5, 136.0, 132.3, 124.3, 122.6, 116.7, 114.8, 112.0, 78.6, 68.5, 55.8, 25.3, 24.9, 13.7; HRMS (ESI) *m/z* calcd. for C₁₇H₂₀O₅Na ([M+Na]⁺) 327.1203, found 327.1196. (-)-applanatumol U (3)

To a solution of **15** (45.0 mg, 148 μ mol) in a mixture of 2,2,2-trifluoroethanol (TFE)/H₂O (5:3 v/v, 1.5 mL) was added iodobenzenediacetate (PIDA, 71.4 mg, 222 μ mol) at rt. The mixture was stirred for 20 min at rt. The reaction mixture was quenched by the addition of sat. Na₂S₂O₄ aq. and H₂O, and then diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 7/3 to 1/4) to give (-)-**3** (27.3 mg, 94.0 μ mol, 64%) as a yellow oil.

[α]_D²³ –18.5 (*c* 0.23, MeOH); IR (neat) v_{max} = 3314, 2925, 2857, 1733, 1508, 1456, 1358, 1303, 1203, 1052, 815 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 7.35 (d, *J* = 1.2 Hz, 1H), 6.67 (d, *J* = 9.0 Hz, 1H), 6.60 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.44 (d, *J* = 3.0 Hz, 1H), 6.24 (d, *J* = 1.2Hz, 1H), 5.40 (br t, *J* = 7.2 Hz, 1H), 3.90 (s, 2H), 2.40-2.30 (m, 4H), 1.61 (s, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 176.7, 151.5, 151.2, 149.0, 137.6, 133.1, 124.8, 123.4, 117.3, 117.2, 113.4, 79.7, 68.6, 26.5, 26.0, 13.8; HRMS (ESI) *m/z* calcd. for C₁₆H₁₈O₅Na ([M+Na]⁺) 313.1046, found 313.1054.

(*S*,*E*)-5-(5-(2-((*tert*-butyldimethylsilyl)oxy)-5-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-yl)-2-methylpent-2enal (16)

To a solution of **5** (95.1 mg, 178 µmol) in DMSO (1.8 mL) was added PPTS (45.2 mg, 180 µmol) and IBX (74.8 mg, 267 µmol) at rt. The mixture was stirred for 18 h at rt. The reaction mixture was quenched by the addition of H₂O and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 19/1 to 4/1) to give **16** (61.5 mg, 148 µmol, 83%) as a yellow oil. $[\alpha]_D^{23}$ -26.8 (*c* 0.30, CHCl₃); IR (neat) ν_{max} = 2953, 2933, 2858, 1762, 1686, 1497, 1270, 1216, 1049, 905, 842, 782 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.39 (s, 1H), 7.20 (d, *J* = 1.2 Hz, 1H), 6.78 (d, *J* = 9.0 Hz, 1H), 6.75 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.64 (d, *J* = 3.0 Hz, 1H), 6.44 (td, *J* = 7.2, 1.8 Hz, 1H), 6.21 (d, *J* = 1.2 Hz, 1H), 3.72 (s, 3H), 2.70-2.63 (m, 2H), 2.60-2.51 (m, 2H), 1.74 (d, *J* = 1.8 Hz, 1H), 1.00 (s, 9H), 0.28 (s, 3H), 0.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 194.8, 173.7, 154.2, 151.7, 148.6, 146.5, 140.4, 131.7, 126.0, 119.2, 114.9, 111.1, 77.9, 55.8, 26.7, 25.8 (3C), 24.1, 18.2, 9.3, -3.9, -4.4; HRMS (ESI) *m/z* calcd. for C₂₃H₃₂O₅SiNa ([M+Na]⁺) 439.1911, found 439.1921.

(-)-chizhine E (2)

To a solution of **16** (24.8 mg, 59.5 μ mol) in THF (600 μ L) was added AcOH (5.5 μ L, 96 μ mol) and TBAF (1.0 M in THF, 90 μ L, 90 μ mol) at 0 °C. The mixture was stirred for 5 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a crude **17**, which was used next reaction without further purification.

To a solution of crude 17 (prepared above, 59.5 μ mol) in a mixture of TFE/H₂O (5:3 v/v, 600 μ L) was added PIDA (38.4 mg, 119 μ mol) at rt. The mixture was stirred for 1 h at rt. The reaction mixture was quenched by the addition of sat. Na₂S₂O₄ aq. and H₂O, and then diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 7/3 to 1/4) to give (-)-2 (9.2 mg, 31.7 μ mol, 53% over two steps from 16) as a yellow oil.

[α]_D²³ –25.0 (*c* 0.04, MeOH); IR (neat) v_{max} = 3363, 2923, 2851, 1735, 1670, 1508, 1455, 1359, 1303, 1202, 1052, 816 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 9.35 (s, 1H), 7.44 (d, *J* = 1.2 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 1H), 6.61 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.61-6.59 (m, 1H), 6.45 (d, *J* = 1.8 Hz, 1H), 6.23 (d, *J* = 1.2 Hz, 1H), 2.68 (dd, *J* = 14.4, 7.8 Hz, 2H), 2.54 (td, *J* = 7.8, 1.2 Hz, 2H), 1.71 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 196.9, 176.4, 154.5, 151.7, 151.5, 149.0, 141.4, 132.3, 123.2, 117.3, 117.2, 113.3, 80.1, 27.9, 24.8, 9.2; HRMS (ESI) *m/z* calcd. for C₁₆H₁₆O₅Na ([M+Na]⁺) 311.0890, found 311.0898.

To a solution of 16 (51.1 mg, 123 µmol) and NaH₂PO₄ (304.2 mg, 2.54 mmol) in THF (570 µL) and tBuOH (570

 μ L) was added 2-methyl-2-butene (720 μ L, 6.78 mmol) and a solution of NaClO₂ (192.1 mg, 1.70 mmol) in H₂O (570 μ L) at 0 °C. The mixture was stirred for 2.5 h at rt. The reaction mixture was quenched by the addition of H₂O and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (CHCl₃/MeOH = 99/1 to 97/3) to give **18** (50.0 mg, 115 μ mol, 94%) as a yellow oil.

 $[\alpha]_D^{23}$ -34.7 (*c* 0.20, CHCl₃); IR (neat) v_{max} = 2953, 2934, 2859, 1762, 1688, 1496, 1273, 1216, 1048, 904, 842, 783 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.18 (d, *J* = 1.8 Hz, 1H), 6.84 (br t, *J* = 6.6 Hz, 1H), 6.77 (d, *J* = 9.0 Hz, 1H), 6.75 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.64 (d, *J* = 3.0 Hz, 1H), 6.21 (d, *J* = 1.8 Hz, 1H), 3.72 (s, 3H), 2.54-2.48 (m, 4H), 2.84 (s, 3H), 1.00 (s, 9H), 0.28 (s, 3H), 0.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 172.9, 154.2, 148.5, 146.5, 142.5, 131.9, 128.5, 126.0, 119.2, 115.0, 111.0, 77.9, 55.7, 26.5, 25.7 (3C), 24.2, 18.2, 12.1, -4.0, -4.4; HRMS (ESI) *m/z* calcd. for C₂₃H₃₂O₆SiNa ([M+Na]⁺) 455.1860, found 455.1840.

(-)-oregonensin A (1)

To a solution of **18** (33.0 mg, 76.3 μ mol) in a mixture of MeCN/H₂O (760 μ L) was added CAN (62.8 mg, 115 μ mol) at 0 °C. The mixture was stirred for 70 min at 0 °C. The reaction mixture was quenched by the addition of sat. Na₂S₂O₄ aq. and H₂O, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (CHCl₃/MeOH = 99/1 to 9/1) to give **1** (14.3 mg, 47.0 μ mol, 62%) as a yellow oil.

 $[\alpha]_D^{23}$ –11.2 (*c* 0.18, CHCl₃); IR (neat) v_{max} = 3345, 2959, 2928, 2857, 1735, 1646, 1507, 1455, 1263, 1201, 1095, 1052, 811 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 7.40 (d, *J* = 1.2 Hz, 1H), 6.76 (td, *J* = 7.2, 1.2 Hz, 1H), 6.67 (d, *J* = 9.0 Hz, 1H), 6.60 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.46 (d, *J* = 3.0 Hz, 1H), 6.24 (d, *J* = 1.2 Hz, 1H), 2.51-2.45 (m, 4H), 1.80 (s, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 176.4, 171.5, 151.5, 151.4, 149.0, 141.8, 132.6, 130.3, 123.3, 117.3, 117.2, 113.3, 80.0, 27.6, 25.1, 12.5; HRMS (ESI) *m/z* calcd. for C₁₆H₁₆O₆Na ([M+Na]⁺) 327.0839, found 327.0844.

3. Additional Results

Our preliminary experiments are shown in Table S1 and Scheme S1. Our efforts to deprotect two methyl groups were unsuccessful due to the high reactivity of benzylic and allylic positions.

Scheme S1. Attempt for demethylation of dimethyl protected substrate S5.

4. ¹H and ¹³C NMR spectroscopic data

 Table S2. NMR spectroscopic data (CD₃OD) for natural oregonensin A (1) and synthetic (-)-oregonensin A (1).

	OH 0 6 5 4 0H (±)-c	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	OH O 6 1 2 7 8 5 4 0 H Sy (-)-oreg	O 16 10 11 12 14 Me 15 15 14 Me 15 15 CO_2H 15 Total Hall of the set of the
		Natural (±)-1		Synthetic (-)-1
No.	δ _C	δ_H (mult, <i>J</i> in Hz)	δ _C	δ_H (mult, <i>J</i> in Hz)
1	149.1		149.0	
2	123.4		123.3	
3	113.4	6.46 (d, 3.4)	113.3	6.46 (d, 3.0)
4	151.5		151.4	
5	117.4	6.61 (dd, 8.7, 3.4)	117.3	6.60 (dd, 9.0, 3.0)
6	117.3	6.67 (d, 8.7)	117.2	6.67 (d, 9.0)
7	80.1	6.24 (br s)	80.0	6.24 (d, 1.2)
8	151.6	7.41 (d, 1.4)	151.5	7.40 (d, 1.2)
9	132.8		132.6	
10	25.2	2.46 (m)	25.1	2.51-2.45 (m)
11	27.7	2.47 (m)	27.6	2.51-2.45 (m)
12	141.8	6.76 (t, 6.4)	141.8	6.76 (td, 7.2, 1.2)
13	130.5		130.3	
14	171.7		171.5	
15	12.7	1.80 (s)	12.5	1.80 (s)
16	176.5		176.4	

Table S3. NMR spectroscopic data (CD₃OD) for natural chizhine E (2) and synthetic (–)-chizhine E (2).

$\begin{array}{c} OH \\ OH \\ 1 \\ 2 \\ 4 \\ 0H \\ OH \\ 0H \\ 10' \\ 10' \\ 0H \\ 10'$			OH O 1 2 1 6 1 2 1 2 0 H 0 H Si (-)-ch	OH O $4'$ 6' $5'$ $9'4'$ $6'$ $9'6'$ $8'$ CHO OH $10'$ synthetic (-)-chizhine E (2)		
Natural (±)- 2			Synthetic (–)-2			
 No.	δ _C	δ_H (mult, J in Hz)	δ _C	δ_H (mult, <i>J</i> in Hz)		
1	148.9		149.0			
2	123.2		123.2			

	3	113.5	6.46 (d, 2.9)	113.3	6.45 (d, 1.8)
	4	151.5		151.5	
	5	117.2	6.61 (dd, 8.6, 2.9)	117.2	6.61 (dd, 7.8, 1.8)
	6	117.3	6.68 (d, 8.6)	117.3	6.66 (d, 7.8)
	1′	80.1	6.24 (d, 1.5)	80.1	6.23 (d, 1.2)
	2′	151.7	7.44 (d, 1.5)	151.7	7.44 (d, 1.2)
	3′	132.3		132.3	
	4′	176.4		176.4	
	5′	24.8	2.54 (m)	24.8	2.54 (td, 7.8, 1.2)
	6′	27.9	2.68 (m)	27.9	2.68 (dd, 14.4, 7.8)
	7′	154.5	6.59 (overlap)	154.5	6.61-6.59 (m)
	8′	141.4		141.4	
	9′	196.9	9.34 (s)	196.9	9.35 (s)
1	10'	9.2	1.71 (s)	9.2	1.71 (d, 1.2)

Table S4. NMR spectroscopic data (CD₃OD) for natural applanatumol U (3) and synthetic (–)-applanatumol U (3).

	OH C 1 2 1 5 4 0H (±)-ap	O 9' 2' 5' Me 10' OH natural planatumol U (3)	6 5	OH O 1 2 1 4 0H (-)-app	$ \begin{array}{c} $
		Natural (±)-3			Synthetic (-)-3
No.	δ _C	δ_H (mult, <i>J</i> in Hz)		δ_C	δ_H (mult, <i>J</i> in Hz)
1	149.0			149.0	
2	123.4			123.4	
3	113.4	6.46 (d, 2.9)		113.4	6.44 (d, 3.0)
4	151.5			151.5	
5	117.2	6.62 (dd, 8.9, 2.9)		117.2	6.60 (dd, 9.0, 3.0)
6	117.3	6.68 (d, 8.9)		117.3	6.67 (d, 9.0)
1′	79.7	6.25 (br s)		79.7	6.24 (d, 1.2)
2'	151.2	7.35 (br s)		151.2	7.35 (d, 1.2)
3'	133.1			133.1	
4′	25.9	2.37 (overlap)		26.0	2.40-2.30 (m)
5'	26.5	2.37 (overlap)		26.5	2.40-2.30 (m)
6′	124.8	5.41 (t, 7.1)		124.8	5.40 (br t, 7.2)
7′	137.5			137.6	
8'	68.6	3.91 (s)		68.6	3.90 (s)
9′	176.7			176.7	
10'	13.8	1.62 (s)		13.8	1.61 (s)

Table S5. NMR spectroscopic data (acetone-d₆) for natural (+)-fornicin A (4) and synthetic (-)-*ent*-fornicin (*ent*-4).

	OH 1 2 4 0H (+)	$\begin{array}{c} 0\\ 0\\ \overline{1}\\ 1'\\ 2'\\ 5'\\ We\\ 9'\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	OH O 1 2 1' 5 4 3 OH S (-)-ent	$ \begin{array}{c} 0\\ 10'\\ 2'\\ 5'\\ Me\\ g'\\ 7'\\ Me\\ g'\\ Nthetic\\ fornicin A (4) \end{array} $		
		Natural (+)-4		Synthetic (-)-4		
No.	δ_C	δ_H (mult, <i>J</i> in Hz)	δ _C	δ_H (mult, <i>J</i> in Hz)		
1	148.2		148.2			
2	123.6		123.8			
3	113.2	6.53 8d, 2.9)	113.2	6.53 (d, 2.4)		
4	151.3		151.5			
5	116.8	6.65 (dd, 8.6, 2.9)	116.8	6.65 (dd, 9.0, 2.4)		
6	117.0	6.76 (d, 8.6)	117.1	6.75 (d, 9.0)		
1′	78.3	6.20 (d, 1.4)	78.2			
2'	149.5	7.35 (d, 1.4)	149.4	7.35 (d, 1.8)		
3'	132.7		132.8			
4′	26.6	2.30 (m)	26.7	2.33-2.30 (m)		
5'	25.9	2.28 (m)	26.0	2.29-2.25 (brm)		
6'	123.9	5.12 (br t, 6.9)	124.0	5.13 (brt, 7.2)		
7'	133.1		133.2			
8′	25.7	1.64 (s)	25.7	1.64 (d, 1.2)		
9′	17.7	1.57 (s)	17.7	1.58 (s)		
10'	174.6		174.4			
PhOH				8.26 (s) 7.80 (s)		

Figure S1. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 13.

Figure S2. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 13.

Figure S3. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 14.

Figure S4. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 14.

Figure S5. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 12.

Figure S7. ¹H NMR spectrum (600 MHz, CDCl₃, dr = 1:1.1) of compound 11.

Figure S9. ¹H NMR spectrum (600 MHz, $CDCl_3$, dr = 3.3:1) of compound 8.

Figure S10. ¹³C NMR spectrum (150 MHz, CDCl₃, dr = 3.3:1) of compound 8.

Figure S11. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 6.

Figure S13. ¹H NMR spectrum (600 MHz, acetone-*d*₆) of (-)-*ent*-fornicin A (*ent*-4).

Figure S15. COSY spectrum of (-)-*ent*-fornicin A (*ent*-4).

Figure S16. HMQC spectrum of (-)-ent-fornicin A (ent-4).

Figure S17. HMBC spectrum of (-)-ent-fornicin A (ent-4).

Figure S18 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 9.

Figure S19. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 9.

Figure S20. ¹H NMR spectrum (600 MHz, CDCl₃, dr = 5:1) of compound 7.

Figure S21. ¹³C NMR spectrum (150 MHz, CDCl₃, dr = 5:1) of compound 7.

Figure S22. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 5.

Figure S24. ¹H NMR spectrum (600 MHz, CD₃OD) of compound 15.

Figure S25. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 15.

Figure S26. ¹H NMR spectrum (600 MHz, CD₃OD) of (–)-applanatumol U (3).

Figure S27. ¹³C NMR spectrum (150 MHz, CD₃OD) of (–)-applanatumol U (3).

Figure S28. COSY spectrum of (-)-applanatumol U (3).

Figure S29. HMQC spectrum of (-)-applanatumol U (3).

Figure S30. HMBC spectrum of (-)-applanatumol U (3).

Figure S31. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 16.

Figure S32. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 16.

Figure S33. ¹H NMR spectrum (600 MHz, CD₃OD) of (-)-chizhine E (2).

Figure S34. ¹³C NMR spectrum (150 MHz, CD₃OD) of (–)-chizhine E (2).

Figure S37. HMBC spectrum of (-)-chizhine E (2).

Figure S38. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 18.

Figure S40. ¹H NMR spectrum (600 MHz, CD₃OD) of (-)-oregonensin A (1).

Figure S41. ¹³C NMR spectrum (150 MHz, CD₃OD) of (-)-oregonensin A (1).

Figure S42. COSY spectrum of (-)-oregonensin A (1).

Figure S43. HMQC spectrum of (-)-oregonensin A (1).

Figure S44. HMBC spectrum of (-)-oregonensin A (1).

5. References

S1) Xu, C.; Bai, X.; Xu, J.; Ren, J.; Xing, Y.; Li, Z.; Wang, J.; Shi, J.; Yu, L.; Wang, Y. *RSC Adv.* **2017**, *7*, 4763–4775.

S2) Guo, X.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 12377-12387.

S3) (a) Andresen, G.; Eriksen, A. B.; Dalhus, B.; Gundersen L. -L.; Rise, F. J. Chem. Soc., Perkin Trans. 1 2001,

1662–1672. (b) Gaich, T.; Mulzer, J. Org. Lett. 2010, 12, 272–275.