Total Syntheses of Ganoderma-derived Meroterpenoids, (-)-Oregonensin A, (-)-Chizhine E, (-)-Applanatumol U, and (-)-ent-Fornicin A

Kazuki Hori, Shogo Kamo*, and Kazuyuki Sugita*

Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Index

1. General 2
2. Experimental Procedures 2
3. Additional Results 13
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data 14
5. References 61

All reactions were carried out in a round-bottom flask or a test tube fitted with a 3-way glass stopcock under an Ar atmosphere unless otherwise stated. Reagents were purchased from commercial suppliers and used as received unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$). Flash chromatography was performed using silica gel CHROMATOREX PSQ60B (neutral, $60 \mu \mathrm{~m}$; Fuji Silysia Chemical LTD.). Melting point (Mp) data were determined using a Yanaco MP apparatus and were uncorrected. Optical rotation was measured on JASCO P-2200. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL ECA-600 spectrometers. Chemical shift values are reported in $\delta(\mathrm{ppm})$ relative to residual solvent signals $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.00 ppm for ${ }^{13} \mathrm{C}$, acetone- d_{6} : 2.04 ppm for ${ }^{1} \mathrm{H}$ and 29.8 ppm for ${ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}: 3.30 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 49.0 ppm for ${ }^{13} \mathrm{C}$). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t : triplet, q : quartet, quin: quintet, m : multiplet, br: broad signal), coupling constant, and integration. High-resolution mass spectra (ESI-TOF) were measured on JEOL JMS-T100LP. Analytical chiral HPLC was performed by LC-NetII/ADC system (JASCO, pump: PU-4180; UV detector: MD4017) with CHIRAL ART Cellulose-SB (YMC, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$).

2. Experimental Procedures

Known compound 13

Compound 13 was prepared according to the literature reported by Wang and co-workers with slight modification ${ }^{\mathrm{S} 1}$.

2',5'-dimethoxyacetophenone ($2.50 \mathrm{~g}, 13.9 \mathrm{mmol}$) and glyoxylic acid monohydrate ($1.35 \mathrm{~g}, 14.7 \mathrm{mmol}$) were dissolved in acetic acid $(28 \mathrm{~mL})$ at rt . After the mixture was refluxed for 26 h , the reaction mixture was cooled to rt and concentrated to give a crude carboxylic acid which was used next reaction without further purification.

To a suspension of the crude carboxylic acid (prepared above) and $\mathrm{K}_{2} \mathrm{CO}_{3}(9.63 \mathrm{~g}, 69.7 \mathrm{mmol})$ in acetone (46 mL) was added $\mathrm{MeI}(2.2 \mathrm{~mL}, 35.3 \mathrm{mmol})$ at rt . The mixture was stirred for 3 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=9 / 1$ to $7 / 3$) to give $13(1.79 \mathrm{~g}, 7.15$ $\mathrm{mmol}, 52 \%$) as an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 190.7,166.4,153.60,153.56,141.1,129.4,127.6,121.2,114.1,113.3,56.2,55.8,52.1$.

To a solution of $\mathbf{1 3}(1.70 \mathrm{~g}, 6.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(68 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(94.2 \mu \mathrm{~L}, 680 \mu \mathrm{~mol})$ and PhSH (728 $\mu \mathrm{L}, 7.14 \mathrm{mmol})$ at rt . The mixture was stirred for 20 min at rt and then cooled to $0^{\circ} \mathrm{C}$. To the solution was added $\mathrm{AlCl}_{3}(3.21 \mathrm{~g}, 24.1 \mathrm{mmol})$ and the resulting mixture was stirred for further 2.5 h at rt . The reaction mixture was poured into ice cold 1 M HCl aq. $(100 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $\mathbf{1 4}$ ($2.39 \mathrm{~g}, 6.90 \mathrm{mmol}$, quant.) as a yellow solid.
$\mathrm{Mp}=50-53{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max }=3451,2948,2912,2842,1735,1647,1485,1341,1272,1232,1164, \quad \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.48(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=$ $8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}, J=18.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}$, $J=18.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.9,171.8,156.8,151.8,133.8$ (2C), 132.0, 129.1 (2C), $128.8,124.8,119.5,118.3,112.1,56.0,52.6,44.9,40.7$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 347.0948$, found 347.0953.
methyl 4-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-4-oxo-2-(phenylthio)butanoate (12)

To a solution of $\mathbf{1 4}(2.35 \mathrm{~g}, 6.78 \mathrm{mmol})$ in DMF $(22.5 \mathrm{~mL})$ was added imidazole ($1.15 \mathrm{~g}, 16.9 \mathrm{mmol})$, DMAP $(82.7 \mathrm{mg}, 677 \mu \mathrm{~mol})$, and $\operatorname{TBSCl}(1.25 \mathrm{~g}, 8.29 \mathrm{mmol})$ at rt . The mixture was stirred for 2 h at $50^{\circ} \mathrm{C}$. The reaction mixture was cooled to rt and quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=9 / 1$ to $4 / 1)$ to give $12(2.98 \mathrm{~g}, 6.47 \mathrm{mmol}, 95 \%)$ as a yellow solid.
$\mathrm{Mp}=57-59^{\circ} \mathrm{C}$; IR (KBr) $v_{\max }=2952,2933,2891,2858,1730,1663,1489,1419,1321,1274,1224,1153,1019$, 915, 839, 788, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}$, $J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 198.7,172.2,153.6,149.3,133.2$ (2C), 132.8, 129.2, 129.0 (2C), 128.2, 121.2, 120.9, $112.9,55.7,52.3,45.9,45.7,26.0(3 \mathrm{C}), 18.5,-3.9(2 \mathrm{C})$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{SSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 461.18120, found 461.1802 .

To a solution of $11(465.3 \mathrm{mg}, 1.01 \mathrm{mmol})$ and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added (S)-Me-CBS catalyst (1 M in toluene, $400 \mu \mathrm{~L}, 400 \mu \mathrm{~mol})$ at rt . After the mixture was cooled to $-40^{\circ} \mathrm{C}, \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(90 \%, 120 \mu \mathrm{~L}, 1.14 \mathrm{mmol})$ was added dropwise via syringe. The solution was stirred for 19 h at $-10^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of MeOH and concentrated to give a crude alcohol. To a solution of the crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.0 \mathrm{~mL})$ was added $\mathrm{DBU}(30 \mu \mathrm{~L}, 201 \mu \mathrm{~mol})$ at rt . After being stirred for 20 min at rt , the solution was concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=19 / 1$ to $17 / 3$) to give $11(382.5 \mathrm{mg}, 888 \mu \mathrm{~mol}, 88 \%, \mathrm{dr}=1: 1.1)$ as a yellow oil.
$[\alpha]_{D}{ }^{24}-8.3\left(c 0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=2953,2934,2895,2858,1779,1497,1437,1270,1175,1041,904$, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomer mixture, $\mathrm{dr}=1: 1.1$) $\delta 7.58-7.54(\mathrm{~m}, 4.2 \mathrm{H}), 7.36-7.31(\mathrm{~m}$, $6.3 \mathrm{H}), 6.84(\mathrm{brd}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 4.2 \mathrm{H}), 6.66(\mathrm{brd}, J=1.2 \mathrm{~Hz}, 1.1 \mathrm{H}), 5.78(\mathrm{dd}, J=7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1.1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 1.1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70$ $(\mathrm{s}, 3.3 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1.1 \mathrm{H}), 2.72-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1.1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}$, $9.9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3.3 \mathrm{H}), 0.20(\mathrm{~s}, 3.3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, diastereomer mixture, $\mathrm{dr}=1: 1.1) \delta 176.9,176.4,155.7,155.6,147.4,147.3,134.6(2 \mathrm{C}), 133.9(2 \mathrm{C}), 133.6,133.5,131.2,131.1,130.4$ (2C), 130.3 (2C), 129.6, 129.5, 120.5, 120.4, 115.6, 115.4, 112.3, 112.1, 77.3, 76.2, 56.13, 56.10, 47.1, 46.3, 38.5, 38.2, 26.40 (3C), 26.37 (3C), 19.1 (2C), -3.85, -3.90 , -4.1, -4.2 ; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSiNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$453.1526, found 453.1538 .

The enantiomeric excess of (-)-11 was determined by chiral HPLC analysis [CHIRAL ART Cellulose-SB (4.6 $\times 250 \mathrm{~mm})$, hexane $/ 2$-propanol $=90 / 10 \mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{RT}, t_{\mathrm{R} 1}=6.1 \mathrm{~min}(39.0 \%), t_{\mathrm{R} 2}=6.4 \mathrm{~min}$ $\left.(5.3 \%), t_{\mathrm{R} 3}=7.0 \mathrm{~min}(6.4 \%), t_{\mathrm{R} 4}=7.9 \mathrm{~min}(49.2 \%)\right]$ to be 76% ee

Peak Information

$\#$	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Area\%	Height\%
1	6.120	5697023	38.999	46.267
2	6.390	779728	5.338	5.922
3	7.040	939959	6.435	6.637
4	7.877	7191331	49.229	41.174

Racemic $\mathbf{1 1}$ was preparade from compound $\mathbf{1 2}$ via reduction of ketone using NaBH_{4} and subsequent lactonization mediated by DBU.

Peak Info.

\#	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Area\%	Height\%	Symmetry Factor

1	6.433	11845166	26.147	31.004	$\mathrm{~N} / \mathrm{A}$
2	6.723	12330734	27.219	28.519	$\mathrm{~N} / \mathrm{A}$

2	6.723	10481107	23.136	22.029
3	7.493	10444	1.530	
4	8.343	10644853	23.498	18.448

(5S)-5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(4-methylpent-3-en-1-yl)-3-(phenylthio)dihydrofuran-2(3H)-one (8)

To a solution of $11(210.5 \mathrm{mg}, 489 \mu \mathrm{~mol})$ in THF $(2.4 \mathrm{~mL})$ was added LDA (2.0 M in THF, prepared from $i \mathrm{Pr}_{2} \mathrm{NH}$ and $n \mathrm{BuLi}, 320 \mu \mathrm{~L}, 640 \mu \mathrm{~mol}$) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and then cooled to $-78^{\circ} \mathrm{C}$. To the reaction mixture was added a solution of $\mathbf{1 0}{ }^{\mathrm{S} 2}(345 \mu \mathrm{~L}, 2.46 \mathrm{mmol})$ in DMPU (1.9 mL) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The solution was stirred for 3 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc . The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane $/ E t O A c=99 / 1$ to $9 / 1$) to give $\mathbf{8}(191.3 \mathrm{mg}, 373 \mu \mathrm{~mol}, 76 \%$, $\mathrm{dr}=3.3: 1$) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-25.4\left(c 0.50, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=3059,2954,2933,2858,1771,1496,1469,1438,1268,1177,1038$, 916, 887, 839, $809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomer mixture, $\mathrm{dr}=3.3: 1$) $\delta 7.58-7.54(\mathrm{~m}, 2.6 \mathrm{H})$, $7.44-7.31(\mathrm{~m}, 3.9 \mathrm{H}), 6.92(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 0.3 \mathrm{H}), 6.668$ (brs, 0.3 H$), 6.43$ (brs, 0.3 H$)$, $5.94(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=7.8,8.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.09-5.07(\mathrm{~m}, 0.3 \mathrm{H}), 5.04-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.65(\mathrm{~s}, 0.9 \mathrm{H}), 2.81(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.69(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1.3 \mathrm{H}), 2.25-$ $2.13(\mathrm{~m}, 1.6 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 1.6 \mathrm{H}), 1.70(\mathrm{~s}, 0.9 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}$, $0.9 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 2.7 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 0.9 \mathrm{H}), 0.19(\mathrm{~s}, 0.9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, diastereomer mixture, $\mathrm{dr}=3.3: 1$) $\delta 176.8,174.9,154.2,153.9,146.0,145.6,137.1$ (2C), 137.0 (2C), 133.2, 132.6, 130.4, 130.2, 129.9, 129.7, 129.2 (2C), 129.0, 128.9 (3C), 122.7, 122.3, 119.1, 118.7, 114.8, $114.3,110.7,110.4,74.1,73.1,56.3,55.8,55.7,55.6,42.4,40.7,36.2,34.2,25.9$ (3C), 25.8, 25.7, 25.6 (3C), 23.5, 23.2, 18.2, 18.2, 17.76, 17.74, -3.9, -4.0, -4.3, -4.4; HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{SSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 513.2489$, found 513.2494.
(S)-5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(4-methylpent-3-en-1-yl)furan-2(5H)-one (6)

To a solution of $\mathbf{8}(129.0 \mathrm{mg}, 252 \mu \mathrm{~mol})$ in dichloroethane $(2.5 \mathrm{~mL})$ was added $m \mathrm{CPBA}(65 \%, 70.2 \mathrm{mg}, 264$ $\mu \mathrm{mol}$) at $0^{\circ} \mathrm{C}$. After being stirred for 80 min at $0^{\circ} \mathrm{C}$, the solution was refluxed for further 23 h . The reaction mixture was cooled to rt and quenched by the addition of sat. NaHCO_{3} aq. and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc =99/1 to 9/1) to give $6(84.3 \mathrm{mg}, 209 \mu \mathrm{~mol}, 83 \%)$ as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-35.4\left(c 0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=2954,2932,2859,1764,1496,1469,1431,1269,1216,1049,936$, 904, 842, 810, $783 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\operatorname{brd} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (dd, $J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{brd}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.40-$ $2.32(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,154.3,148.0,146.6,133.2,132.9,126.6,122.8,119.2,114.9,111.3,77.8,55.8$, 25.9 (4C), 25.7, 25.4, 18.3, 17.9, -3.9, -4.3; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 403.2299$, found 403.2316 .

ent-fornicin A (ent-4)

To a solution of $\mathbf{6}(61.5 \mathrm{mg}, 153 \mu \mathrm{~mol})$ in a mixture of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(2: 1 \mathrm{v} / \mathrm{v}, 1.5 \mathrm{~mL})$ was added CAN $(180.1 \mathrm{mg}$, $329 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq., and then diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane $/ \mathrm{EtOAc}=9 / 1$ to $1 / 1$) to give ent-4 ($28.8 \mathrm{mg}, 105 \mu \mathrm{~mol}, 69 \%$) as a yellow oil.
$[\alpha]_{D}{ }^{24}-36.2(c 0.71, \mathrm{MeOH}) ;$ IR (neat) $v_{\max }=3364,2968,2920,2855,1733,1507,1455,1357,1302,1200,815$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{brt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.29-$ 2.25 (brm, 2H), $1.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , acetone- d_{6}) $\delta 174.4,151.5,149.4$, 148.2, 133.2, 132.8, 124.0, 123.8, 117.1, 116.8, 113.2, 78.2, 26.7, 26.0, 25.7, 17.7; HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$297.1097, found 297.1106.

(E)-tert-butyl((5-iodo-2-methylpent-2-en-1-yl)oxy)dimethylsilane (9)

S1

To a solution of $\mathbf{S 1}{ }^{\mathrm{S} 3}(1.01 \mathrm{~g}, 4.47 \mathrm{mmol})$ and imidazole $(662.6 \mathrm{mg}, 9.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.9 \mathrm{~mL})$ was added $\mathrm{TBSCl}(734.8 \mathrm{mg}, 4.88 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 50 min at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The
combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=97 / 3$) to give $9(1.50 \mathrm{~g}, 4.41 \mathrm{mmol}$, 99\%) as a colorless oil.

IR (neat) $v_{\max }=2953,2930,2892,2856,1466,1254,1115,1071,839.8,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.38(\mathrm{tdd}, J=7.2,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,122.4,68.0,31.9,25.9(3 \mathrm{C}), 18.4,13.6,5.4$, -5.3 (2C); HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{IOSiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 363.0612$, found 363.0607 .
(5S)-3-((E)-5-((tert-butyldimethylsilyl)oxy)-4-methylpent-3-en-1-yl)-5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-3-(phenylthio)dihydrofuran-2(3H)-one (7)

11

$69 \%(\mathrm{dr}=5: 1)$

7

To a solution of $11(90.0 \mathrm{mg}, 209 \mu \mathrm{~mol})$ in THF $(2.0 \mathrm{~mL})$ was added LDA $\left(2.0 \mathrm{M}\right.$ in THF, prepared from $i \mathrm{Pr}_{2} \mathrm{NH}$ and $n \mathrm{BuLi}, 135 \mu \mathrm{~L}, 270 \mu \mathrm{~mol}$) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was added a solution of $9(145.2 \mathrm{mg}, 427 \mu \mathrm{~mol})$ in DMPU (1.6 mL) dropwise via syringe at $-78^{\circ} \mathrm{C}$. The solution was stirred for 2 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc . The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=99 / 1$ to $9 / 1$) to give $7(93.3 \mathrm{mg}, 145 \mu \mathrm{~mol}, 69 \%$, $\mathrm{dr}=5: 1$) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{26}-18.7\left(c 0.20, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=2953,2933,2895,2857,1773,1497,1469,1258,1177,1112,1044$, 917, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomer mixture, $\mathrm{dr}=5: 1$) $\delta 7.59-7.52(\mathrm{~m}, 2.4 \mathrm{H}), 7.44-7.31$ $(\mathrm{m}, 3.6 \mathrm{H}), 6.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.671(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 6.669$ (br s, 0.2H), $6.43(\mathrm{~s}, 0.2 \mathrm{H}), 5.95(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.36(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}$, $0.2 \mathrm{H}), 5.31(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 3,96(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 0.6 \mathrm{H}), 3.79(\mathrm{dd}, J=$ $13.8,7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.70(\mathrm{dd}, J=14.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 1.4 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1.2 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.83(\mathrm{~m}, 1.2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 0.2 \mathrm{H}), 1.61(\mathrm{~s}, 0.6 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}$, $1.8 \mathrm{H}), 0.91(1.8 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 0.6 \mathrm{H}), 0.19(\mathrm{~s}, 0.6 \mathrm{H}), 0.06(\mathrm{~s}, 1.2 \mathrm{H}), 0.02(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomer mixture, $\mathrm{dr}=5: 1$) $\delta 176.4,174.8,154.2,153.9,146.0,145.6,137.1$ (2C), 136.9 (2C), $136.0,135.5,130.3,130.1,130.0,129.7,129.1,129.0(2 \mathrm{C}), 128.9$ (3C), 122.4, 121.8, 119.1, 118.7, $114.8,114.3,110.7,110.3,74.1,73.1,68.2,68.1,56.3,55.8,55.7,55.5,42.5,40.8,35.9,34.0,25.9$ (6C), 25.7 (6C), $23.0,22.6,18.39,18.36,18.2,18.1,13.5(2 C),-3.9,-4.0,-4.3,-4.4,-5.28(2 C),-5.32(2 C) ; H R M S ~(E S I) ~ m / z ~ c a l c d$. for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{SSi}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 665.3123$, found 665.3100 .
(S,E)-3-(5-((tert-butyldimethylsilyl)oxy)-4-methylpent-3-en-1-yl)-5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)furan-2(5H)-one (5)

To a solution of $7(87.1 \mathrm{mg}, 135 \mu \mathrm{~mol})$ in dichloroethane $(1.4 \mathrm{~mL})$ was added m CPBA $(65 \%, 38.5 \mathrm{mg}, 145 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then refluxed for further 14 h . The reaction mixture was cooled to rt and quenched by the addition of sat. NaHCO_{3} aq. and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 99/1 to 9/1) to give $5(59.9 \mathrm{mg}, 112 \mu \mathrm{~mol}, 83 \%)$ as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{26}-18.7\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=2953,2933,2896,2858,1765,1496,1468,1259,1109,1056,904$, $840,780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=9.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{tdd}, J=6.0,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{td}, J=7.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=14.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.031(\mathrm{~s}, 3 \mathrm{H}), 0.038(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,154.1,147.9$, $146.5,135.9,132.8,126.4,122.3,119.2,114.8,111.2,77.7,68.2,55.7,25.9$ (3C), 25.8 (3C), 25.3, 25.2, 18.4, 18.2, 13.5, -4.0, -4.4, -5.3 (2C); HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$555.2932, found 555.2929.

(S,E)-3-(5-hydroxy-4-methylpent-3-en-1-yl)-5-(2-hydroxy-5-methoxyphenyl)furan-2(5H)-one (15)

To a solution of $5(100.2 \mathrm{mg}, 188 \mu \mathrm{~mol})$ in THF $(625 \mu \mathrm{~L})$ was added $\mathrm{AcOH}(33.0 \mu \mathrm{~L}, 577 \mu \mathrm{~mol})$ and TBAF (1.0 M in THF, $565 \mu \mathrm{~L}, 565 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 17 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=7 / 3$ to $1 / 4$) to give $\mathbf{1 5}(52.1 \mathrm{mg}, 171$ $\mu \mathrm{mol}, 91 \%)$ as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-12.1\left(c 0.30, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=3400,2935,2865,1737,1508,1435,1278,1208,1043,815 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.4 \mathrm{HZ}, 1 \mathrm{H}), 5.39(\mathrm{br} \mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.38-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,153.5,148.9,147.5,136.0$, $132.3,124.3,122.6,116.7,114.8,112.0,78.6,68.5,55.8,25.3,24.9,13.7$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 327.1203$, found 327.1196.

To a solution of $\mathbf{1 5}(45.0 \mathrm{mg}, 148 \mu \mathrm{~mol})$ in a mixture of 2,2,2-trifluoroethanol (TFE) $/ \mathrm{H}_{2} \mathrm{O}(5: 3 \mathrm{v} / \mathrm{v}, 1.5 \mathrm{~mL})$ was added iodobenzenediacetate (PIDA, $71.4 \mathrm{mg}, 222 \mu \mathrm{~mol}$) at rt . The mixture was stirred for 20 min at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq. and $\mathrm{H}_{2} \mathrm{O}$, and then diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=7 / 3$ to $1 / 4$) to give (-)-3 ($27.3 \mathrm{mg}, 94.0 \mu \mathrm{~mol}, 64 \%$) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-18.5$ (c 0.23, MeOH); IR (neat) $v_{\max }=3314,2925,2857,1733,1508,1456,1358,1303,1203,1052,815$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{br} \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 4 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 176.7,151.5,151.2,149.0,137.6,133.1,124.8,123.4,117.3,117.2$, 113.4, 79.7, 68.6, 26.5, 26.0, 13.8; HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$313.1046, found 313.1054.

(S,E)-5-(5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-yl)-2-methylpent-2enal (16)

To a solution of $5(95.1 \mathrm{mg}, 178 \mu \mathrm{~mol})$ in DMSO $(1.8 \mathrm{~mL})$ was added PPTS $(45.2 \mathrm{mg}, 180 \mu \mathrm{~mol})$ and IBX (74.8 $\mathrm{mg}, 267 \mu \mathrm{~mol}$) at rt . The mixture was stirred for 18 h at rt . The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=19 / 1$ to $4 / 1)$ to give $16(61.5 \mathrm{mg}, 148 \mu \mathrm{~mol}, 83 \%)$ as a yellow oil.
$[\alpha]_{D}{ }^{23}-26.8\left(c 0.30, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v_{\max }=2953,2933,2858,1762,1686,1497,1270,1216,1049,905,842$, $782 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}$, $J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{td}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 2.70-2.63 (m, 2H), 2.60-2.51 (m, 2H), $1.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.8,173.7,154.2,151.7,148.6,146.5,140.4,131.7,126.0,119.2,114.9,111.1,77.9,55.8$, 26.7, 25.8 (3C), 24.1, 18.2, 9.3, -3.9, -4.4; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 439.1911$, found 439.1921 .

To a solution of $16(24.8 \mathrm{mg}, 59.5 \mu \mathrm{~mol})$ in THF $(600 \mu \mathrm{~L})$ was added AcOH ($5.5 \mu \mathrm{~L}, 96 \mu \mathrm{~mol})$ and TBAF $(1.0$ M in THF, $90 \mu \mathrm{~L}, 90 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a crude 17, which was used next reaction without further purification.

To a solution of crude 17 (prepared above, $59.5 \mu \mathrm{~mol})$ in a mixture of $\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(5: 3 \mathrm{v} / \mathrm{v}, 600 \mu \mathrm{~L})$ was added PIDA ($38.4 \mathrm{mg}, 119 \mu \mathrm{~mol}$) at rt . The mixture was stirred for 1 h at rt . The reaction mixture was quenched by the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq. and $\mathrm{H}_{2} \mathrm{O}$, and then diluted with EtOAc . The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc $=7 / 3$ to $1 / 4$) to give $(-)-2(9.2$ $\mathrm{mg}, 31.7 \mu \mathrm{~mol}, 53 \%$ over two steps from 16) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-25.0(c 0.04, \mathrm{MeOH})$; IR (neat) $v_{\max }=3363,2923,2851,1735,1670,1508,1455,1359,1303,1202,1052$, $816 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}$, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=14.4,7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.54(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 196.9,176.4$, 154.5, 151.7, 151.5, 149.0, 141.4, 132.3, 123.2, 117.3, 117.2, 113.3, 80.1, 27.9, 24.8, 9.2; HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 311.0890$, found 311.0898 .
(S,E)-5-(5-(2-((tert-butyldimethylsilyl)oxy)-5-methoxyphenyl)-2-oxo-2,5-dihydrofuran-3-yl)-2-methylpent-2enoic acid (18)

To a solution of $16(51.1 \mathrm{mg}, 123 \mu \mathrm{~mol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(304.2 \mathrm{mg}, 2.54 \mathrm{mmol})$ in THF $(570 \mu \mathrm{~L})$ and $t \mathrm{BuOH}(570$
$\mu \mathrm{L}$) was added 2-methyl-2-butene ($720 \mu \mathrm{~L}, 6.78 \mathrm{mmol}$) and a solution of $\mathrm{NaClO}_{2}(192.1 \mathrm{mg}, 1.70 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(570 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2.5 h at rt . The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=99 / 1\right.$ to $\left.97 / 3\right)$ to give $\mathbf{1 8}(50.0 \mathrm{mg}, 115 \mu \mathrm{~mol}, 94 \%)$ as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-34.7\left(c 0.20, \mathrm{CHCl}_{3}\right)$; IR (neat) $\nu_{\max }=2953,2934,2859,1762,1688,1496,1273,1216,1048,904,842$, $783 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.48(\mathrm{~m}$, $4 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,172.9,154.2,148.5$, $146.5,142.5,131.9,128.5,126.0,119.2,115.0,111.0,77.9,55.7,26.5,25.7$ (3C), 24.2, 18.2, 12.1, $-4.0,-4.4$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$455.1860, found 455.1840.

(-)-oregonensin A (1)

To a solution of $\mathbf{1 8}(33.0 \mathrm{mg}, 76.3 \mu \mathrm{~mol})$ in a mixture of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(760 \mu \mathrm{~L})$ was added CAN $(62.8 \mathrm{mg}, 115$ $\mu \mathrm{mol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 70 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq. and $\mathrm{H}_{2} \mathrm{O}$, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=99 / 1\right.$ to $\left.9 / 1\right)$ to give $\mathbf{1}(14.3 \mathrm{mg}, 47.0 \mu \mathrm{~mol}, 62 \%)$ as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-11.2\left(c 0.18, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max }=3345,2959,2928,2857,1735,1646,1507,1455,1263,1201,1095$, $1052,811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 4 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 176.4,171.5,151.5,151.4,149.0,141.8,132.6,130.3,123.3,117.3$, 117.2, 113.3, 80.0, 27.6, 25.1, 12.5; HRMS (ESI) m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 327.0839$, found 327.0844.

3. Additional Results

Our preliminary experiments are shown in Table S1 and Scheme S1. Our efforts to deprotect two methyl groups were unsuccessful due to the high reactivity of benzylic and allylic positions.

Table S1. Attempts for removal of two methyl group of S2.

(\pm)-S2
(\pm)-applanatumol U(3) (not obtained)

entry	reagent	solvent	temp $\left({ }^{\circ} \mathrm{C}\right)$	results
1^{a}	CAN	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	0	complex mixture
2^{a}	CAN	$\mathrm{MeOH} / \mathrm{DCM}$	-78 to -30	S 3 was observed by ${ }^{1} \mathrm{H}$ NMR and MS.
3^{a}	PIDA	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}$	rt	no reaction
4^{a}	PIFA	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}$	rt to 50	complex mixture
5	BBr_{3}	DCM	-78 to rt	S4 was observed by MS.

${ }^{\text {a }}$ Reaction mixture was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq. as work up.

(\pm)-S3

(\pm)-S4

Scheme S1. Attempt for demethylation of dimethyl protected substrate S5.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data

Table S2. NMR spectroscopic data ($\mathrm{CD}_{3} \mathrm{OD}$) for natural oregonensin $\mathrm{A}(1)$ and synthetic (-)-oregonensin A (1).

(\pm-oregonensin A (1)
(-)-oregonensin A (1)

No.	Natural (\pm)-1		Synthetic (-)-1	
	δ_{C}	$\delta_{H}($ mult, J in Hz$)$	δ_{C}	$\delta_{H}($ mult, J in Hz)
1	149.1		149.0	
2	123.4		123.3	
3	113.4	6.46 (d, 3.4)	113.3	6.46 (d, 3.0)
4	151.5		151.4	
5	117.4	6.61 (dd, 8.7, 3.4)	117.3	6.60 (dd, 9.0, 3.0)
6	117.3	6.67 (d, 8.7)	117.2	6.67 (d, 9.0)
7	80.1	6.24 (br s)	80.0	6.24 (d, 1.2)
8	151.6	7.41 (d, 1.4)	151.5	7.40 (d, 1.2)
9	132.8		132.6	
10	25.2	2.46 (m)	25.1	2.51-2.45 (m)
11	27.7	2.47 (m)	27.6	2.51-2.45 (m)
12	141.8	6.76 (t, 6.4)	141.8	6.76 (td, 7.2, 1.2)
13	130.5		130.3	
14	171.7		171.5	
15	12.7	1.80 (s)	12.5	1.80 (s)
16	176.5		176.4	

Table S3. NMR spectroscopic data ($\mathrm{CD}_{3} \mathrm{OD}$) for natural chizhine \mathbf{E} (2) and synthetic (-)-chizhine \mathbf{E} (2).

natural
(\pm)-chizhine E (2)

synthetic
(-)-chizhine E (2)

Synthetic (-)-2	
δ_{C}	$\delta_{H}($ mult, J in Hz)
149.0	
123.2	

3	113.5	$6.46(\mathrm{~d}, 2.9)$	113.3	$6.45(\mathrm{~d}, 1.8)$
4	151.5		151.5	
5	117.2	$6.61(\mathrm{dd}, 8.6,2.9)$	117.2	$6.61(\mathrm{dd}, 7.8,1.8)$
6	117.3	$6.68(\mathrm{~d}, 8.6)$	117.3	$6.66(\mathrm{~d}, 7.8)$
1^{\prime}	80.1	$6.24(\mathrm{~d}, 1.5)$	80.1	$6.23(\mathrm{~d}, 1.2)$
2^{\prime}	151.7	$7.44(\mathrm{~d}, 1.5)$	151.7	$7.44(\mathrm{~d}, 1.2)$
3^{\prime}	132.3		132.3	
4^{\prime}	176.4		176.4	
5^{\prime}	24.8	$2.54(\mathrm{~m})$	24.8	$2.54(\mathrm{td}, 7.8,1.2)$
6^{\prime}	27.9	$2.68(\mathrm{~m})$	27.9	$2.68(\mathrm{dd}, 14.4,7.8)$
7^{\prime}	154.5	$6.59($ overlap $)$	154.5	$6.61-6.59(\mathrm{~m})$
8^{\prime}	141.4		141.4	
9^{\prime}	196.9	$9.34(\mathrm{~s})$	196.9	$9.35(\mathrm{~s})$
10^{\prime}	9.2	$1.71(\mathrm{~s})$	9.2	$1.71(\mathrm{~d}, 1.2)$

Table S4. NMR spectroscopic data ($\mathrm{CD}_{3} \mathrm{OD}$) for natural applanatumol U (3) and synthetic (-)-applanatumol U(3).

		Natural (\pm)-3		ynthetic (-)-3
No.	δ_{C}	$\delta_{H}($ mult, J in Hz)	δ_{C}	$\delta_{H}($ mult, J in Hz)
1	149.0		149.0	
2	123.4		123.4	
3	113.4	6.46 (d, 2.9)	113.4	6.44 (d, 3.0)
4	151.5		151.5	
5	117.2	6.62 (dd, 8.9, 2.9)	117.2	6.60 (dd, 9.0, 3.0)
6	117.3	6.68 (d, 8.9)	117.3	6.67 (d, 9.0)
1^{\prime}	79.7	6.25 (br s)	79.7	6.24 (d, 1.2)
2^{\prime}	151.2	7.35 (br s)	151.2	7.35 (d, 1.2)
3^{\prime}	133.1		133.1	
4^{\prime}	25.9	2.37 (overlap)	26.0	2.40-2.30 (m)
5^{\prime}	26.5	2.37 (overlap)	26.5	2.40-2.30 (m)
6^{\prime}	124.8	5.41 (t, 7.1)	124.8	5.40 (br t, 7.2)
7^{\prime}	137.5		137.6	
8^{\prime}	68.6	3.91 (s)	68.6	3.90 (s)
9^{\prime}	176.7		176.7	
10^{\prime}	13.8	1.62 (s)	13.8	1.61 (s)

Table S5. NMR spectroscopic data (acetone- d_{6}) for natural (+)-fornicin A (4) and synthetic (-)-ent-fornicin (ent-4).

		Natural (+)-4		ynthetic (-)-4
No.	δ_{C}	$\delta_{H}($ mult, J in Hz)	δ_{C}	$\delta_{H}($ mult, J in Hz)
1	148.2		148.2	
2	123.6		123.8	
3	113.2	6.53 8d, 2.9)	113.2	6.53 (d, 2.4)
4	151.3		151.5	
5	116.8	6.65 (dd, 8.6, 2.9)	116.8	6.65 (dd, 9.0, 2.4)
6	117.0	6.76 (d, 8.6)	117.1	6.75 (d, 9.0)
1^{\prime}	78.3	6.20 (d, 1.4)	78.2	
2^{\prime}	149.5	7.35 (d, 1.4)	149.4	7.35 (d, 1.8)
3^{\prime}	132.7		132.8	
4^{\prime}	26.6	2.30 (m)	26.7	2.33-2.30 (m)
5^{\prime}	25.9	2.28 (m)	26.0	2.29-2.25 (brm)
6^{\prime}	123.9	5.12 (br t, 6.9)	124.0	5.13 (brt, 7.2)
7^{\prime}	133.1		133.2	
8^{\prime}	25.7	1.64 (s)	25.7	1.64 (d, 1.2)
9^{\prime}	17.7	1.57 (s)	17.7	1.58 (s)
10^{\prime}	174.6		174.4	
PhOH				$\begin{aligned} & 8.26(\mathrm{~s}) \\ & 7.80(\mathrm{~s}) \end{aligned}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13.

Figure $\mathrm{S}_{2} .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 13 .

Figure S3. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14 .

Figure $\mathrm{S} 4 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 14 .

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12 .

Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{dr}=1: 1.1\right)$ of compound 11.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{dr}=1: 1.1\right)$ of compound 11.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{dr}=3.3: 1\right)$ of compound 8.

Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{dr}=3.3: 1$) of compound 8.

Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 6 .

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6 .

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$ of (-)-ent-fornicin A (ent-4).

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum (150 MHz , acetone- d_{6}) of (-)-ent-fornicin A (ent-4).

Figure S15. COSY spectrum of (-)-ent-fornicin A (ent-4).

Figure S16. HMQC spectrum of (-)-ent-fornicin A (ent-4).

Figure S17. HMBC spectrum of (-)-ent-fornicin A (ent-4).

Figure S18 ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9 .

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{dr}=5: 1\right)$ of compound 7 .

Figure $\mathrm{S} 21 .{ }^{13} \mathrm{C}$ NMR spectrum $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{dr}=5: 1\right)$ of compound 7.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 5.

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5 .

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 15.

Figure $\mathrm{S} 25 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of (-)-applanatumol U (3).

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of (-)-applanatumol U(3).

Figure S28. COSY spectrum of (-)-applanatumol U (3).

Figure S29. HMQC spectrum of (-)-applanatumol U (3).

Figure S30. HMBC spectrum of (-)-applanatumol U (3).

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 16.

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of (-)-chizhine E (2).

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of (-)-chizhine \mathbf{E} (2).

Figure S35. COSY spectrum of (-)-chizhine E (2).

Figure S36. HMQC spectrum of (-)-chizhine \mathbf{E} (2).

Figure S37. HMBC spectrum of (-)-chizhine E (2).

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 18.

Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 18.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of (-)-oregonensin $\mathrm{A}(1)$.

Figure $\mathrm{S} 41 .{ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of (-)-oregonensin A (1).

Figure S42. COSY spectrum of (-)-oregonensin A (1).

Figure S43. HMQC spectrum of (-)-oregonensin A (1).

Figure S44. HMBC spectrum of (-)-oregonensin A (1).

5. References

S1) Xu, C.; Bai, X.; Xu, J.; Ren, J.; Xing, Y.; Li, Z.; Wang, J.; Shi, J.; Yu, L.; Wang, Y. RSC Adv. 2017, 7, 47634775.

S2) Guo, X.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 12377-12387.
S3) (a) Andresen, G.; Eriksen, A. B.; Dalhus, B.; Gundersen L. -L.; Rise, F. J. Chem. Soc., Perkin Trans. 1 2001, 1662-1672. (b) Gaich, T.; Mulzer, J. Org. Lett. 2010, 12, 272-275.

