ELECTRONIC SUPPORTING INFORMATION FOR

In situ generation of imines by Staudinger/aza-Wittig tandem combined with thermally induced Wolff rearrangement for one-pot three-component lactam synthesis

Polina Paramonova^a, Rodion Lebedev^a, Olga Bakulina^{a,*}, Dmitry Dar'in^a

and Mikhail Krasavin^{*a,b*}

^[a] Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034 Russia

^[b] Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russia

* Address correspondence to this author at the Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyi prospekt, Peterhof 198504 Russian Federation; phone: +7 904 618 1509, fax: +7 812 428 6939. E-mail: <u>o.bakulina@spbu.ru</u>

Table of contents

General information	2
General procedure for preparation of beta-lactams 4 and dihydro-1,3-oxazines 5 and their analytical data	2
General procedure for preparation of azides 7a-g and their analytical data	7
Preparation of azide 7h	8
Preparation of azide 7i	9
General procedure for preparation of annelated beta-lactams 9 and their analytical data	9
Table S1	14
Table S2	15
Crystallographic data	16
References	.17
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	18

General information

NMR spectra were acquired with 400 MHz Bruker Avance III spectrometer (400.13 MHz for ¹H, 100.61 MHz for ¹³C and 376.50 MHz for ¹⁹F) in CDCl₃ or DMSO- d_6 and were referenced to residual solvent proton signals ($\delta_{\rm H}$ = 7.26 and 2.50, respectively) and solvent carbon signals ($\delta_{\rm C}$ = 77.16 and 39.52, respectively). Melting points were determined with RD-MP (REACH Devices) melting point apparatus in open capillary tubes. Mass spectra were acquired with HRMS-ESI-qTOF spectrometer Nexera LCMS-9030 or MaXis II Bruker Daltonic GmbH (electrospray ionization mode, positive ions detection). TLC was performed on aluminiumbacked pre-coated plates (0.25 mm) with silica gel 60 F254 with a suitable solvent system and was visualized using UV fluorescence. Preparative HPLC was carried out on compact preparative system ECOM ECS28P00, equipped with spectrophotometric detector. Column: YMC-Pack SIL-06, 5 µm, 250×20 mm. Some compounds were additionally purified by RP HPLC on Shimadzu LC-20AP. Column: Agilent Zorbax prepHT XDB-C18, 5 µm, 21.2 × 150 mm. Toluene was dried over molecular sieves 4Å (>24h). Aldehydes, PPh₃ and other solvents were obtained from commercial sources and were used without further purification. All diazo reagents were prepared via "SAFE" protocol [1]. All azides except new ones were synthesized *via* known literature protocols [2,3] and their NMR spectra are in accordance with the literature. Azides **7b-i** are new and have been fully characterized (*vide infra*).

General procedure for preparation of *beta*-lactams 4 and dihydro-1,3-oxazines 5 and their analytical data

In a screw-cap vial equipped with a magnetic stir bar azide **1** (0.5 mmol) and PPh₃ (0.5 mmol) were mixed in 1 mL of toluene. Then corresponding aldehyde **2** (0.5 mmol) was added. The resulting mixture was placed in a pre-heated to 110 °C oil bath or melt heating block for 2 hours. After this time diazo reagent **3** (0.5; 0.75 or 1 mmol) was added and the mixture was stirred for additional 3 hours at 130 °C. After that the solvent was evaporated. Obtained oils were purified by column chromatography eluting with Hexane/Acetone (linear gradient 5-50% of acetone, total volume 500 mL) to give pure compounds **4a-g**, **4j or 5a,b,b'**. *Beta*-lactams **4h,i** were additionally purified by RP-HPLC (ACN-water + 0.1% TFA; gradient 5-50% of ACN in 20 min, then 50-95% of ACN in 40 min; 45 °C; 12 mL/min).

(2RS,3RS)-Methyl carboxylate (4a)

1-benzyl-3-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidine-3-

Yield 126 mg, 60% with 0.5 mmol of diazo reagent; 160 mg, 76% with 0.75 mmol of diazo reagent; 193 mg, 92% with 1 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.29 – 7.18 (m, 5H), 7.10 – 7.01 (m, 4H), 6.94 (d, *J* = 8.7 Hz, 2H), 4.97 (d, *J* = 15.0 Hz, 1H), 4.66 (s, 1H), 3.96 (d, *J* = 15.0 Hz, 1H), 3.82 (s, 3H), 3.37 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.7, 164.9, 162.7 (d, *J* = 247.6 Hz), 160.4, 134.8, 130.7 (d, *J* = 3.3 Hz), 129.4 (d, *J* = 8.2 Hz), 128.9, 128.5, 128.4,

128.0, 125.5, 115.7 (d, J = 21.5 Hz), 114.34, 73.4, 66.1, 55.4, 52.4, 44.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -113.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₃FNO₄⁺ 420.1606; Found 420.1605.

(2RS,3RS)-Ethyl 1-benzyl-3-isopropyl-2-oxo-4-(thiophen-2-yl)azetidine-3-carboxylate (4b)

Yield 143 mg, 80% with 0.75 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃ + DMSO- d_6) δ 7.31 – 7.23 (m, 4H), 7.16 – 7.10 (m, 2H), 7.01 – 6.96 (m, 1H), 6.96 – 6.92 (m, 1H), 4.86 (d, *J* = 14.8 Hz, 1H), 4.55 (s, 1H), 3.90 (d, *J* = 14.7 Hz, 1H), 3.84 (q, *J* = 7.1 Hz, 2H), 2.37 – 2.19 (m, 1H), 1.07 (d, *J* = 6.9 Hz, 3H), 1.03 – 0.95 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃ + DMSO- d_6)

δ 167.6, 165.1, 137.8, 134.7, 128.6, 127.7, 127.0, 126.2, 125.6, 75.5, 60.6, 56.7, 44.0, 30.5, 18.9, 17.2, 13.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₄NO₃S⁺ 358.1471; Found 358.1471.

(2*RS*,3*RS*)-Ethyl 1-benzyl-3-isopropyl-2-(4-methoxyphenyl)-4-oxoazetidine-3-carboxylate (4c)

Yield 143 mg, 75% with 0.75 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 3H), 7.19 – 7.09 (m, 4H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.94 (d, *J* = 14.6 Hz, 1H), 4.28 (s, 1H), 3.80 (s, 3H), 3.84 – 3.73 (m, 3H), 2.30 (hept, *J* = 6.8 Hz, 1H), 1.10 (d, *J* = 6.8 Hz, 3H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz,

CDCl₃) δ 168.3, 166.0, 160.0, 135.4, 129.1, 128.9, 128.5, 128.0, 126.7, 114.1, 75.5, 61.0, 60.9, 55.4, 44.4, 31.1, 19.5, 17.7, 14.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₈NO₄⁺ 382.2013; Found 382.2013.

(2*RS*,3*RS*)-Methyl 3-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxo-1-(*p*-tolyl)azetidine-3carboxylate (4d)

Yield 96 mg, 46% with 0.5 mmol of diazo reagent; 126 mg, 60% with 0.75 mmol of diazo reagent; light yellow solid; m.p. 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.70 (m, 1H), 7.34 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.11 (t, *J* = 8.7 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.8 Hz, 1H), 5.28 (s, 0H), 3.81 (s, 2H), 3.35 (s, 2H), 2.27 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.5, 162.83 (d, *J* = 247.9 Hz), 161.7, 160.4, 134.7, 134.3, 130.7 (d, *J* = 3.3 Hz), 129.7, 129.6 (d, *J* = 8.2 Hz, 12, 128.4, 120.5 Mit (s, 120.5 Mit (s

125.4, 117.5, 115.80 (d, J = 21.6 Hz), 114.4, 72.5, 66.4, 55.4, 52.5, 21.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -113.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂FNO₄Na⁺ 422.1425; Found 422.1426.

(2*RS*,3*RS*)-Methyl 1-(4-chlorophenyl)-3-(4-fluorophenyl)-2-(4-methoxyphenyl)-4oxoazetidine-3-carboxylate (4e)

Yield 86 mg, 39% with 0.5 mmol of diazo reagent; 125 mg, 57% with 0.75 mmol of diazo reagent; light yellow solid; m.p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.67 (m, 2H), 7.36 – 7.19 (m, 6H), 7.12 (t, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.29 (s, 1H), 3.82 (s, 3H), 3.36 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.2, δ 162.9 (d, *J* = 248.4 Hz), 161.9, 160.5, 135.6, 130.4 (d, *J* = 3.3 Hz), 129.8, 129.5 (d, *J* = 8.2 Hz), 129.3, 128.3, 124.8, 118.8, 115.9 (d, *J* = 21.6 Hz), 114.6, 72.8, 66.5, 55.4,

52.6. ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃) δ -112.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉ClFNO₄Na⁺ 462.0879; Found 462.0877.

(2RS,3RS)-Methyl 3-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxo-1-(2-oxotetrahydrofuran-3-yl)azetidine-3-carboxylate (4f)

Yield 136 mg, 66% with 0.5 mmol of diazo reagent; 65% with 0.75 mmol of diazo reagent, *dr* 86:14; light yellow oil. Signals of major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.60 (m, 2H), 7.33 (d, *J* = 8.7 Hz, 2H), 7.08 (t, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 5.18 (s, 1H), 4.51 (td, *J* = 8.9, 2.8 Hz, 1H), 4.27 – 4.17 (m, 1H), 3.97 (t, *J* = 10.5, 9.1 Hz, 1H), 3.82 (s, 3H), 3.38 (s, 3H), 3.17 – 3.02 (m, 1H), 2.68 – 2.55

(m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 167.4, 165.0, 162.8 (d, *J* = 248.1 Hz), 160.7, 130.1 (d, *J* = 3.2 Hz), 129.4 (d, *J* = 8.2 Hz), 128.6, 125.3, 115.8 (d, *J* = 21.6 Hz), 114.6, 73.5, 67.7, 66.2, 55.5, 52.6, 51.4, 26.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -113.27. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀FNO₆Na⁺ 436.1167; Found 436.1165.

(2RS,3RS)-Ethyl 1-benzyl-2-(4-methoxyphenyl)-4-oxo-3-phenylazetidine-3-carboxylate (4g)

Yield 110 mg, 53% with 0.5 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 6.8 Hz, 2H), 7.41 – 7.30 (m, 5H), 7.27 (d, *J* = 8.9 Hz, 2H), 7.24 – 7.17 (m, 3H), 7.10 – 7.02 (m, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.96 (d, *J* = 15.0 Hz, 1H), 4.74 (s, 1H), 3.96 (d, *J* = 15.0 Hz, 1H), 3.83 (s, 3H), 3.79 – 3.76 (m, 2H), 0.93 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.3, 165.2, 160.3, 135.1, 128.9, 128.7, 128.7,

128.5, 128.2, 127.9, 127.6, 126.0, 114.3, 74.1, 65.8, 61.6, 55.5, 44.6, 13.8. HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{26}H_{25}NO_4Na^+$ 438.1674; Found 438.1674.

(*3RS*,4*RS*)-1-Benzyl-4-(4-methoxyphenyl)-3-((4-methoxyphenyl)sulfonyl)-3-methylazetidin-2-one (4h)

Yield 70 mg, 31% with 0.5 mmol of diazo reagent, 122 mg, 54% with 0.75 mmol of diazo reagent, 135 mg; white solid; m.p. 172-174 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.9 Hz, 2H), 7.30 – 7.23 (m, 5H), 7.13 – 7.06 (m, 2H), 6.92 – 6.84 (m, 4H), 4.95 (d, *J* = 14.8 Hz, 1H), 4.38 (s, 1H), 4.01 (d, *J* = 14.8 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 1.53 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.3, 163.9, 160.1, 134.6, 131.7,

130.2, 129.1, 129.0, 128.5, 128.1, 123.2, 114.0, 113.6, 79.1, 77.4, 77.1, 76.7, 65.8, 55.6, 55.3, 45.0, 17.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₅NO₅SNa⁺ 474.1346; Found 474.1346.

(3RS,4RS)-1-Benzyl-3-(methylsulfonyl)-3-phenyl-4-(p-tolyl)azetidin-2-one (4i)

Yield 109 mg, 54 % with 0.75 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.54 (m, 2H), 7.32 – 7.20 (m, 5H), 7.10 – 7.02 (m, 3H), 7.03 – 6.96 (m, 2H), 6.91 – 6.80 (m, 2H), 4.83 (d, *J* = 15.1 Hz, 1H), 4.66 (s, 1H), 3.96 (d, *J* = 15.1 Hz, 1H), 2.39 (s, 3H), 2.19 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.5, 139.4, 134.2, 132.0, 129.8, 129.2, 129.2, 129.0, 128.9, 128.5, 128.3, 128.1, 127.3, 83.9, 67.1, 45.2, 40.1, 21.4. HRMS

(ESI) m/z: $[M+Na]^+$ Calcd for C₂₄H₂₃NO₃SNa⁺ 428.1291; Found 428.1296.

(*3RS*,4*RS*)-3-(Adamantan-1-ylsulfonyl)-4-(4-chlorophenyl)-3-phenyl-1-(*p*-tolyl)azetidin-2-one (4j)

Yield 124 mg, 45 % with 0.75 mmol of diazo reagent; light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.95 (m, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.41 (m, 3H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 5.28 (s, 1H), 2.27 (s, 3H), 2.10 – 2.01 (m, 3H), 1.99

-1.90 (m, 3H), 1.55 (d, J = 13.5 Hz, 4H), 1.51 -1.41 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.6, 135.2, 134.8, 134.1, 132.6, 131.1, 130.0, 129.8, 129.6, 128.8, 128.4, 117.8, 85.8, 77.4, 69.8, 69.6, 35.7, 35.2, 28.8, 21.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₃₂ClNO₃SNa⁺ 568.1684; Found 568.1661.

3-Benzyl-2-(4-nitrophenyl)-5,6-diphenyl-2H-1,3-oxazin-4(3H)-one (5a)

Yield 105 mg, 48% with 0.75 mmol of diazo reagent; light yellow solid; m.p. 162-164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 2H), 7.32 – 7.27 (m, 5H), 7.25 – 7.19 (m, 5H), 7.16 – 7.09 (m, 5H), 6.43 (s, 1H), 5.32 (d, *J* = 15.3 Hz, 1H), 4.24 (d, *J* = 15.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.1, 158.0, 148.7, 142.9, 136.2, 132.9, 132.2, 131.4, 130.3, 129.8,

 $128.9, 128.5, 128.1, 128.0, 127.9, 127.5, 123.8, 113.9, 86.3, 47.8. \text{ HRMS (ESI) } \text{m/z: } [\text{M}+\text{H}]^+ \text{ Calcd for } \text{C}_{29}\text{H}_{23}\text{N}_2\text{O}_4^+ 463.1652\text{; Found } 463.1655\text{.}$

3-Benzyl-2-(4-methoxyphenyl)-5-methyl-6-phenyl-2H-1,3-oxazin-4(3H)-one (5b)

Yield 51 mg, 26% with 0.5 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.31 – 7.22 (m, 8H), 7.20 – 7.15 (m, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 6.11 (s, 1H), 5.30 (d, *J* = 15.3 Hz, 1H), 3.91 (d, *J* = 15.3 Hz, 1H), 3.84 (s, 3H), 1.80 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.4, 161.2, 160.6, 137.1, 133.7, 130.9, 129.0, 128.5, 128.1, 128.0, 127.8, 127.4, 127.2, 113.9, 113.6, 87.2, 55.4,

46.8, 18.5. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{25}H_{24}NO_3^+$ 386.1751; Found 386.1748.

3-Benzyl-2-(4-methoxyphenyl)-6-methyl-5-phenyl-2H-1,3-oxazin-4(3H)-one (5b')

Yield 71 mg, 38% with 0.5 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 5H), 7.30 – 7.20 (m, 5H), 7.20 – 7.15 (m, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.13 (s, 1H), 5.32 (d, *J* = 15.4 Hz, 1H), 3.91 (d, *J* = 15.4 Hz, 1H), 3.79 (s, 3H), 1.98 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.6, 160.6, 157.1, 137.1,

133.3, 130.0, 129.2, 129.1, 128.6, 128.2, 127.9, 127.6, 127.5, 114.0, 106.9, 87.1, 55.4, 46.8, 12.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₄NO₃⁺ 386.1751; Found 386.1757.

General procedure for preparation of azides 7a-g and their analytical data

Corresponding salicylic aldehyde (1.05 mmol), 2-azidoethyl methanesulfonate (1 mmol) and K_2CO_3 (1.05 mmol) were mixed in DMF (3 mL) and stirred at 50 °C. Reaction progress was controlled by TLC. Solvent of the resulting mixture was evaporated, residue was diluted with water and extracted with DCM. Combined organic layers were washed with NaOH (3%), water, brine, dried over anhydrous Na₂SO₄ and solvent was removed under reduced pressure to give pure compounds **7a-g**.

2-(2-Azidoethoxy)benzaldehyde (7a)

Yield 168 mg, 88%; yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ N₃ 0 Yield 168 mg, 88%; yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 7.91 – 7.81 (m, 1H), 7.63 – 7.48 (m, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.27 (t, *J* = 4.9 Hz, 2H), 3.68 (t, *J* = 4.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.4, 160.5, 136.0, 128.7, 125.2, 121.6, 112.5, 67.6, 50.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₁₀N₃O₂ 192.0773; Found 192.0772.

2-(2-Azidoethoxy)-5-fluorobenzaldehyde (7b)

2-(2-Azidoethoxy)-5-chlorobenzaldehyde (7c)

CI Yield 210 mg, 93%; yellow amorphous solid. ¹H NMR (400 MHz, CDCl3) \aleph_3 δ 10.43 (s, 1H), 7.81 (d, J = 2.7 Hz, 1H), 7.49 (dd, J = 8.9, 2.7 Hz, 1H), 6.93 (d, J = 8.9 Hz, 1H), 4.25 (t, J = 4.9 Hz, 2H), 3.68 (t, J = 4.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl3) δ 188.1, 159.0, 135.5, 128.3, 127.4, 126.1, 114.2, 68.1, 50.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₉H₈ClN₃NaO₂ 248.0197/250.0168; Found 248.0196/250.0168.

2-(2-Azidoethoxy)-5-bromobenzaldehyde (7d)

 CDCl₃) δ 188.0, 159.4, 138.4, 131.4, 126.5, 114.6, 114.5, 68.0, 50.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₉N₃O₂Br 269.9873/271.9853; Found 269.9878/271.9859.

2-(2-Azidoethoxy)-5-nitrobenzaldehyde (7e)

Yield 187 mg, 79%; yellow amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.42 (s, 1H), 7.96 (d, J = 2.6 Hz, 1H), 7.64 (dd, J = 8.8, 2.6

Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H), 4.35 – 4.18 (m, 2H), 3.69 (t, J = 4.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 188.0, 159.4, 138.4, 131.4, 126.5, 114.6, 68.0, 50.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₉N₄O₄ 237.0618; Found 237.0624.

2-(2-azidoethoxy)-3-methoxybenzaldehyde (7f)

Yield: 186 mg, 84%; brown oil. ¹H NMR (400 MHz, CDCl₃) δ 10.48 (s, 1H), 8.72 (d, *J* = 2.9 Hz, 1H), 8.44 (dd, *J* = 9.2, 2.9 Hz, 1H), 7.12 (d, *J* = 9.2 Hz, 1H), 4.40 (t, *J* = 4.9 Hz, 2H), 3.77 (t, *J* = 4.9 Hz, 2H). ¹³C{¹H} NMR (101

MHz, CDCl₃) δ 187.1, 164.2, 142.3, 130.7, 124.8, 113.0, 68.7, 50.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₂N₃O₃ 222.0873; Found 222.0877.

2-(2-Azidoethoxy)-1-naphthaldehyde (7g)

Yield 219 mg, 99%; reddish amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 10.93 (s, 1H), 9.27 (d, J = 8.7 Hz, 1H), 8.06 (d, J = 9.1 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H),

7.29 – 7.17 (m, 1H), 4.38 (t, J = 5.0 Hz, 2H), 3.72 (t, J = 5.0 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.8, 162.6, 137.6, 131.6, 130.1, 129.1, 128.4, 125.2, 125.2, 117.4, 113.4, 68.5, 50.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₂N₃O₂ 242.0930; Found 242.0926.

Preparation of azide 7h

2-((2-Formylphenyl)thio)ethyl methanesulfonate

 methanesulfonate (237 mg, 91%) as a crude product that was used in a next stage directly without purification.

2-((2-Azidoethyl)thio)benzaldehyde (7h)

Sodium azide (2.33 mmol) was added to a solution of 2-((2- N_3) formylphenyl)thio)ethyl methanesulfonate (1.55 mmol) in DMF (4 mL). Mixture was stirred overnight at room temperature. The reaction solution was diluted with water and extracted with chloroform. Combined organic layers were washed with water, brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give 2-((2-azidoethyl)thio)benzaldehyde (310 mg, 96%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 7.93 – 7.78 (m, 1H), 7.59 – 7.51 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 3.52 (t, *J* = 6.9 Hz, 2H), 3.14 (t, *J* = 7.0 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.4, 139.7, 134.9, 134.2, 132.1, 129.3, 126.5, 50.0, 32.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₉H₉N₃OSNa 230.0359; Found 230.0362.

Preparation of azide 7i

2-((2-Azidoethyl)(methyl)amino)benzaldehyde (7i)

2-Azido-N-methyl ethan-1-amine (2.66 mmol) was added to a solution of 2-fluorobenzaldehyde (2.42 mmol) and K_2CO_3 (2.66 mmol) in 2 mL of DMF and mixture was stirred for 16 h at 110 °C. The reaction solution was diluted

with water and extracted with chloroform. Combined organic layers were washed with water, brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give 2-((2azidoethyl)(methyl)amino)benzaldehyde (251 mg, 50%) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 7.80 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.55 – 7.45 (m, 1H), 7.12 (dd, *J* = 17.3, 8.0 Hz, 2H), 3.46 (t, *J* = 6.0 Hz, 2H), 3.35 (t, *J* = 6.0 Hz,2), 2.94 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.4, 154.9, 134.8, 130.7, 129.1, 122.6, 119.9, 56.3, 49.0, 43.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₁₂N₄ONa 227.0903; Found 227.0905.

General procedure for preparation of annelated beta-lactams 9 and their analytical data

In a screw-cap vial equipped with a magnetic stir bar azide **7** (0.5 mmol) and PPh₃ (0.5 mmol) were mixed in 1 mL of toluene. The resulting mixture was placed in a pre-heated to 110 °C oil bath or melt heating block for 1 hour. After this time diazo reagent **3** (0.75 or 1 mmol) was added and the mixture was stirred for additional 3 hours at 110 °C. After that the solvent was evaporated.

Obtained oils were purified by column chromatography eluting with Hexane/Acetone (linear gradient 5-50% of acetone, total volume 500 mL) to give pure compounds **9a-k**.

(1*RS*,10*bRS*)-Methyl 9-chloro-1-(4-fluorophenyl)-2-oxo-2,4,5,10*b*-tetrahydro-1*H*-azeto[1,2-d]benzo[*f*][1,4]oxazepine-1-carboxylate (9a)

Yield 66 mg, 35% with 0.75 mmol of diazo reagent; 143 mg, 76% with 1 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.21 – 7.10 (m, 4H), 6.99 (d, *J* = 8.7 Hz, 1H), 5.26 (s, 1H), 4.37 – 4.16 (m, 3H), 3.36 (s, 3H), 3.35 – 3.29 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.9, 163.3, 162.8 (d, *J* = 248.1 Hz), 157.5, 129.92 (d, *J* = 8.1 Hz), 129.2, 128.4, 127.5, 127.3, 123.4, 115.88 (d, *J* = 21.7 Hz), 73.8,

70.4, 63.3, 52.8, 43.1. ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃) δ -113.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆ClFNO₄⁺ 376.0746; Found 376.0745.

(1*RS*,10*bRS*)-Methyl 1-(4-fluorophenyl)-7-methoxy-2-oxo-2,4,5,10*b*-tetrahydro-1*H*azeto[1,2-*d*]benzo[*f*][1,4]oxazepine-1-carboxylate (9b)

Yield 130 mg, 70% with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.10 (t, *J* = 8.7 Hz, 2H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 6.6 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.32 (s, 1H), 4.39 – 4.18 (m, 3H), 3.86 (s, 3H), 3.39 – 3.30 (m, 1H), 3.29 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.3, 163.3, 162.7 (d, *J* = 247.8 Hz), 151.8, 148.3, 130.3 (d, *J* = 3.3 Hz), 129.9 (d, *J* = 8.2 Hz), 127.2, 123.4, 118.7, 115.7 (d, *J* = 21.6 Hz), 111.4, 73.3, 70.9, 63.8, 56.2, 52.6, 43.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -

113.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₈FNO₅⁺ 372.1242; Found 372.1241.

(1*RS*,10*bRS*)-Methyl 9-bromo-1-(4-fluorophenyl)-2-oxo-2,4,5,10*b*-tetrahydro-1*H*-azeto[1,2-d]benzo[*f*][1,4]oxazepine-1-carboxylate (9c)

Yield 143 mg, 68% with 0.75 mmol of diazo reagent; orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.58 (m, 2H), 7.36 – 7.30 (m, 1H), 7.26 (s, 1H), 7.15 (t, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 1H), 5.27 (s, 1H), 4.37 – 4.16 (m, 3H), 3.38 (s, 3H), 3.35 – 3.28 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.9, 163.2, 162.8 (d, *J* = 248.3 Hz), 158.0, 132.2, 130.3, 130.0, 129.9 (d, *J* = 8.3 Hz), 129.8, 128.0, 123.8, 116.0, 115.9 (d, *J* = 21.7 Hz), 73.9, 70.4,

63.2, 52.8, 43.1. ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) δ -113.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆BrFNO₄⁺ 420.0241; Found 420.0240.

(1*RS*,10*bRS*)-Methyl 1-(4-fluorophenyl)-2-oxo-2,4,5,10*b*-tetrahydro-*1H*-azeto[1,2d]benzo[*f*][1,4]oxazepine-1-carboxylate (9d)

Yield 113 mg, 66% with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.57 (m, 2H), 7.25 – 7.18 (m, 1H), 7.18 – 7.10 (m, 3H), 7.10 – 7.03 (m, 2H), 5.32 (s, 1H), 4.40 – 4.11 (m, 3H), 3.37 – 3.29 (m, 1H), 3.26 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.3, 163.5, 162.8 (d, *J* = 247.9 Hz), 158.8, 130.2 (d, *J* = 3.3 Hz), 130.0 (d, *J* = 8.2 Hz), 129.3, 127.7, 125.6, 123.4, 121.9, 115.8 (d, *J* = 21.6 Hz), 73.7, 70.2, 63.9, 52.7, 43.2. ¹⁹F{¹H} NMR

(376 MHz, CDCl₃) δ -113.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₆FNO₄Na⁺ 364.0956; Found 364.0960.

(1*RS*,10*bRS*)-Methyl 9-fluoro-1-(4-fluorophenyl)-2-oxo-2,4,5,10*b*-tetrahydro-1*H*-azeto[1,2-d]benzo[*f*][1,4]oxazepine-1-carboxylate (9e)

Yield 104 mg, 58% with 1.5 eq of diazo-reagent; orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.60 (m, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.06 – 6.99 (m, 1H), 6.96 – 6.90 (m, 1H), 6.89 – 6.84 (m, 1H), 5.25 (s, 1H), 4.33 – 4.16 (m, 3H), 3.37 (s, 3H), 3.35 – 3.28 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.0, 163.3, 162.83 (d, *J* = 248.1 Hz), 158.30 (d, *J* = 243.6 Hz), 155.03 (d, *J* = 2.6 Hz), 130.0, 129.91 (d, *J* = 8.1 Hz), 127.59 (d, *J* = 6.9 Hz), 123.46 (d, *J*

= 8.3 Hz), 116.00 (d, J = 22.7 Hz), 115.88 (d, J = 21.7 Hz), 113.83 (d, J = 24.4 Hz), 73.7, 70.6, 63.6, 52.8, 43.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -113.0, -119.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆F₂NO₄⁺ 360.1042; Found 360.1042.

(1*RS*,12*cRS*)-Methyl 1-(4-fluorophenyl)-2-oxo-2,4,5,12*c*-tetrahydro-1*H*-azeto[1,2d]naphtho[1,2-*f*][1,4]oxazepine-1-carboxylate (9f)

Yield 82 mg, 42% with 0.75 mmol of diazo reagent; orange oil. ¹H NR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 3H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.61 – 7.51 (m, 1H), 7.44 – 7.34 (m, 2H), 7.23 – 7.11 (m, 3H), 5.81 (s, 1H), 4.71 – 4.54 (m, 1H), 4.51 – 4.36 (m, 1H), 4.18 (td, *J* = 12.3, 4.3 Hz, 1H), 3.37 (dd, *J* = 13.2, 4.3, 1.2 Hz, 1H), 2.97 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.12 (d, *J* = 205.5 Hz), 162.76 (d, *J* = 248.4 Hz), 158.3, 132.3, 130.2, 130.0, 129.78 (d,

J = 8.1 Hz), 129.65 (d, J = 3.5 Hz), 128.6, 126.7, 125.0, 123.6, 122.1, 117.1, 115.97 (d, J = 21.5 Hz), 75.4, 70.3, 64.5, 52.1, 41.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -113.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉FNO₄⁺ 392.1293; Found 392.1291.

(1RS,10bRS)-Ethyl

2-oxo-1-phenyl-2,4,5,10b-tetrahydro-1H-azeto[1,2-

d]benzo[f][1,4]oxazepine-1-carboxylate (9g)

Yield 69 mg, 41% with 0.5 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.35 (m, 1H), 7.25 – 7.19 (m, 2H), 7.10 – 7.01 (m, 2H), 5.38 (s, 1H), 4.36 – 4.18 (m, 3H), 3.85 – 3.75 (m, 1H), 3.73 – 3.61 (m, 1H), 3.38 – 3.18 (m, 1H), 0.79 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.9, 163.8, 158.9, 134.5, 129.0, 128.7,

128.4, 128.2, 128.0, 126.0, 123.3, 121.8, 74.3, 70.3, 63.6, 61.9, 43.1, 13.5. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{20}H_{20}NO_4^+$ 338.1387; Found 338.1389.

(1*RS*,10*bRS*)-Methyl 1-(4-fluorophenyl)-9-nitro-2-oxo-2,4,5,10*b*-tetrahydro-1*H*-azeto[1,2-d]benzo[*f*][1,4]oxazepine-1-carboxylate (9h)

Yield 110 mg, 57% with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 2H), 7.73 – 7.59 (m, 2H), 7.21 – 7.05 (m, 3H), 5.36 (s, 1H), 4.55 – 4.39 (m, 1H), 4.36 – 4.19 (m, 2H), 3.43 – 3.33 (m, 1H), 3.31 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.5, 163.8, 162.9, 162.8 (d, J = 248.5 Hz), 142.8, 129.8 (d, J = 8.3 Hz), 129.4 (d, J = 3.4 Hz), 126.1, 124.7, 124.0, 122.7, 116.0 (d, J = 21.8 Hz), 74.2,

70.3, 62.9, 52.9, 42.7. ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) δ -112.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₅FN₂O₆Na⁺ 409.0806; Found 409.0813.

(1*RS*,10*bRS*)-Methyl 1-(2-methoxyphenyl)-2-oxo-2,4,5,10*b*-tetrahydro-1*H*-azeto[1,2d]benzo[*f*][1,4]oxazepine-1-carboxylate (9i)

Yield 138 mg,78% with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.77 (m, 1H), 7.57 (d, *J* = 6.5 Hz, 1H), 7.42 – 7.34 (m, 1H), 7.25 – 7.18 (m, 1H), 7.11 – 6.96 (m, 4H), 5.38 (s, 1H), 4.44 – 4.06 (m, 3H), 3.85 (s, 3H), 3.35 (s, 3H), 3.32 (ddd, *J* = 12.8, 6.1, 3.0 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.0, 163.9, 159.0, 157.1, 130.1, 128.9, 128.8,

128.3, 128.1, 123.2, 121.9, 121.0, 111.5, 70.8, 70.4, 63.1, 55.3, 52.4, 43.3. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{19}NO_5^+$ 354.1336; Found 354.1333.

(1RS,10bRS)-Methyl1-(2-methoxyphenyl)-2-oxo-2,4,5,10b-tetrahydro-1H-azeto[1,2-d]benzo[f][1,4]thiazepine-1-carboxylate (9j)

Yield 74 mg, 40 % with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.51 (t, *J* = 8.6 Hz, 2H), 7.37 (t, *J* = 8.7 Hz, 1H), 7.29 – 7.20 (m,

1H), 7.21 - 7.14 (m, 1H), 7.06 - 6.96 (m, 2H), 5.44 (s, 1H), 4.36 - 4.24 (m, 1H), 3.79 (s, 3H), 3.40 (s, 3H), 3.39 - 3.32 (m, 1H), 3.11 - 2.96 (m, 2H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 168.3, 165.3, 157.4, 138.5, 135.9, 133.6, 130.0, 129.4, 128.7, 127.7, 127.1, 123.5, 121.0, 111.6, 71.5, 66.3, 55.4, 52.4, 44.0, 33.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO₄S⁺ 370.1108; Found 370.1109.

(1*RS*,10*bRS*)-Methyl 1-(2-methoxyphenyl)-6-methyl-2-oxo-1,2,4,5,6,10*b*hexahydroazeto[1,2-d]benzo[*f*][1,4]diazepine-1-carboxylate (9k)

Yield 24 mg, 13% with 0.75 mmol of diazo reagent; yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 1H), 7.09 – 6.98 (m, 1H), 6.93 – 6.82 (m, 2H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.61 – 6.52 (m, 2H), 6.50 (d, *J* = 8.2 Hz, 1H), 5.75 (s, 1H), 4.10 – 3.97 (m, 1H), 3.76 (s, 3H), 3.66 (s, 3H), 3.37 – 3.24 (m, 1H), 3.18 – 3.03 (m, 1H), 2.73 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.1, 166.2, 156.5, 151.1, 130.0, 129.6, 129.1, 128.0, 125.2, 122.5, 120.3, 120.2, 116.6,

109.7, 73.6, 64.2, 54.9, 54.0, 53.0, 40.9, 40.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O₄⁺ 367.1652; Found 367.1649.

Table S1

Conditions finding of 2 step *beta*-lactam **4a** synthesis by internal standart-based ¹⁹F NMR.

$1) T^{\circ}C, time solvent}$ $1) T^{\circ}C, time solvent}$ $1) T^{\circ}C, time solvent}$ $2a \qquad \qquad$							
Enter	Salvant	T (1 st	T (2 nd	Time 1+2	Imine,	Diazo,	Yield,
Enuy	Solvent	stage), °C	stage), °C	stages, h	equiv.	equiv.	%
1	toluene	110	60	2+3	1	1	0
2	toluene	110	80	2+3	1	1	0
3	toluene	110	110	2+3	1	1	62
4	toluene	110	130	2+3	1	1	76
5	toluene	110	150	2+3	1	1	76
6	toluene	110	130	1+1	1	1	0
7	toluene	110	130	1+1	1	1	0
8	toluene	110	130	3+3	1	1	53
9	toluene	110	130	16+3	1	1	67
10	toluene	110	130	3+16	1	1	51
1	toluene	150	130	1+3	1	1	68
12	toluene	150	130	2+3	1	1	70
13	toluene	130	130	2+3	1	1	76
14	toluene	110	130	2+3	1.5	1	57
15	toluene	110	130	2+3	2	1	54
16	toluene	110	130	2+3	1	1.5	77
17	toluene	110	130	2+3	1	2	69
18	DMF	110	130	2+3	1	1	0
19	<i>p</i> -xylene	110	130	2+3	1	1	67
20	PhC1	110	130	2+3	1	1	65
21	PhCF ₃	110	130	2+3	1	1	76
22	1,2-	110	130	2+3	1	1	75
23	dichlorobenzene	110	130	2+3	1	1	75

Table S2

Conditions finding of 2 step annelated *beta*-lactam **9d** synthesis by internal standart-based ¹⁹F NMR.

$7d + PPh_3 + PPh_3 + PPh_3 + 2)T^{\circ}C, time + CO_2Me + $						
Entry	T (1 st stage), °C	T (2 nd stage), °C	Time 1+2 stages, h	Imine, equiv.	Diazo, equiv.	Yield, %
1	110	110	2+3	1	1	44
2	110	130	2+3	1	1	35
3	110	150	2+3	1	1	20
4	130	130	2+3	1	1	39
5	130	150	2+3	1	1	15
6	150	150	2+3	1	1	13
7	110	110	1+3	1	1	54
8	110	110	3+3	1	1	44
9	110	110	1+3	1.5	1	36
10	110	110	1+3	1	1.5	72

Crystallographic data

X-ray Single Crystal analysis was performed on Agilent Technologies (Oxford Diffraction) SuperNova diffractometer with monochromated CuK α radiation. The crystal was kept at 100 K during data collection. Using Olex2⁵, the structures were solved with the SHELXT⁶ structure solution program using Intrinsic Phasing and refined with the SHELXL⁷ refinement package using Least Squares minimization. CCDC 2208381 (**9g**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/</u>.

Figure S1. Crystal structure of compound 9d (ORTEP plot, 50% probability level)

Table 1 Crystal data and structure refinement for 9d.			
Identification code	2ver0-21974_PPS-192_auto		
Empirical formula	$C_{20}H_{19}NO_4$		
Formula weight	337.36		
Temperature/K	100.15		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
a/Å	13.2559(2)		
b/Å	8.60080(10)		
c/Å	14.9878(3)		
α/°	90		
β/°	104.098(2)		
γ/°	90		
Volume/Å ³	1657.31(5)		
Z	4		
$\rho_{calc}g/cm^3$	1.352		
µ/mm⁻¹	0.772		
F(000)	712.0		
Crystal size/mm ³	$? \times ? \times ?$		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
20 range for data collection/°	7.994 to 138.398		
Index ranges	$-16 \le h \le 14, -10 \le k \le 10, -17 \le l \le 18$		
Reflections collected	10828		

Independent reflections	$3086 [R_{int} = 0.0258, R_{sigma} = 0.0278]$
Data/restraints/parameters	3086/0/227
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0341, wR_2 = 0.0873$
Final R indexes [all data]	$R_1 = 0.0396, wR_2 = 0.0913$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.22

References

- 1. Dar'in, D., Kantin, G., Krasavin, M. Chem. Commun., 2019, 55, 5239.
- Iniyavan, P., Balaji, G.L., Sarveswari, S., Vijayakumar, V. *Tetrahedron Lett.*, 2015, 56 (35), 5002–5009.
- 3. Myers, E. L., Raines, R.T. Angew. Chem. Int. Ed. 2009, 48, 2359 –2363.
- 4. Ginzburg, Y., Anaby, A., Vidavsky, Y., Diesendruck, C.E., Ben-Asuly, A., Goldberg, I., Lemcoff, N.G. *Organometallics*, **2011**, 30 (12), 3430-3437.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 6. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 7. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Copies of ¹H, ¹³C and ¹⁹F NMR spectra

 1 H, 13 C and 19 F NMR spectra of compound **4a**

-98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -12?

¹H and ¹³C NMR spectra of compound **4b**

 ^1H and ^{13}C NMR spectra of compound 4c

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

$^1\text{H},\,^{13}\text{C}$ and $^{19}\text{F}\,\text{NMR}$ spectra of compound 4e

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

$^1\text{H},\,^{13}\text{C}$ and ^{19}F spectra of compound 4f

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

 ^1H and ^{13}C NMR spectra of compound 4g

¹H and ¹³C NMR spectra of compound **4h**

¹H and ¹³C NMR spectra of compound **4i**

¹H and ¹³C NMR spectra of compound **4j**

¹H and ¹³C NMR spectra of compound **5a**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{5b}$

 1 H and 13 C NMR spectra of compound **5b'**

 1 H and 13 C NMR spectra of compound **7a**

¹H and ¹³C NMR spectra of compound **7b**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

 ^1H and ^{13}C NMR spectra of compound 7c

. 190 . 170 . 150 . 140 . 80 . 40

S39

¹H and ¹³C NMR spectra of compound **7e**

 ^1H and ^{13}C NMR spectra of compound $\mathbf{7f}$

 ^1H and ^{13}C NMR spectra of compound 7g

 ^1H and ^{13}C NMR spectra of compound 7h

¹H and ¹³C NMR spectra of compound **7i**

¹H, ¹³C and ¹⁹F NMR spectra of compound **9a**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

 1 H, 13 C and 19 F NMR spectra of compound **9b**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

1 H, 13 C and 19 F NMR spectra of compound **9**c

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

¹H, ¹³C and ¹⁹F NMR spectra of compound **9d**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

 1 H, 13 C and 19 F NMR spectra of compound **9e**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

¹H, ¹³C and ¹⁹F NMR spectra of compound **9f**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

¹H and ¹³C NMR spectra of compound 9g

¹H, ¹³C and ¹⁹F NMR spectra of compound **9h**

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

¹H and ¹³C NMR spectra of compound **9**j

¹H and ¹³C NMR spectra of compound **9**k

