Supporting Information

Oxidant Free Synthesis of 2-Pyrones via NHC-Catalyzed [3+3] Annulation of Bromoenals with 2-Chloro-1,3-diketones

Cong Luo, Xinyi Xu, Jianfeng Xu* and Xingkuan Chen*
Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
Key Laboratory of Surface \& Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
Email:jfxu@zstu.edu.cn; xkchen@jnu.edu.cn

Table of Contents

I	General information	S1
II	Synthesis of substrates	S2
III	General procedure for the catalytic synthesis of products 3	S2
IV	Synthetic transformations of 3	S3
V	References	S3
VI	Characterizations of products	S4
VII	${ }^{1} \mathrm{H},{ }^{13}$ C NMR and HPLC spectra	S10

I. General information:

Commercially available materials purchased from Alfa Aesar or Sigma-Aldrich were used as received, except aldehydes that were purified via distillation or column chromatography prior to use. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker $(300 \mathrm{MHz})$ spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to chloroform $\left(\delta=7.26\right.$, singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets), m (multiplets), and etc. All firstorder splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker (300 MHz) (75 MHz) spectrometer. High resolution mass spectrometry (HRMS) analysis was performed using electrospray ionization (ESI) with a quadrupole-time of flight (QTOF) mass analyzer.

HRMS (ESI) analysis was performed by The Analytical Instrumentation Center at College of Chemistry and Materials Science, Jinan University, and (HRMS) data were reported with ion mass/charge (m / z) ratios as values in atomic mass units. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

II. Synthesis of substrates

Substrates $\mathbf{2 a}, \mathbf{2 u}$ and $\mathbf{2 v}$ were synthesized according to the reported method. ${ }^{1} \mathbf{S 2 a}(5.0 \mathrm{~g}$, $44.6 \mathrm{mmol})$ was dissolved in THF (15 mL) and water (50 mL), which was subsequently cooled to 0 ${ }^{\circ} \mathrm{C}$. After dropwise addition of chloramine- $\mathrm{T}(10.2 \mathrm{~g}, 44.6 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$, this mixture was stirred for 30 min and then filtered. The residue was washed with water (5 mL). The filtrate was acidified to $\mathrm{pH}=2$ with concentrated HCl and the acidic mixture was saturated with NaCl . This mixture was extracted four times with THF and the collected organic phases were dried thoroughly with MgSO4. After concentration under vacuum, 2a was obtained in 75% yield (4.9 g) .

Substrate $\mathbf{2 w}$ was synthesized according to the reported method. ${ }^{2}$ The solution of DMSO ($15 \mathrm{mmol}, 3$ equivalents) and the substrate $\mathbf{S 2 w}$ ($5 \mathrm{mmol}, 1$ equivalent) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was cooled at $0^{\circ} \mathrm{C}$, then a solution of oxalyl chloride (15 mmol , 3 equivalents) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) was added dropwise to the mixture. The reaction was stirred for 20 min at $0^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/EtOAc $=60: 1$) to give pale yellow oil product $\mathbf{2 w}, 1.08 \mathrm{~g}, 95 \%$ yield.

III. General procedure for the catalytic synthesis of products 3 .

General procedure for the reaction of Unsaturated aldehydes 1 with 2-chlorocyclohexane-1,3dione 2.

To a dry schlenk reaction tube equipped with a magnetic stir bar, was added α Bromocinnamaldehyde $1(21.1 \mathrm{mg}, 0.1 \mathrm{mmol})$, 2-chlorocyclohexane-1,3-dione $2(21.9 \mathrm{mg}, 0.15$ $\mathrm{mmol})$, NHC A2 $(8.3 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(65.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 4 A MS powder $(50 \mathrm{mg})$. The schlenk tube was then evacuated and refilled with dry N_{2}. Anhydrous THF (1 mL) was added. The mixture was stirred at rt for 12 h . Solvent was removed under reduced pressure, and the residue was purified via column chromatography on silica gel with hexane/EtOAc (typically 3:1) as eluent to afford the products 3 .

IV. Synthetic transformations of 3 .

A mixture of 3 ($48.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate ($85.2 \mathrm{mg}, 0.6 \mathrm{mmol}$) in ethyl acetate $(1.5 \mathrm{~mL})$ was heated at $160^{\circ} \mathrm{C}$ for 6 h in a sealed tube. Solvent was removed under reduced pressure, and the residue was purified via column chromatography on silica gel with hexane/EtOAc (5:1) as eluent to afford the product 4 ($54.1 \mathrm{mg}, 80 \%$ yield).

V. References

[1] R. Boers, P. Gast, A. Hoff, H. de Groot and J. Lugtenburg, Eur. J. Org. Chem., 2002, 189-202.
[2] Z. Xi, Y. Liu, H. Wang,
D. Guan, Y. Liu,
B. Sun,
H. Tian and S. Liang, ChemistrySelect, 2021, 6, 10883.

VI. Characterization of Products.

4-phenyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3a): Yield: 23.1 mg (96\%), yellowish solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, 2H), $2.52(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,175.0,159.5$, 156.7, 137.4, 128.9, 128.0, 127.1, 114.4, 114.2, 38.2, 29.2, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}]^{+} 240.0786$, found 240.0782 .

4-(p-tolyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3b): Yield: 18.8 mg (74\%), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.3, 174.9, 159.7, 156.8, 139.2, 134.5, 128.8, 127.2, 114.4, 114.2, 38.3, 29.3, 21.5, 19.9; HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 255.1016$, found 255.1023.

4-(4-methoxyphenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3c): Yield: 16.2 mg (60\%), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}$), $2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.5,175.0,160.5,159.7,156.4,129.5,128.9,114.3,113.8,113.5,55.4,38.4,29.4,19.8 ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 271.0965$, found 271.0973 .

4-(4-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3d): Yield: 23.9 mg (87\%), white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H})$, $2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.3, 175.3, 159.2, 155.5, 135.8, 135.2, 128.6, 128.3, 114.6, 114.0, 38.2, 29.3, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 275.0469$, found 275.0471.

4-(4-bromophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3e): Yield: 30 mg (94\%), white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,175.3$, 159.2, 155.5, 136.3, 131.2, 128.8, 123.3, 114.6, 113.9, 38.2, 29.3, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 318.9964$, found 318.9962 .

4-(2,5-dioxo-5,6,7,8-tetrahydro-2H-chromen-4-yl)benzonitrile (3f): Yield: 21.8 mg (82%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H})$, $2.96(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.2, 175.7, 158.8, 154.6, 142.1, 131.8, 127.9, 118.5, 115.0, 113.6, 112.7, 38.0, 29.3, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{H}]$ - 264.0666, found 264.0655.

4-(4-(trifluoromethyl)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3g): Yield: $29.3 \mathrm{mg}(95 \%)$, white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}$, $1 \mathrm{H}), 2.95(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,175.5,159.0,155.2,141.1,131.1,130.6,127.5,125.8,125.1,125.1,125.0,125.0,122.2,115.0$, 113.9, 38.1, 29.2, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 309.0733$, found 309.0740.

4-(3-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3h): Yield: 24.7 mg (90\%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}$, 1 H), $2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.1,175.3,159.2,155.1,139.1,134.0,129.3,129.0,127.2,125.4,114.8,113.9,38.1,29.3,19.8 ;$ HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 275.0469$, found 275.0476 .

4-(3-(trifluoromethyl)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3i): Yield: $29.6 \mathrm{mg}(96 \%)$, yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,175.5,159.0,155.1,138.2,130.6,130.5,130.1,129.7,128.4$, $126.3,125.7,125.6,125.6,125.5,125.5,124.1,124.1,124.0,123.9,122.1,115.0,113.7,38.0,29.2$, 19.7; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 309.0733$, found 309.0740 .

4-(3-methoxyphenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3j): Yield: 21.4 mg (79\%), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 2 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.1,174.9,159.6,159.2,156.5,138.8,129.1,119.6,114.5,114.4,114.1$, 113.2, 55.4, 38.3, 29.3, 19.9; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 271.0965$, found 271.0971 .

4-(2-fluorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3k): Yield: 21.4 mg (83\%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.11(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 193.4,174.0,160.7,159.5,157.4,151.0,131.1,131.0,128.6,128.6,125.8,125.6,124.4$, 124.4, 115.4, 115.2, 114.9, 114.5, 37.8, 29.1, 19.8; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 259.0765 , found 259.0773 .

4-(2-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (31): Yield: 21.2 mg (77\%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.01-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.2, 174.0, 159.6, 153.9, 136.8, 131.5, 129.9, 129.1, 128.2, 127.0, 115.0, 114.6, 37.6, 29.1, 19.9; HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 275.0469$, found 275.0479.

4-(2-nitrophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3m): Yield: 27.0 mg (94%), yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.14(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.2, 174.1, 159.7, 155.3, 138.8, 132.3, 130.0, 128.2, 127.5, 121.1, 114.9, 114.5, 37.6, 29.1, 19.9; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]{ }^{-}$ 284.0564, found 284.0566 .

4-(3-bromo-4-(dimethylamino)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3n): Yield: 30.9 $\mathrm{mg}(85 \%)$, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 6 \mathrm{H}), 2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2H), 2.20-2.11 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3,175.2,159.4,154.9,152.6,132.9,132.2$, $127.4,119.5,117.7,114.2,114.0,44.1,38.2,29.3,19.8 ; H R M S(E S I, \mathrm{~m} / \mathrm{z})$: calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$362.0386, found 362.0388.

4-(3-bromo-2-methoxyphenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3o): Yield: 24.4 mg (70\%), white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-$ $2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3,173.0,159.8,155.3,152.4,133.0,130.5,129.1$, $115.0,114.8,112.8,112.0,55.8,37.8,28.9,20.0$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 349.0070 , found 349.0066 .

4-(naphthalen-1-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3p): Yield: 21.8 mg (75\%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,174.5,159.6,155.9,135.9,133.1,130.8,129.0,128.7,126.6$, 126.1, 125.2, 124.5, 124.1, 115.5, 115.3, 37.9, 29.2, 19.9; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$291.1016, found 291.1024

4-(furan-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3q): Yield: $22.6 \mathrm{mg}(98 \%)$, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.49$ (s, 1H), 2.87 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.4,174.8,159.8,148.0,145.0,142.5,116.5,113.0,112.4,110.0,38.4,29.4,19.7 ;$ HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$231.0652, found 231.0657.

4-(5-methylfuran-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3r): Yield: 23.7 mg (97\%), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.7,174.6,160.1,156.0,146.0,142.1,119.3,112.8,109.3,107.7,38.4,29.5,19.6$, 13.9; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 245.0808$, found 245.0819

4-(thiophen-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3s): Yield: 20.7 mg (84\%), yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.23(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.2,174.8,159.2,149.0,137.5,129.3,128.3,127.3,114.3,114.1,38.3,29.3,19.7$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$247.0423, found 247.0427.

4-propyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3t): Yield: 10.7 mg (52\%), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{p}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.4,175.1,160.3,159.9$, $114.5,112.3,39.0,36.6,29.4,22.3,19.8,14.0$; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 207.1016, found 207.1016.

4,7-diphenyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3u): Yield: 29.1 mg (92\%), white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, $3.63-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $192.4,174.0,159.4,156.5,141.2,137.1,129.1,129.0,128.0,127.6,127.2,126.6,114.5,113.9,45.2$, 37.8, 36.6; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 317.1172$, found 317.1178.

4-phenyl-6,7-dihydrocyclopenta[b]pyran-2,5-dione (3v): Yield: $20.1 \mathrm{mg}(89 \%)$, yellowish solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.10-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,186.9,160.7,154.0,133.0,130.7,128.6,128.3,115.5,111.7,34.8$, 25.9; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 227.0707$, found 227.0703.

methyl 2-oxo-4,6-diphenyl-2H-pyran-5-carboxylate (3w): Yield: 23.0 mg (75%), yellowish solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H})$, $3.93(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,161.1,160.6$, $156.2,136.4,131.8,131.2,129.8,128.8,128.6,128.3,127.0,113.7,112.8,62.0,13.4$; HRMS (ESI, m / z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+} 320.1049$, found 320.1053 .

dimethyl 5-oxo-4-phenyl-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate (4): Yield: 54.1 mg (80\%), yellowish solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.15$
$(\mathrm{m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,168.9,165.4,145.0,142.5,141.4,134.8,134.4,131.4,129.8$, 128.1, 128.1, 127.4, 52.9, 52.9, 40.0, 27.4, 22.4; HRMS (ESI, m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 339.1227, found 339.1237.

VII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds.

phenyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3a)

N NiNNNiNNiN

4-(p-tolyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3b)
$\stackrel{\otimes}{\circ}$

NiNNNNNNNNNM

4-(4-methoxyphenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3c)

4-(4-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3d)

4-(4-bromophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3e)

$\stackrel{\text { に. }}{0}$

N~N~NNNNNN

4-(2,5-dioxo-5,6,7,8-tetrahydro-2H-chromen-4-yl)benzonitrile (3f)

"O
$\stackrel{1}{0}$
i

ヘviviviviviv

4-(4-(trifluoromethyl)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3g)

4-(3-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3h)

4-(3-(trifluoromethyl)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3i)

[^0]
4-(2-fluorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3k)

4-(2-chlorophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3I)

4-(2-nitrophenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3m)

4-(3-bromo-4-(dimethylamino)phenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3n)

4-(3-bromo-2-methoxyphenyl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3o)

4-(naphthalen-1-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3p)

mivivinivivinivin

4-(furan-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3q)

4-(5-methylfuran-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3r)

4-(thiophen-2-yl)-7,8-dihydro-2H-chromene-2,5(6H)-dione (3s)

4-propyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3t)

4,7-diphenyl-7,8-dihydro-2H-chromene-2,5(6H)-dione (3u)

4-phenyl-6,7-dihydrocyclopenta[b]pyran-2,5-dione (3v)

methyl 2-oxo-4,6-diphenyl-2H-pyran-5-carboxylate (3w)

dimethyl 5-oxo-4-phenyl-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate (4)

[^0]:

