Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

Facile construction of dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones via domino [4+2] cycloaddition/C(sp<sup>3</sup>)-H oxidative dehydrogenation coupling reactions

Genhui Chen,<sup>†,a</sup> Hongjiao Li,<sup>†,a</sup> Guojuan Liang,<sup>a</sup> Qian Pu,<sup>a</sup> Lijuan Bai,<sup>a</sup> Dexin Zhang,<sup>a</sup> Ying Ye,<sup>a</sup> Yong Li,<sup>b</sup> Jing Zhou,<sup>\*,a</sup> Hui Zhou<sup>\*,a</sup>

<sup>a</sup> Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of pharmacy, Chongqing Medical University, Chongqing 400016, China

*b* College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences. Chongqing, 402160, China

#### E-mail: 102792@cqmu.edu.cn.

## **Table of Contents**

| 1.General Methods                                                     | 2         |
|-----------------------------------------------------------------------|-----------|
| 2. Optimization of other reaction conditions                          | 2         |
| 3. General procedure for the domino [4+2] cycloaddition/ $C(sp^3)$ -H | oxidative |
| dehydrogenation coupling reactions                                    | 5         |
| 4. Characterization Data                                              | 6         |
| 5. NMR Spectra                                                        | 11        |
| 6. Single-Crystal X-ray Crystallography of <b>2a</b> and <b>3</b>     |           |

## 1. General Methods

Various functional groups substituted ortho-hydroxyphenylsubstituted *p*-QMs **1** were prepared according to literature method<sup>1</sup>. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). <sup>1</sup>H NMR spectra were recorded on commercial instruments (600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta$  = 7.26). Spectra are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. <sup>13</sup>C NMR spectra were collected on commercial instruments (150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl<sub>3</sub>,  $\delta$  = 77.0). Reactions were monitored by TLC and visualized with ultraviolet light. Mass spectra were recorded on Xevo G2-S QTof tandem mass spectrometer.

References

1. K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen, D. Enders. Angew. Chem. Int. Ed. 2016, 55, 12104-12108.

#### 2. Optimization of other reaction conditions<sup>a</sup>

Table 1 ligand screening



| Entry | Metal                | Ligand  | temperature | Time(h) | Yield <sup>b</sup> (%) |
|-------|----------------------|---------|-------------|---------|------------------------|
| 1     | Pd(OAc) <sub>2</sub> | _       | 100         | 12      | 89                     |
| 1     | $Pd(OAc)_2$          | BINAP   | 100         | 72      | 69                     |
| 2     | Pd(OAc) <sub>2</sub> | DPEphos | 100         | 72      | 61                     |

| 3 | Pd(OAc) <sub>2</sub> | dppe     | 100 | 72 | 74 |
|---|----------------------|----------|-----|----|----|
| 4 | Pd(OAc) <sub>2</sub> | Xphos    | 100 | 96 | 74 |
| 5 | $Pd(OAc)_2$          | Xantphos | 100 | 72 | 55 |
| 6 | Pd(OAc) <sub>2</sub> | dppf     | 100 | 72 | 52 |

Table 2 base screening



| Entry | Base                            | Time (h) | Yield <sup>b</sup> (%) |
|-------|---------------------------------|----------|------------------------|
| 1     | Na <sub>2</sub> CO <sub>3</sub> | 72       | 77                     |
| 2     | $K_2CO_3$                       | 48       | 86                     |
| 3     | $Cs_2CO_3$                      | 48       | 98                     |
| 4     | NaOH                            | 18       | 98                     |
| 5     | KO <sup>t</sup> Bu              | 72       | 81                     |
| 6     | Et <sub>3</sub> N               | 48       | 70                     |
| 7     | DBU                             | 72       | 63                     |
| 8     | DABCO                           | 72       | 68                     |

Table 3 solvent screening



| Entry | Solvent            | Time (h) | Yield <sup>b</sup> (%) |
|-------|--------------------|----------|------------------------|
| 1     | toluene            | 18       | 98                     |
| 2     | $CH_2Cl_2$         | 48       | 90                     |
| 3     | CHCl <sub>3</sub>  | 56       | 88                     |
| 4     | THF                | 72       | 73                     |
| 5     | CH <sub>3</sub> CN | 24       | 60                     |
| 6     | DMSO               | 24       | 40                     |
| 7     | DMF                | 24       | 55                     |

## Table 4 metal screening



| Entry | Metal             | Time(h) | Yield(%) |
|-------|-------------------|---------|----------|
| 1     | $Pd(OAc)_2$       | 24      | trace    |
| 2     | $Pd(TFA)_2$       | 24      | trace    |
| 3     | $Pd(dba)_2$       | 24      | trace    |
| 4     | BiCl <sub>3</sub> | 24      | trace    |
| 5     | $Cu(OAc)_2$       | 24      | trace    |
| 6     | CuI               | 24      | trace    |

## Table 5 base screening



| Entry | base                            | Time(h) | Yield(%) |
|-------|---------------------------------|---------|----------|
| 1     | $K_2CO_3$                       | 12      | 70       |
| 2     | Na <sub>2</sub> CO <sub>3</sub> | 12      | 70       |
| 3     | NaOH                            | 12      | 76       |
| 4     | KO <i>t</i> Bu                  | 36      | -        |
| 5     | Et <sub>3</sub> N               | 12      | 60       |
| 6     | DBU                             | 48      | -        |
| 7     | DABCO                           | 12      | 70       |
| 8     | <i>i</i> Pr <sub>2</sub> NH     | 96      | -        |
| 9     | Cs <sub>2</sub> CO <sub>3</sub> | 5       | 83       |

## Table 6 temperature screening



| Entry | 温度℃   | Time(h) | Yield(%) |
|-------|-------|---------|----------|
| 1     | 25°C  | 36      | trace    |
| 2     | 50°C  | 12      | 25       |
| 3     | 70°C  | 12      | 42       |
| 4     | 100°C | 5       | 83       |

Table 7 solvent screening

|       | $H_{3}CO$ $(I)$ | <sup>1</sup> Bu<br>mol %),<br>0 (300 mol %)<br>%), 100 °C, air<br>H <sub>3</sub> CO<br>H <sub>3</sub> CO<br>U<br>H <sub>3</sub> CO<br>U<br>C<br>CO<br>U<br>C<br>C<br>CO<br>C<br>CO<br>C<br>CO<br>C<br>CO<br>C<br>CO | С<br>Ч<br>ОСН <sub>3</sub> |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Entry | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yield(%)                   |
| 1     | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83                         |
| 2     | 1,4-二氧六环                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trace                      |
| 3     | DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                         |
| 4     | DMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                         |

# **3** General procedure for the domino [4+2] cycloaddition/C(sp<sup>3</sup>)-H oxidative dehydrogenation coupling reactions.

## **Conditions A:**

A solution of ortho-hydroxyphenylsubstituted *p*-QMs **1** (0.2 mmol, 1 equiv), Pd(TFA)<sub>2</sub> (0.02 mmol, 10 mol%) and NaOH (0.4 mmol, 2 equiv) in toluene (1.0 mL) was stirred under an air atmosphere at room temperature for certain time and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford pure products **2**.

#### **Conditions B:**

A solution of ortho-hydroxyphenylsubstituted *p*-QMs **1** (0.2 mmol, 1 equiv), Pd(OAc)<sub>2</sub> (0.02 mmol, 10 mol%) and Cs<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 2 equiv) in toluene (1.0 mL) was stirred under an air atmosphere at 100 °C for certain time and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford pure products **2**.

## **Conditions C:**

A solution of ortho-hydroxyphenylsubstituted *p*-QMs **1** (0.2 mmol, 1 equiv), Pd(TFA)<sub>2</sub> (0.02 mmol, 10 mol%), 300 mol % Cu(OAc)<sub>2</sub> H<sub>2</sub>O and Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol, 1 equiv) in toluene (1.0 mL) was stirred under an air atmosphere at 100 °C for certain time and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford pure products **2**.

## 4. Characterization Data

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-6'H,12'H-spiro[cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2a**).



Yellow solid; 60.56 mg, 98% yield (petroleum ether/ethyl acetate =30:1); mp 239.0 °C -240.0 °C.<sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.06 (s, 18H), 1.36 (s, 18H), 4.76 (s, 1H), 5.16 (s, 1H), 6.62 (s, 1H), 6.81 (s, 1H), 6.89 (m, 2H), 6.97 (m, 2H), 7.23-7.34 (m, 6H);

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 29.2, 29.3, 30.2, 34.3, 35.1, 43.2, 77.4, 82.0, 117.0, 117.2, 120.9, 128.5, 136.1, 138.7, 148.9, 150.6, 153.4, 185.2. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>51</sub>O<sub>4</sub> 619.3787; Found 619.3782.

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-2',8'-difluoro-6'H,12'H-spiro[c yclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2b**).



Yellow solid; 56.24 mg, 86% yield (petroleum ether/ethyl acetate =30:1); mp 273.0 °C -274.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.00-1.02 (m, 18H), 1.29 (s, 18H), 4.62 (s, 1H), 5.13 (s, 1H), 6.49 (d, *J* = 3.00 Hz, 1H), 6.66 (s, 1H), 6.81 (m, 2H), 6.92

(m, 4H), 7.19 (s, 1H), 7.63 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  28.2, 29.1, 33.3, 34.1, 41.7, 76.1, 81.0, 114.9, 115.8, 116.9, 117.1, 117.3, 120.5, 124.0, 126.7, 134.1, 136.7, 148.2, 148.3, 150.2, 152.6, 155.3, 155.4, 156.8, 157.0, 184.0. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>49</sub>F<sub>2</sub>O<sub>4</sub> 655.3599; Found 655.3592.

3,5-di-tert-butyl-2',8'-dichloro-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-6'H,12'H-spiro[ cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2c**).



Yellow solid; 60.17 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 226.5 °C -227.5 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.00 (s, 18H), 1.29 (s, 18H), 4.64 (s, 1H), 5.14 (s, 1H), 6.45 (m, 2H), 6.61 (m, 1H), 6.78 (d, *J* = 8.76 Hz, 1H), 6.86 (d, *J* 

= 8.76 Hz, 1H), 7.09 (m, 1H), 7.13-7.15 (m, 3H), 7.19 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  28.1, 28.2, 29.1, 33.3, 34.2, 41.6, 75.8, 81.1, 117.7, 117.8, 121.0, 124.3, 128.8, 133.7, 136.3, 148.5, 150.3, 150.8, 152.7, 183.9. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>49</sub>F<sub>2</sub>O<sub>4</sub> 655.3599; Found 655.3592.

2',8'-dibromo-3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-6'H,12'H-spiro[ cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2d**).



Yellow solid; 64.51 mg, 83% yield (petroleum ether/ethyl acetate =30:1); mp 229.4 °C -230.3 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.01 (s, 18H), 1.31 (s, 18H), 4.65 (s, 1H), 5.14 (s, 1H), 6.44 (d, J = 2.88 Hz, 1H), 6.60 (s, 1H), 6.74 (d, J = 8.76 Hz,

1H), 6.82 (m, 1H), 7.19 (s, 1H), 7.23-7.31(m, 4H), 7.38 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  28.1, 28.2, 29.1, 33.3, 34.2, 41.5, 75.7, 81.0, 112.4, 112.6, 118.1, 121.5, 124.8, 131.8, 132.6, 133.1, 136.2, 148.5, 150.4, 151.3, 151.4, 152.7, 183.8. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>49</sub>Br<sub>2</sub>O<sub>4</sub> 777.1977; Found 777.1987.

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-2',8'-dimethyl-6'H,12'H-spiro[ cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2e**).



Yellow solid; 52.97 mg, 82% yield (petroleum ether/ethyl acetate =30:1); mp 260.0 °C -261.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.07 (s, 18H), 1.35 (s, 18H), 2.16 (s, 3H), 2.27 (s, 3H), 4.67 (s, 1H), 5.15 (s, 1H), 6.62 (m, 2H), 6.76 (m, 2H), 6.84 (d, *J* = 8.28 Hz, 1H), 6.96 (m, 1H), 7.10 (m, 3H), 7.26 (s,

1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  20.5, 20.6, 29.2, 29.4, 34.3, 35.0, 43.4, 77.3, 82.0, 116.6, 116.8, 120.6, 127.6, 130.6, 136.4, 139.0, 148.7, 150.5, 151.1, 151.2, 153.3, 185.3; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>55</sub>O<sub>4</sub> 647.4100; Found 647.4109.

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-4',10'-dimethyl-6'H,12'H-spiro [cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2f**).



Yellow solid; 54.91 mg, 85% yield (petroleum ether/ethyl acetate =30:1); mp 251.3 °C -252.3 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.04 (s, 9H), 1.10 (s, 9H), 1.29 (s, 9H), 1.45 (s, 9H), 2.20 (s, 3H), 2.23 (s, 3H), 4.80 (s, 1H), 5.13 (s, 1H), 6.56 (m, 2H), 6.77 (t, *J* =

7.56 Hz, 1H), 6.84 (m, 2H), 7.01 (d, J = 8.88 Hz, 1H), 7.05 (d, J = 6.66 Hz, 1H), 7.10 (d, J = 6.90 Hz, 1H), 7.17 (d, J = 6.72 Hz, 1H), 7.26 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  15.9, 16.2, 29.3, 30.2, 35.0, 35.1, 43.1, 77.5, 82.0, 120.3, 120.5, 120.7, 123.6, 125.9, 126.1, 127.7, 129.0, 131.6, 136.5, 139.1, 148.8, 150.4, 151.3, 151.6, 153.2, 185.2. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>55</sub>O<sub>4</sub> 647.4100; Found 647.4105.

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-2',8'-dimethoxy-6'H,12'H-spir o[cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2g**).



Yellow solid; 56.27 mg, 83% yield (petroleum ether/ethyl acetate =30:1); mp 251.2 °C -252.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.08 (s, 18H), 1.32-1.41 (m, 18H), 3.61 (s, 3H), 3.78 (s, 3H), 4.67 (s, 1H), 5.16 (s, 1H), 6.63-6.64 (m, 2H), 6.79-6.84 (m, 5H), 6.90 (m, 1H), 7.02 (m, 1H), 7.63

(s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  28.2, 28.3, 29.2, 33.3, 34.0, 42.3, 54.6, 76.4, 81.1, 112.9, 113.0, 116.4, 117.1, 120.3, 126.4, 127.5, 135.3, 137.8, 146.1, 146.3, 147.8, 149.6, 152.4, 152.7, 152.9, 184.2. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>55</sub>O<sub>6</sub> 679.3999; Found 679.3987.

3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-3',9'-dimethoxy-6'H,12'H-spir o[cvclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(**2h**).



Yellow solid; 58.98 mg, 87% yield (petroleum ether/ethyl acetate =30:1); mp 245.1 °C -246.2 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.07 (s, 18H), 1.37 (s, 18H), 3.76 (s, 6H), 4.70 (s, 1H), 5.14 (s, 1H), 6.38 (s, 1H), 6.48-6.54 (m, 3H), 6.61 (s,

1H), 6.79 (s, 1H), 7.06 (d, J = 8.82 Hz, 1H), 7.21-7.23 (m, 2H), 7.53 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 28.2, 29.2, 33.3, 34.0, 42.4, 54.2, 54.3, 76.4, 81.2, 100.1, 100.4, 107.5, 112.6, 115.2, 126.0, 127.6, 129.9, 131.3, 134.0, 134.7, 135.4, 138.0, 147.7, 149.4, 152.3, 153.6, 160.0, 160.5, 184.2. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>55</sub>O<sub>6</sub> 679.3999; Found 679.3989.

3',9'-dibromo-3,5-di-tert-butyl-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-6'H,12'H-spiro[ cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one(2i).



Found 777.1989.

Yellow solid; 69.84 mg, 90% yield (petroleum ether/ethyl acetate =30:1); mp 250.4 °C -251.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 1.06-1.10 (m, 18H), 1.26-1.38 (m, 18H), 4.73 (s, 1H), 5.19 (s, 1H), 6.50 (s, 1H), 6.71 (s, 1H), 7.04 (s, 2H), 7.07 (s, 1H), 7.11-7.12 (m, 1H), 7.13 (s, 1H), 7.19 (d, J = 8.16 Hz, 1H), 7.26 (s, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) & 29.2, 29.3, 30.2, 34.3, 35.2, 42.8, 77.1, 82.2, 119.7, 120.3, 120.5, 123.0, 123.9, 124.3, 124.7, 125.1, 127.4, 131.5, 132.8, 134.8, 137.5, 149.5, 151.3, 153.7, 154.1, 184.9. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>49</sub>Br<sub>2</sub>O<sub>4</sub> 777.1977;

3,5-di-tert-butyl-2',4',8',10'-tetrachloro-6'-(3,5-di-tert-butyl-4-hydroxyphenyl)-6'H,12' *H-spiro[cyclohexane-1,13'-[6,12]methanodibenzo[b,f][1,5]dioxocine]-2,5-dien-4-one* (2j).



Yellow solid; 69.55 mg, 92% yield (petroleum ether/ethyl acetate =30:1); mp 261.2 °C -262.2 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz) δ 1.05-1.10 (m, 18H), 1.30-1.45 (m, 18H), 4.88 (s, 1H), 5.24 (s, 1H), 6.37 (s, 1H), 6.49-6.52 (m, 1H), 6.63 (s, 1H),

6.94-7.14 (m, 2H), 7.30-7.41 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz) δ 29.2, 30.1, 34.3, 35.3, 42.1, 77.1, 82.7, 122.5, 123.0, 123.1, 124.8, 126.4, 126.6, 128.5, 129.7, 131.3, 131.7, 133.5, 135.9, 147.7, 147.9, 150.3, 152.0, 154.0, 184.6. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>47</sub>Cl<sub>4</sub>O<sub>4</sub> 757.2199; Found 757.2193.

3,3',5,5'-tetra-tert-butyl-[1,1'-bi(cyclohexylidene)]-2,2',5,5'-tetraene-4,4'-dione(3)



Yellow solid; mp 243.0 °C-244.0 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  1.21 (s, 36H), 6.44 (s, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  28.4, 28.6, 34.6, 35.0, 125.0, 129.1, 149.4, 156.9, 186.8, 188.1; HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>41</sub>O<sub>2</sub> 409.3107; Found 409.3100.



<sup>13</sup>C NMR Spectrum of **2a** (CDCl<sub>3</sub>, 600 MHz)



 $^{13}\text{C}$  NMR Spectrum of 2b (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of **2c** (CDCl<sub>3</sub>, 600 MHz)



 $^{13}C$  NMR Spectrum of 2d (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of 2e (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of **2f** (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of **2g** (CDCl<sub>3</sub>, 600 MHz)







<sup>13</sup>C NMR Spectrum of **2i** (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of **2j** (CDCl<sub>3</sub>, 600 MHz)



<sup>13</sup>C NMR Spectrum of **3** (CDCl<sub>3</sub>, 600 MHz)

## 6. Single-Crystal X-ray Crystallography of Product 2a

Single-Crystal X-ray Crystallography of Product 2a (CDCC number:1916739)



Correction method= # Reported T Limits: Tmin=0.893 Tmax=1.000

AbsCorr = MULTI-SCAN

| Data completeness= 1.000      | Theta(max) = $67.070$           |
|-------------------------------|---------------------------------|
| R(reflections)= 0.0542( 4903) | wR2(reflections)= 0.1571( 6598) |
| S = 1.031                     | Npar= 427                       |

Single-Crystal X-ray Crystallography of Product **3** (CDCC number: 2167147)



| Bond precision: | $\mathbf{C} \mathbf{-} \mathbf{C} = 0$ | 0.0029 A       | Wavelength=1.54184 |
|-----------------|----------------------------------------|----------------|--------------------|
| Cell:           | a=6.1016(6)                            | b=10.4244(9)   | c=10.5390(8)       |
|                 | alpha=81.508(7)                        | beta=75.932(8) | gamma=81.583(8)    |
| Temperature:    | 293 K                                  |                |                    |
|                 | Calcula                                | ited           | Reported           |
| Volume          | 638.83                                 | (10)           | 638.83(10)         |
| Space group     | P -1                                   |                | P -1               |
| Hall group      | -P 1                                   |                | -P 1               |
| Moiety formula  | C28 H40 O2                             |                | C28 H40 O2         |
| Sum formula     | C28 H4                                 | 0 O2           | C28 H40 O2         |
| Mr              | 408.60                                 |                | 408.60             |
| Dx,g cm-3       | 1.062                                  |                | 1.062              |
| Z               | 1                                      |                | 1                  |
| Mu (mm-1)       | 0.493                                  |                | 0.493              |
| F000            | 224.0                                  |                | 224.0              |
| F000'           | 224.58                                 | 3              |                    |
| h,k,lmax        | 7,12,12                                |                | 7,12,12            |
| Nref            | 2287                                   |                | 2279               |

| Tmin,Tmax              | 0.948,0.961                 | 0.784,1.000               |
|------------------------|-----------------------------|---------------------------|
| Tmin'                  | 0.929                       |                           |
| Correction method= #   | Reported T Limits: Tmin=0.7 | 784 Tmax=1.000            |
| AbsCorr = MULTI-SC     | CAN                         |                           |
| Data completeness= 0   | .997 Theta                  | m(max) = 67.073           |
| R(reflections)= 0.0527 | 7(1616) wR2(ref             | flections)= 0.1576( 2279) |
| S = 1.032              | Npa                         | ar= 142                   |