Supplementary materials

A novel strategy for the functionalization and design of 4-methylene-4*H*-pyran merocyanines *via* enamination and 1,8-conjugate addition

Dmitrii L. Obydennov,* Alena E. Simbirtseva, Alexander S. Shirinkin, Mikhail Y. Kornev, Vyacheslav Y. Sosnovskikh

Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave.,

620000 Ekaterinburg, Russian Federation

Table of Contents

1. Quantum mechanical calculations details	2
2. Cartesian coordinates of the GS optimized structure for compounds 2a,d, 3a,d, 11e	3
3. Cartesian coordinates of the S1 relaxed geometry for compounds 2a,d, 3a,d, 11e	12
4. Table S1. Ground state frontier orbitals for compounds 2a,d, 3a,d, 11e in vacuo	21
5. Table S2. Frontier orbitals of first singlet excited states for the relaxed geometry of compound	ls
2a,d, 3a,d, 11e in vacuo	23
6. Table S3. Ground state frontier orbitals for compounds 2a,d, 3a,d, 11e in DMSO	25
7. Table S4. Frontier orbitals of the first singlet excited states for the relaxed geometry of	
compounds 2a,d, 3a,d, 11e in DMSO	28
8. Calculated normalized UV-vis spectra for compounds 2a,d, 3a,d, 11e in DMSO	30
9. Table S5. Calculated absorption and emission properties for 2a,d , 3a,d , 11e in vacuo and in	
DMSO	33
10. Table S6. Calculated energies of the ground state, frontier orbitals, conformer populations in	
DMSO, and important angles for the S1 excited state for compounds 2a,d, 3a,d, 11e	33
11. The absorbance spectra of 8f upon prolong photoexcitation at 400 nm	36
¹ H and ¹³ C spectra of pyrans 2	37
¹ H and ¹³ C spectra of pyrans 3	45
¹ H and ¹³ C spectra of pyrans 5	57
¹ H and ¹³ C spectra of chroman 7	67
¹ H and ¹³ C spectra of pyrans 8	69
¹ H and ¹³ C spectra of pyrans 9	85
¹ H and ¹³ C spectra of pyran 10	91
¹ H and ¹³ C spectra of pyrans 11	93
¹ H and ¹³ C spectra of pyran 12	. 105
Determination of relative fluorescence quantum yields	. 107

1. Quantum mechanical calculations details

The ground state molecular geometry of the 5 compounds under investigation was fully optimized at the density functional theory (DFT) level, both in vacuo and in the solvated phase (DMSO). For all geometry optimizations, the B3LYP hybrid functional[1], coupled with the 6-31G(d,p)++ basis set was chosen. Solvent effects were taken into account via the implicit conductor-like polarizable continuum model (C-PCM). For the evaluation of energetics, Solvation Model Density (SMD) parametrization was employed.[2] The vibrational frequencies and thermochemicals were computed in harmonic approximation at T = 298.15 K and p = 1 atm, and no imaginary frequencies were found.

The UV-vis absorption spectra for the equilibrium geometries were calculated at time dependent density functional theory (TD-DFT) level, accounting for $S_0 \rightarrow S_n$ (n = 1 to 7). The nature of the vertical excited electronic state was analysed both in vacuo and in the solvated phase.

The first singlet excited state $S(\pi,\pi^*)$ state geometry was optimized using analytical gradients and the first transitions $S_1 \rightarrow S_0$ of the emission. Properties of the excited states were calculated using the long-range corrected functional CAM-B3LYP[3] coupled with the 6–31G(d,p)++ basis set. The non-equilibrium solvation regime was set for vertical excited states calculations in the solvent phase, whereas the equilibrium solvation was used for adiabatic ones. All calculated UV-vis spectra were plotted as gaussian curves with wavelengths of absorption/emission maxima as expected value and $\sigma = 0.4$ eV.

The integration grid for the calculations was set as 96 radial shells and 302 angular points. The RMS gradient convergence tolerance was set to 10^{-7} Hartree/Bohr for GS optimizations, and to 10^{-5} Hartree/Bohr for S₁ optimizations. The density matrix convergence threshold for the self-

consistent field was set to 10⁻⁵ a.u. for all DFT and to 10⁻⁶ a.u. for all TD-DFT optimizations.

All calculations were performed using the US GAMESS (ver. 30 sep 2021, R2 Patch 1) software package for Linux x64.[4] Frontier MOs were plotted with MacMolPlt software (ver. 7.7).[5]

References

[1] A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.

- [2] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- [3] T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.

[4] G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev and M. S. Gordon, *J. Chem. Phys.*, 2020, **152**, 154102.

[5] B.M. Bode and M.S.Gordon, J. Mol. Graphics and Modeling, 1998, 16, 133–138.

2. Cartesian coordinates of the GS optimized structure for compounds 2a,d, 3a,d, 11e

Cartesian coordinates (Å) of the optimized structure for compound 2a in vacuo

С	6.0	0.7492009613	1.6266125869	0.0377781925
С	6.0	0.1390505696	0.3990313814	0.1098108243
0	8.0	0.8538686196	-0.7474693457	-0.1405455284
С	6.0	2.1800110808	-0.6718455426	-0.4720539548
С	6.0	2.8250438025	0.5133213465	-0.5552824414
С	6.0	2.1298218121	1.7536686921	-0.2959533155
С	6.0	2.7810729516	2.9914547697	-0.3719974884
С	6.0	-1.2416805253	0.1926094110	0.4403149564
С	6.0	-1.8211709627	-1.0429016579	0.5404447757
С	6.0	2.7692812615	-2.0220354669	-0.7172013249
Ν	7.0	-3.1312917840	-1.3030017238	0.7850214340
С	6.0	-4.0670622086	-0.2126418466	1.0183063661
С	6.0	-3.5632877116	-2.6470490492	1.1470335695
С	6.0	4.1604986148	3.0760958999	-0.7097993579
Ν	7.0	5.2936079718	3.1087678887	-0.9900591697
С	6.0	2.0786739361	4.2011682940	-0.1120204763
Ν	7.0	1.4680985151	5.1715935704	0.1086480813
Η	1.0	0.1557475701	2.5101219957	0.2421649915
Η	1.0	3.8757041984	0.5242241292	-0.8205080845
Η	1.0	-1.8114948224	1.0976254131	0.6144175399
Η	1.0	-1.2074143340	-1.9277278669	0.3997566773
Η	1.0	2.2344189980	-2.5344688147	-1.5251866208
Η	1.0	3.8213313190	-1.9318620253	-0.9938205316
Η	1.0	2.6931362831	-2.6473727334	0.1800491414
Η	1.0	-3.8835824711	0.2863115723	1.9813501592
Η	1.0	-3.9832391628	0.5306196281	0.2192021605
Η	1.0	-5.0853555037	-0.6066623078	1.0174613148
Η	1.0	-2.8099446605	-3.3724238512	0.8316359918
Η	1.0	-3.7102900071	-2.7486995888	2.2320895702
Η	1.0	-4.5062041112	-2.8869134286	0.6445034843

Cartesian coordinates (Å) of the optimized structure for compound 3a in vacuo

С	6.0 -0.2906717599 -1.1769955718 2.2300764794
С	6.0 0.2906717599 1.1769955718 2.2300764794
С	6.0 -0.2830879297 -1.1575047382 0.8618314837
С	6.0 0.2830879297 1.1575047382 0.8618314837
0	8.0 -0.000000000 -0.000000000 0.1780691935
С	6.0 -0.000000000 -0.000000000 2.9911956046
С	6.0 -0.000000000 -0.000000000 4.3965383989
С	6.0 -0.5517919381 -2.3015510157 0.0312612970
С	6.0 0.5517919381 2.3015510157 0.0312612970
С	6.0 -0.4949250308 -2.2841076598 -1.3319782436
С	6.0 0.4949250308 2.2841076598 -1.3319782436
Ν	7.0 -0.8058903417 -3.3088822419 -2.1772107139
Ν	7.0 0.8058903417 3.3088822419 -2.1772107139
С	6.0 -0.3375500577 -3.2705641519 -3.5559572289
С	6.0 0.3375500577 3.2705641519 -3.5559572289
С	6.0 -1.1710807600 -4.6119054777 -1.6430855605
С	6.0 1.1710807600 4.6119054777 -1.6430855605
С	6.0 -0.2923801183 -1.1838156826 5.1270026760
С	6.0 0.2923801183 1.1838156826 5.1270026760
Ν	7.0 -0.5371191132 -2.1756214439 5.6938079325
Ν	7.0 0.5371191132 2.1756214439 5.6938079325
Н	1.0 -0.5180409738 -2.1092094909 2.7336740813
Н	1.0 0.5180409738 2.1092094909 2.7336740813
Н	1.0 -0.8012486554 -3.2076667576 0.5710780186
Н	1.0 0.8012486554 3.2076667576 0.5710780186

Н	1.0 -0.1965791389 -1.3696842357 -1.8359624434
Н	1.0 0.1965791389 1.3696842357 -1.8359624434
Н	1.0 0.6313686097 -3.7785984270 -3.6798182130
Н	1.0 -0.6313686097 3.7785984270 -3.6798182130
Н	1.0 -1.0681546284 -3.7547269934 -4.2119143886
Н	1.0 1.0681546284 3.7547269934 -4.2119143886
Н	1.0 -0.2235238853 -2.2319192234 -3.8766029329
Н	1.0 0.2235238853 2.2319192234 -3.8766029329
Н	1.0 -1.9398151210 -4.4986835596 -0.8730936728
Н	1.0 1.9398151210 4.4986835596 -0.8730936728
Н	1.0 -1.5800417606 -5.2266107072 -2.4483903997
Н	1.0 1.5800417606 5.2266107072 -2.4483903997
Н	1.0 -0.3089088192 -5.1361004532 -1.2028487394
Н	1.0 0.3089088192 5.1361004532 -1.2028487394

Cartesian coordinates (Å) of the optimized structure for compound 11e in vacuo

0	8.0 0.0000118858	0.0000036213	0.0631501531
С	6.0 -0.2802858319	1.1804451888	2.1143262755
С	6.0 0.2801328320	-1.1805556757	2.1142682042
С	6.0 -0.2819545766	1.1572566870	0.7464804240
С	6.0 0.2819501006	-1.1572857792	0.7464320787
С	6.0 -0.0001341151	-0.0000870128	2.8761196885
Н	1.0 -0.5095554915	2.1128239038	2.6168694022
Н	1.0 0.5093450861	-2.1129671315	2.6167772292
С	6.0 -0.0001853268	-0.0001627686	4.2802982781
С	6.0 -0.5832098382	2.2917964290	-0.0863830172
С	6.0 0.5833737142	-2.2917566099	-0.0864575312
Н	1.0 -0.7502292704	3.2254594452	0.4388411635
Н	1.0 0.7505043018	-3.2254101246	0.4387495111
С	6.0 -0.6734062561	2.2264546284	-1.4419782423
С	6.0 0.6734594999	-2.2264032401	-1.4420567114
Н	1.0 -0.5406885363	1.2738069524	-1.9420596674
Н	1.0 0.5406109510	-1.2737784308	-1.9421489541
Ν	7.0 -0.9151350583	3.2773496723	-2.3006678220
Ν	7.0 0.9152403442	-3.2772977101	-2.3007470849
С	6.0 -0.8460210604	4.6347519268	-1.8297937609
С	6.0 0.8460513010	-4.6347072453	-1.8299159093
С	6.0 0.3739451740	5.1555343244	-1.3810645267
С	6.0 -0.3739303819	-5.1554059586	-1.3811237695
Н	1.0 1.2601349250	4.5283320350	-1.3940067062
Н	1.0 -1.2600752935	-4.5281396115	-1.3939986088
С	6.0 0.4387261788	6.4707353623	-0.9173135874
С	6.0 -0.4387869738	-6.4706096197	-0.9173948058
Н	1.0 1.3863533168	6.8709315849	-0.5686493245
Н	1.0 -1.3864280908	-6.8707408808	-0.5686939244
С	6.0 -0.7083602179	7.2712388358	-0.9080461563
С	6.0 0.7082392258	-7.2712027242	-0.9082016618
Н	1.0 -0.6551896509	8.2940914244	-0.5472043791
Н	1.0 0.6550072909	-8.2940602954	-0.5473835929
С	6.0 -1.9232156340	6.7498924426	-1.3628603707
С	6.0 1.9231131854	-6.7499360601	-1.3630573060
Н	1.0 -2.8182043939	7.3653238266	-1.3535818639
Н	1.0 2.8180571463	-7.3654338792	-1.3538345847
С	6.0 -1.9967319364	5.4317760019	-1.8194798181
С	6.0 1.9967112153	-5.4318098883	-1.8196426422
Н	1.0 -2.9380158329	5.0179147428	-2.1683952306
Н	1.0 2.9380160424	-5.0180049725	-2.1685645702
С	6.0 -1.3196907819	3.0238220600	-3.6427909554
С	6.0 1.3198537190	-3.0237373525	-3.6428420202
С	6.0 -2.0917052920	1.8929903157	-3.9574065723
С	6.0 2.0919924533	-1.8929609296	-3.9573539523
Н	1.0 -2.4352697173	1.2320476323	-3.1682287163
Н	1.0 2.4355915124	-1.2321095898	-3.1681141374

С	6.0 -	-2.4494851945	1.6348876139	-5.2826992547
С	6.0	2.4498037504	-1.6347884637	-5.2826265739
Н	1.0	-3.0469735995	0.7564073331	-5.5094623509
Η	1.0	3.0473961355	-0.7563616316	-5.5093201189
С	6.0 -	-2.0684668322	2.5071293857	-6.3044544172
С	6.0	2.0687414714	-2.5069359740	-6.3044472509
Η	1.0	-2.3565118284	2.3081799722	-7.3322074649
Н	1.0	2.3568297835	-2.3079367855	-7.3321784924
С	6.0 -	-1.3196794183	3.6458107519	-5.9872145621
С	6.0	1.3198306971	-3.6455656665	-5.9873096700
Η	1.0	-1.0175785037	4.3341484603	-6.7714771967
Н	1.0	1.0176903610	-4.3338248358	-6.7716258462
С	6.0 -	-0.9411120920	3.9043589392	-4.6704741539
С	6.0	0.9412249801	-3.9041717966	-4.6705919648
Н	1.0	-0.3482268014	4.7820764631	-4.4355222593
Η	1.0	0.3482294880	-4.7818348334	-4.4357103031
С	6.0 -	-0.2775212413	1.1870215199	5.0119366363
С	6.0	0.2770854162	-1.1874274562	5.0118313709
Ν	7.0	-0.5088859922	2.1803609655	5.5811879330
Ν	7.0	0.5084065876	-2.1808208635	5.5810063052

Cartesian coordinates (Å) of the optimized structure for compound 2d in vacuo

С	6.0 0.973	1323602	-0.8350629516	-0.4706946159
С	6.0 0.8892	2272848	-2.2100555558	-0.4940910645
С	6.0 -1.330	5985940	-0.7521012365	0.2291419864
0	8.0 -0.273	4610756	-2.8459428132	-0.1671233008
С	6.0 -1.362	4811498	-2.1059884092	0.1919697917
С	6.0 -0.132	9501412	-0.0089077023	-0.1100069775
Н	1.0 -2.222	3857871	-0.2180588298	0.5174690387
С	6.0 -2.538	6322969	-2.9697015812	0.5139934527
Н	1.0 1.914	5588785	-0.3790365291	-0.7337884436
Н	1.0 -2.851	3441593	-3.5430676883	-0.3669213222
Η	1.0 -3.377	1515921	-2.3568498020	0.8490672800
Н	1.0 -2.286	6121971	-3.6878618485	1.3030248311
С	6.0 -0.074	3502813	1.4185313975	-0.0818742901
С	6.0 1.157.	3082411	2.1195591312	-0.4221825264
Ν	7.0 1.129	9767452	3.5399079165	-0.4240466728
С	6.0 0.0498	8264413	4.3114665654	-0.0438070923
Ν	7.0 -1.088	1489564	3.6242032147	0.3302242085
С	6.0 -1.239	0901580	2.2123474010	0.2904111723
0	8.0 2.228	4891368	1.5781153845	-0.7208618744
S	16.0 0.117	3609593	5.9967063456	-0.0353945611
0	8.0 -2.350	6906657	1.7586285686	0.5877450905
С	6.0 -2.285	9383823	4.3744472047	0.7828928562
С	6.0 2.394	7455964	4.1972224144	-0.8384878490
С	6.0 1.980	8487714	-3.0738763292	-0.8460753998
Н	1.0 2.896	7741080	-2.5642585684	-1.1200608210
С	6.0 1.899	0943654	-4.4391134622	-0.8339391445
Η	1.0 0.974	1200905	-4.9091871823	-0.5125210610
Ν	7.0 2.867	9071849	-5.3147067294	-1.2113264127
С	6.0 4.176	9765762	-4.8313087815	-1.6247193997
С	6.0 2.763	0160134	-6.7220010809	-0.8476263435
Н	1.0 4.754	2258004	-4.4320902727	-0.7771271723
Н	1.0 4.066	6900359	-4.0408968042	-2.3731786327
Н	1.0 4.738	0307635	-5.6543656913	-2.0724017153
Н	1.0 1.716	7169142	-6.9781520859	-0.6655409711
Н	1.0 3.339	8645348	-6.9534897331	0.0601660254
Н	1.0 3.134	9380009	-7.3494511985	-1.6642268154
С	6.0 3.339	3712015	4.4507990877	0.3367692524
Η	1.0 2.120	0946288	5.1334101273	-1.3218732309
Н	1.0 2.862	1346389	3.5309435838	-1.5623421206
Η	1.0 -2.787	4533761	3.7397628070	1.5127512796
С	6.0 -3.236	2090981	4.7177622811	-0.3648252069

Н	1.0 -1.9251026677	5.2798144340	1.2680875489
Н	1.0 2.8745559857	5.1104967861	1.0749039987
Н	1.0 4.2509616850	4.9380057462	-0.0280982787
Н	1.0 3.6245199387	3.5106637750	0.8179312004
Н	1.0 -3.6007532344	3.8097565950	-0.8537718542
Н	1.0 -2.7399008193	5.3539765581	-1.1031360759
Η	1.0 -4.1009787714	5.2639529156	0.0291293439

Cartesian coordinates (Å) of the optimized structure for compound $\mathbf{3d}$ in vacuo

С	6.0 1.2609280994	1.9705031668	-0.4937369314
С	6.0 1.1955598860	0.6264804731	-0.2237356202
С	6.0 -1.1306318090	2.0903819930	-0.2873764971
0	8.0 -0.0005088136	0.0104048678	0.0199456660
С	6.0 -1.1528609154	0.7461941758	-0.0113527669
С	6.0 0.0906565961	2.7963711607	-0.5411132803
Н	1.0 -2.0680332184	2.6237019376	-0.3086785181
Н	1.0 2.2294436039	2.4081205199	-0.6775814145
С	6.0 0.1385592510	4.2058045677	-0.8021487748
С	6.0 1.4112920487	4.8905228373	-0.9674973603
Ν	7.0 1.3856150997	6.3077698206	-1.0944509003
С	6.0 0.2412074952	7.0718250478	-1.1927865158
Ν	7.0 -0.9541350415	6.3847802912	-1.1444614559
С	6.0 -1.0832116632	4.9885784492	-0.9015446828
0	8.0 2.5237817132	4.3484053075	-0.9845446525
S	16.0 0.2989311163	8.7507225427	-1.3692042844
0	8.0 -2.2340216159	4.5424977564	-0.8082695473
С	6.0 -2.2328650488	7.1185602369	-1.3114234650
С	6.0 2.7157477048	6.9623043790	-1.1465720578
С	6.0 2.3500766523	-0.2319130132	-0.1738477358
Η	1.0 3.2896655690	0.2653127792	-0.3838137022
С	6.0 2.3048821363	-1.5652937307	0.1108137998
Н	1.0 1.3514502545	-2.0239572677	0.3565758338
Ν	7.0 3.3537192497	-2.4399014743	0.0945952332
С	6.0 4.7010864514	-1.9558498242	-0.1635694429
С	6.0 3.2375321588	-3.7087841152	0.8008639020
Η	1.0 5.0953253153	-1.3598787529	0.6741119389
Н	1.0 4.7101999731	-1.3369027558	-1.0654657702
Н	1.0 5.3629194560	-2.8097377578	-0.3272705544
Η	1.0 2.1923469809	-4.0287298472	0.8119934677
Η	1.0 3.5896675294	-3.6376173339	1.8417447302
Η	1.0 3.8258943216	-4.4761226410	0.2879225273
С	6.0 3.2645768281	7.0780862771	-2.5688564730
Η	1.0 2.5989448649	7.9478601706	-0.6985575559
Η	1.0 3.3798213313	6.3541936242	-0.5335620568
Н	1.0 -2.0276617617	7.9579780233	-1.9738584775
С	6.0 -2.8176897610	7.6060056697	0.0143224391
Н	1.0 -2.9202636910	6.4254903066	-1.7953116624
Н	1.0 2.5964605348	7.6738049294	-3.1975016727
Н	1.0 4.2396376878	7.5783785143	-2.540/834635
Н	1.0 3.4002084488	6.0896728735	-3.0172624789
Н	1.0 -2.1270806695	8.2894520854	0.5164185980
Н	1.0 -3.0416/52/66	6.7637490883	0.6/52/331/5
H	1.0 -3.7512464783	8.1472867979	-0.1791123717
С	6.0 -2.3580887556	0.0104850934	0.268/4502/5
H	1.0 -3.2668857143	0.5978817780	0.2113260203
C	6.0 -2.3931283034	-1.3143/29901	0.591/058591
N	7.0 -3.5094559160	-2.0746894346	0.7945661015
C	6.0 -3.39/2594243	-3.3303898003	1.5243026622
H	1.0 -3.5525761224	-3.1965185384	2.6062968487
H	1.0 -2.4034739518	-3.7592512207	1.5/06/00199
H	1.0 -4.139/2/8183	-4.0443947758	1.1540650322
H	1.0 -1.4607527442	-1.8640535516	0.6837981958
C	6.0 -4.8255562844	-1.4558523543	0.7569830968

Н 1.0 -5.5888195891	-2.2373391794	0.7604161116
---------------------	---------------	--------------

H 1.0 -4.9380843039 -0.8695840613 -0.1598347419

H 1.0 -4.9971025428 -0.7928206627 1.6192893576

Cartesian coordinates (Å) of the optimized structure for compound 2a in DMSO

С	6.0 0.7454890544 1.6328618673 0.0381125953
С	6.0 0.1230775423 0.3943391740 0.1294522466
0	8.0 0.8480076503 -0.7407827667 -0.1139886266
С	6.0 2.1718525587 -0.6805081932 -0.4370228721
С	6.0 2.8169539700 0.5078617832 -0.5283871717
С	6.0 2.1110348406 1.7413218221 -0.2918909399
С	6.0 2.7792737136 2.9938832471 -0.3922791250
С	6.0 -1.2410972346 0.1954251210 0.4674602466
С	6.0 -1.8277826396 -1.0548178868 0.5392076982
С	6.0 2.7556907300 -2.0319179713 -0.6649027811
Ν	7.0 -3.0980537538 -1.3123712864 0.8694605241
С	6.0 -4.0285469289 -0.2342717394 1.1951370979
С	6.0 -3.6210994210 -2.6774681143 0.8749697361
С	6.0 4.1513353138 3.0803103841 -0.7207539718
Ν	7.0 5.2880915416 3.1476028069 -0.9927973682
С	6.0 2.1007088169 4.2126640668 -0.1637959094
Ν	7.0 1.5324211831 5.2176233408 0.0294494414
Н	1.0 0.1477087864 2.5165225955 0.2316045716
Н	1.0 3.8712018298 0.5116099119 -0.7792389375
Н	1.0 -1.8108054251 1.0951001113 0.6697166525
Н	1.0 -1.2308818387 -1.9323999035 0.3100493026
Н	1.0 2.2589737028 -2.5265780100 -1.5085299344
Н	1.0 3.8231788357 -1.9588100020 -0.8827674172
Н	1.0 2.6191070250 -2.6683777546 0.2174448732
Н	1.0 -3.6537016183 0.3657406800 2.0325168157
Н	1.0 -4.1880666040 0.4213942821 0.3300625538
Н	1.0 -4.9889574279 -0.6635416041 1.4835290549
Н	1.0 -2.8313348961 -3.3824822003 0.6079418441
Н	1.0 -3.9976168929 -2.9371999878 1.8708568139
Н	1.0 -4.4388026608 -2.7768683806 0.1512557152

Cartesian coordinates (Å) of the optimized structure for compound **3a** in DMSO

С	6.0 -0.2581105335 -1.1820800972 2.0508132074
С	6.0 0.2719674202 1.1791491134 2.0508325058
С	6.0 -0.2400248963 -1.1726373505 0.6695821752
С	6.0 0.2667707040 1.1664829836 0.6695271044
0	8.0 0.0186626996 -0.0042004828 0.0001415704
С	6.0 0.0024696202 -0.0004927256 2.7921513632
С	6.0 -0.0082646443 0.0016341770 4.2240689423
С	6.0 -0.4732224049 -2.3149000015 -0.1503436506
С	6.0 0.4982157217 2.3081206278 -0.1514841476
С	6.0 -0.4404972160 -2.2880197260 -1.5283892504
С	6.0 0.4506068590 2.2838895335 -1.5291095735
Ν	7.0 -0.6559364257 -3.3282589391 -2.3485326004
Ν	7.0 0.6620333142 3.3261819562 -2.3480715342
С	6.0 -0.5649021172 -3.1855395698 -3.7994006131
С	6.0 0.5062093004 3.2008283795 -3.7950473283
С	6.0 -0.9574604278 -4.6536474087 -1.8168829591
С	6.0 0.9735835977 4.6486435560 -1.8154108064
С	6.0 -0.3065945247 -1.1633593334 4.9625510379
С	6.0 0.2837952880 1.1684653403 4.9619177299
Ν	7.0 -0.5586631391 -2.1345837039 5.5679615921
Ν	7.0 0.5364909701 2.1421598569 5.5632076665
Н	1.0 -0.4675163192 -2.1198085396 2.5524088218
Н	1.0 0.4773506361 2.1182140523 2.5518412914
Н	1.0 -0.6752932792 -3.2357639222 0.3848821102
Н	1.0 0.7036275300 3.2286374616 0.3828735134

Н	1.0 -0.2245531546 -1.3525596993 -2.0337654676
Н	1.0 0.2233651650 1.3510646048 -2.0349246667
Н	1.0 0.2056864764 -3.8523217978 -4.2044638686
Н	1.0 -0.3174531954 3.8319154683 -4.1506494087
Н	1.0 -1.5239911741 -3.4302316499 -4.2713807756
Н	1.0 1.4268903668 3.5045582686 -4.3064936923
Н	1.0 -0.3030062504 -2.1576885572 -4.0594631792
Н	1.0 0.2891969611 2.1637717740 -4.0601024470
Н	1.0 -1.8370520296 -4.6215715064 -1.1627201689
Н	1.0 1.8566934147 4.6076430146 -1.1667972571
Н	1.0 -1.1714087453 -5.3336629878 -2.6429528118
Н	1.0 1.1875918457 5.3285498434 -2.6414779307
Н	1.0 -0.1078232969 -5.0539963232 -1.2490036675
Н	1.0 0.1307822593 5.0547352283 -1.2408121828

Cartesian coordinates (Å) of the optimized structure for compound 11e in DMSO

0	8.0 -0.01210450	27 -0.0093924471	0.1033699887
С	6.0 -0.31323959	15 1.1742235090	2.1441860305
С	6.0 0.28272267	76 -1.1738913463	2.1562738722
С	6.0 -0.30463782	01 1.1511942319	0.7675115969
С	6.0 0.285891793	58 -1.1613874407	0.7796342171
С	6.0 -0.02176044	64 0.0025757187	2.8961839054
Н	1.0 -0.55294169	90 2.1080967842	2.6393317039
Н	1.0 0.52728646	68 -2.1015947583	2.6608363858
С	6.0 -0.03284895	95 0.0074778416	4.3213318072
С	6.0 -0.59199855	14 2.2793284768	-0.0655674401
С	6.0 0.59600143	80 -2.2896805148	-0.0449273738
Н	1.0 -0.74268596	99 3.2207329239	0.4509221221
Н	1.0 0.77596867	27 -3.2217758843	0.4786337125
С	6.0 -0.68385941	41 2.1995172796	-1.4271497530
С	6.0 0.67596490	01 -2.2151502565	-1.4069865514
Н	1.0 -0.57920713	21 1.2354840645	-1.9103717580
Н	1.0 0.52825710	52 -1.2593038653	-1.8958897456
N	7.0 -0.90026654	11 3.2341080770	-2.2924380335
N	7.0 0.92279425	00 -3.2444902768	-2.2717018704
C	6.0 -0.83732826	73 4.6011106289	-1.8361526864
Ċ	6.0 0.89679095	11 -4.6137442104	-1.8208601682
Ċ	6.0 0.389028410	03 5.1411973992	-1.4323463207
Ċ	6.0 -0.30291791	22 -5.1690124950	-1.3605603637
H	1.0 1.28616504	49 4.5295958701	-1.4652640660
Н	1.0 -1.20542468	93 -4.5647604121	-1.3396991299
C	6.0 0.44609060	27 6.4664505050	-0.9942114007
Č	6.0 -0.33051720	66 -6.5009279530	-0.9400124318
H	1.0 1.39804402	21 6.8886156598	-0.6833478928
Н	1.0 -1.26293591	13 -6.9318892193	-0.5855506965
C	6.0 -0.71346625	70 7.2495988126	-0.9636766486
Č	6.0 0.832176110	57 -7.2782997839	-0.9876767297
Ĥ	1 0 -0 66208747	64 8 2803575912	-0.6238746929
Н	1.0 0.80713663	98 -8.3159096160	-0.6651802027
C	6.0 -1.93492776	90 6.7041393026	-1.3733320149
Ċ	6.0 2.02687042	23 -6.7175764141	-1.4518259900
Ĥ	1.0 -2.83825413	11 7.3078613590	-1.3497978275
Н	1.0 2.93352138	88 -7.3159430127	-1.4868068614
C	6.0 -2.00098855	75 5.3777573345	-1.8088273677
Č	6.0 2.06503620	13 -5.3829366849	-1.8650401164
Ĥ	10 -2 94727470	24 4 9454171542	-2 1218447880
Н	1.0 2.99124800	89 -4 9428305926	-2 2232787476
C	6.0 -1.23685454	29 2 9720316590	-3 6566344995
C	6.0 1.22709927	72 -2 9686505885	-3 6405958939
č	60 -2.03158475	82 1 8645647696	-3 9934205340
č	6.0 1.95336287	55 -1 8185440584	-3 9904325748
й Н	10 -2 44492440	32 1 2276943571	-3 2170489497
Н	10 234664370	60 -1 1600430143	-3 2200137017
11	1.0 2.34004370	1.1007+301+3	5.2207157917

С	6.0 -	2.3245315440	1.5972780113	-5.3334986981
С	6.0	2.2055510191	-1.5332219884	-5.3350280534
Н	1.0 -	2.9414342677	0.7374623505	-5.5811799608
Н	1.0	2.7667031663	-0.6386485172	-5.5919336170
С	6.0 -	1.8533541765	2.4394883409	-6.3440407926
С	6.0	1.7647845077	-2.3993305300	-6.3394152514
Н	1.0 -	2.0893532445	2.2351996371	-7.3846311215
Н	1.0	1.9696959001	-2.1795821651	-7.3833595996
С	6.0 -	1.0799705075	3.5555026105	-6.0032782450
С	6.0	1.0661213618	-3.5596721229	-5.9857591730
Н	1.0 -	0.7066556267	4.2184349180	-6.7794173093
Н	1.0	0.7190654315	-4.2437986877	-6.7557483315
С	6.0 -	0.7686431497	3.8240358433	-4.6698667716
С	6.0 (0.7928063779	-3.8460094300	-4.6474669364
Н	1.0 -	0.1563355951	4.6839050319	-4.4174832486
Н	1.0	0.2342158987	-4.7392746492	-4.3873548426
С	6.0 -	0.3566198672	1.1707908522	5.0555473432
С	6.0 (0.2822896374	-1.1509790212	5.0666052687
Ν	7.0 -	0.6295750018	2.1367312743	5.6583303883
Ν	7.0	0.5510234408	-2.1151637978	5.6741579998

Cartesian coordinates (Å) of the optimized structure for compound 2d in DMSO

С	6.0	0.9690610550	-0.8259234256	-0.4998751630
С	6.0	0.9129009926	-2.2169903756	-0.4519243778
С	6.0	-1.2078215971	-0.7414325753	0.5190852831
0	8.0	-0.1749846151	-2.8329086280	0.0898959946
С	6.0	-1.2147181567	-2.0967201956	0.5748730982
С	6.0	-0.0857412632	-0.0145538886	-0.0329775853
Н	1.0	-2.0625173118	-0.2084675942	0.9023308126
С	6.0	-2.2948173397	-2.9564182392	1.1388305443
Η	1.0	1.8542175268	-0.3757250815	-0.9195273190
Η	1.0	-2.7021420998	-3.6230221913	0.3686801343
Η	1.0	-3.1072776343	-2.3418630579	1.5323134105
Η	1.0	-1.9085733694	-3.5866231038	1.9491415359
С	6.0	-0.0545578252	1.4320215377	-0.0755352593
С	6.0	1.1834627736	2.1331702253	-0.3229316665
Ν	7.0	1.1505493148	3.5621359014	-0.3090122764
С	6.0	0.0292196765	4.3137382369	-0.0591862012
Ν	7.0	-1.1421943569	3.6257704875	0.1424417634
С	6.0	-1.2615097573	2.2028165549	0.1180910121
0	8.0	2.2846006827	1.6022955536	-0.5313116863
S	16.0	0.0873900032	6.0174691462	-0.0070912495
0	8.0	-2.4018185163	1.7344142809	0.2531019529
С	6.0	-2.4080372136	4.3595659839	0.3916775425
С	6.0	2.4518731357	4.2248892723	-0.5748799251
С	6.0	1.9343587478	-3.0721161743	-0.9445033034
Н	1.0	2.7937398669	-2.5721765235	-1.3761169337
С	6.0	1.8626327209	-4.4519196832	-0.8906262062
Н	1.0	0.9897107802	-4.9194207582	-0.4449052245
Ν	7.0	2.7841450128	-5.3077703661	-1.3477762010
С	6.0	4.0079027865	-4.8305952154	-1.9876749500
С	6.0	2.6163154180	-6.7533360829	-1.2121627608
Н	1.0	4.6306259013	-4.2713306049	-1.2783570606
Н	1.0	3.7745347779	-4.1855691089	-2.8424772791
Н	1.0	4.5806127874	-5.6860009506	-2.3491157259
Н	1.0	1.6737905385	-6.9774419272	-0.7091232659
Н	1.0	3.4353576318	-7.1773087409	-0.6192893649
Η	1.0	2.6120457522	-7.2312130484	-2.1986776576
С	6.0	3.2868291201	4.4234483485	0.6883811628
Н	1.0	2.2315799026	5.1803601313	-1.0464008161
Η	1.0	2.9825526949	3.5900384471	-1.2831898482
Η	1.0	-2.9978709420	3.7390132126	1.0649879837
С	6.0	-3.1905609316	4.6457515036	-0.8880373404

Н	1.0 -2.1434817440	5.2853472329	0.8983757658
Н	1.0 2.7709672886	5.0648624022	1.4097996503
Н	1.0 4.2351843770	4.9061419097	0.4238293225
Н	1.0 3.5160675934	3.4663308441	1.1667239643
Н	1.0 -3.4622668787	3.7191503115	-1.4024250588
Н	1.0 -2.6180359354	5.2763512814	-1.5757338242
Н	1.0 -4.1159807194	5.1767378808	-0.6346466034

Cartesian coordinates (Å) of the optimized structure for compound 3d in DMSO

С	6.0	1.2667075113	1.9977886376	-0.4529183323
С	6.0	1.2105797388	0.6383877505	-0.2024052502
С	6.0	-1.1047785581	2.1369251375	-0.1061019780
0	8.0	0.0180905012	0.0448657917	0.1061278408
С	6.0	-1.1340515769	0.7794040663	0.1552216178
С	6.0	0.1040520410	2.8171667250	-0.4233084070
Н	1.0	-2.0385871401	2.6740413627	-0.0736030847
Н	1.0	2.2290796582	2.4279939868	-0.6779191475
C	6.0	0.1470244566	4.2461460969	-0.7035978130
Č	6.0	1 4004608263	4 9580220276	-0.6963392903
N	7.0	1 3670393444	6 3644617696	-0.9682041288
C	6.0	0.2301390066	7 0753868926	-1 2570790930
N	7.0	-0.9466324362	6 3713988125	-1 2826379453
C	6.0	-0.9400324302	<i>A</i> 0712310400	-1.0053701063
0	8.0	2 51/08/0011	<i>A A G A A A G A A A G A A A A A A A A A A</i>	-0.4544932026
ç	0.0 16.0	0.2770611400	9.75/3781170	1 5677500244
0	10.0	2 2010585207	0.7545701179 A A02677715A	1 0701152224
C	0.0 6.0	-2.2019363207	4.4630///134	-1.0/01132334
C	0.0	-2.2210220800	7.0340091782	-1.01140/2000
C	0.0 6.0	2.0040/19/40	7.0440799039	-0.9314/94/91
	0.0	2.3406961979	-0.2310410443	-0.240103/831
П	1.0	3.2031020024	0.244//55046	-0.4910429245
	0.0	2.2/30210849	-1.38330/2/00	0.0049854554
H	1.0	1.3166522444	-2.02606/3694	0.26/563/19/
N	/.0	3.2932851/5/	-2.45/950/141	-0.0422601743
C	6.0	4.6440803912	-2.02061/0191	-0.3/9205513/
C	6.0	3.10/1750980	-3.8634183796	0.3091199373
Н	1.0	5.0542707576	-1.3609541702	0.3968689251
Н	1.0	4.6528841587	-1.4886729679	-1.3375954951
Н	1.0	5.2917675564	-2.8942232599	-0.4673817019
Н	1.0	2.0590835298	-4.0516739469	0.5517108507
Н	1.0	3.7172628497	-4.1284465218	1.1812639136
Η	1.0	3.3928367859	-4.5104505180	-0.5284647229
С	6.0	3.3997670559	7.0159602901	-2.2810916892
Η	1.0	2.5091898432	8.0695586946	-0.6107234976
Η	1.0	3.2780607768	6.5284849407	-0.1784267690
Η	1.0	-1.9844426144	7.8721593030	-2.2885437514
С	6.0	-2.9514307662	7.5712979192	-0.3732821881
Η	1.0	-2.8361435333	6.3224438280	-2.1338640994
Η	1.0	2.8145434603	7.5263888521	-3.0524945878
Η	1.0	4.3643297540	7.5297167919	-2.1920728481
Η	1.0	3.5915360503	5.9887114652	-2.6065825955
Η	1.0	-2.3497913937	8.3137356659	0.1604269608
Η	1.0	-3.1944306957	6.7539281738	0.3125017273
Η	1.0	-3.8894620680	8.0509572714	-0.6771407130
С	6.0	-2.3207556419	0.0558591123	0.4811524563
Η	1.0	-3.2251081456	0.6522778229	0.5215108529
С	6.0	-2.3537994676	-1.2982742742	0.7306543078
Ν	7.0	-3.4465291270	-2.0358416686	0.9958969766
С	6.0	-3.3349418884	-3.4378649202	1.3908015251
Н	1.0	-3.6422271385	-3.5721268567	2.4357888168
Н	1.0	-2.3009468031	-3.7737970865	1.2890357871
Н	1.0	-3.9713066008	-4.0646865973	0.7560243886
Н	1.0	-1.4267740189	-1.8620069744	0.7108630860
С	60	-4.7701301946	-1.4263178037	1 0617058345

- Н 1.0 -5.5257653735 -2.2133870477 1.0981078147
- Н 1.0 -4.9562322432 -0.8152365085 0.1720607688
- Н 1.0 -4.8805717288 -0.7965391517 1.9548649064

3. Cartesian coordinates of the S1 relaxed geometry for compounds 2a,d, 3a,d, 11e

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound 2a in vacuo

С	6.0	0.7747824593	1.6196400044	0.0324203794
С	6.0	0.1428612991	0.3737624763	0.1121100433
0	8.0	0.8566105898	-0.7726022892	-0.1269696882
С	6.0	2.1945951242	-0.6850400808	-0.4690144889
С	6.0	2.8253342632	0.5014583245	-0.5555246180
С	6.0	2.1298522234	1.7313163959	-0.2979024493
С	6.0	2.7823936049	3.0193921934	-0.3755410347
С	6.0	-1.2126731632	0.1949736630	0.4374161661
С	6.0	-1.8115579279	-1.0525331873	0.5339354800
С	6.0	2.7744081173	-2.0317456387	-0.7062037206
Ν	7.0	-3.1175020106	-1.2723012037	0.7916876523
С	6.0	-4.0244491650	-0.1712834202	1.0450971667
С	6.0	-3.5845461984	-2.6102332073	1.1002715137
С	6.0	4.1455195615	3.1047094742	-0.7115483013
Ν	7.0	5.2768120919	3.1088724237	-0.9952349024
С	6.0	2.0581492773	4.1957334655	-0.1127207585
Ν	7.0	1.3948696697	5.1273661142	0.1183917992
Η	1.0	0.1809370542	2.5043227466	0.2342038537
Η	1.0	3.8747033120	0.5167562128	-0.8251844442
Η	1.0	-1.7785555082	1.0995703732	0.6222270870
Η	1.0	-1.2094623697	-1.9407364325	0.3792280230
Η	1.0	2.2391255710	-2.5458792911	-1.5121669698
Η	1.0	3.8266209529	-1.9491211758	-0.9801377800
Η	1.0	2.6919234810	-2.6530042706	0.1926253318
Η	1.0	-3.8078502249	0.3183373655	2.0053580974
Η	1.0	-3.9489041877	0.5746235558	0.2490118361
Η	1.0	-5.0470334601	-0.5481720052	1.0694894610
Η	1.0	-2.8733181043	-3.3447925698	0.7205043854
Н	1.0	-3.6906398778	-2.7553467821	2.1845141304
Η	1.0	-4.5545983207	-2.7873087808	0.6284349068

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound ${\bf 3a}$ in vacuo

С	6.0 -0.2525300400 -1.1644603816 2.2399137638
С	6.0 0.2525109857 1.1644225581 2.2399076391
С	6.0 -0.2553251467 -1.1553165710 0.8590612185
С	6.0 0.2552109322 1.1553074082 0.8590598754
0	8.0 -0.0001246296 0.0000123143 0.1437104327
С	6.0 -0.0000213437 -0.0000144586 3.0132791147
С	6.0 0.0000158148 0.0000022836 4.4352734980
С	6.0 -0.5124970321 -2.2827764432 0.0501847563
С	6.0 0.5125181131 2.2827440118 0.0502001520
С	6.0 -0.5322174792 -2.2222887293 -1.3297545441
С	6.0 0.5321246777 2.2222908768 -1.3297431951
Ν	7.0 -0.8127267688 -3.2524996036 -2.1597868958
Ν	7.0 0.8127436003 3.2524787202 -2.1597642061
С	6.0 -0.5640437058 -3.1214034957 -3.5815897227
С	6.0 0.5639476504 3.1214848800 -3.5815564908
С	6.0 -1.0377207884 -4.5856043797 -1.6382107272
С	6.0 1.0380552603 4.5855233697 -1.6381704414
С	6.0 -0.2596742545 -1.1934895580 5.1416690402
С	6.0 0.2596975039 1.1935230637 5.1416231556
Ν	7.0 -0.4818899177 -2.2146351988 5.6565009362
Ν	7.0 0.4819130832 2.2146929244 5.6564066353
Н	1.0 -0.4591830835 -2.1073817388 2.7343427136
Н	1.0 0.4592623175 2.1073191311 2.7343452595
Н	1.0 -0.6979883818 -3.2133744321 0.5718012846

Н	1.0 0.6981645909 3.2133018749 0.5718331675
Н	1.0 -0.3299398668 -1.2757534984 -1.8173201886
Н	1.0 0.3296262812 1.2758079148 -1.8173192705
Н	1.0 0.4202735596 -3.5246896532 -3.8599300067
Н	1.0 -0.4202542258 3.5250955436 -3.8598293981
Н	1.0 -1.3316510447 -3.6556949688 -4.1469753962
Н	1.0 1.3316949361 3.6555441532 -4.1469737896
Н	1.0 -0.5988622742 -2.0678601338 -3.8635397236
Н	1.0 0.5984096351 2.0679363600 -3.8635279198
Н	1.0 -1.8016727152 -4.5653219432 -0.8565073628
Н	1.0 1.8020022822 4.5650432138 -0.8564688945
Н	1.0 -1.3884244316 -5.2306572755 -2.4440579879
Н	1.0 1.3889158879 5.2305027376 -2.4440097129
Н	1.0 -0.1177844871 -5.0158323686 -1.2181940250
Н	1.0 0.1182242417 5.0159693562 -1.2181473360

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $11e\ \text{in vacuo}$

0	8.0 0.0001538568 0.0000299985 0.0390894166
С	6.0 -0.3631268837 1.1385592572 2.1216408912
С	6.0 0.3643871310 -1.1384147820 2.1215010516
С	6.0 -0.3504528071 1.1325180716 0.7436671620
С	6.0 0.3512157846 -1.1324001038 0.7435621858
С	6.0 0.0006758599 0.0000484373 2.8889146042
Н	1.0 -0.6525329402 2.0574189343 2.6194161625
Н	1.0 0.6540457631 -2.0572454867 2.6191831009
С	6.0 0.0008328213 0.0000136985 4.3080058921
С	6.0 -0.6677438349 2.2432300587 -0.0688310102
С	6.0 0.6682823253 -2.2431045700 -0.0690669091
Н	1.0 -0.9820905422 3.1441967219 0.4434833979
Н	1.0 0.9831849574 -3.1439477286 0.4431208787
С	6.0 -0.5763492420 2.2054730463 -1.4406478792
С	6.0 0.5759555615 -2.2054863487 -1.4407935435
Н	1.0 -0.2722050392 1.2904020006 -1.9304802981
Н	1.0 0.2710817907 -1.2905836601 -1.9304833654
Ν	7.0 -0.8281095927 3.2564780014 -2.2865581707
Ν	7.0 0.8274679555 -3.2564576136 -2.2868196135
С	6.0 -0.8800823919 4.5967113926 -1.7963817476
С	6.0 0.8809071975 -4.5965706792 -1.7964106676
С	6.0 0.1880427996 5.1165348512 -1.0632127434
С	6.0 -0.1863887723 -5.1172655339 -1.0626735393
Н	1.0 1.0607242886 4.5004954032 -0.8757779159
Н	1.0 -1.0595892834 -4.5020346854 -0.8749953075
С	6.0 0.1243013442 6.4197399845 -0.5844732814
С	6.0 -0.1211553026 -6.4202964732 -0.5836432913
Н	1.0 0.9562493696 6.8216541067 -0.0158352779
Н	1.0 -0.9524702820 -6.8229021121 -0.0145689185
С	6.0 -0.9962968603 7.2073694098 -0.8363989565
С	6.0 1.0001139262 -7.2068738866 -0.8358541117
Н	1.0 -1.0430709016 8.2233657657 -0.4591386499
Н	1.0 1.0480520248 -8.2227341666 -0.4583725157
С	6.0 -2.0584286691 6.6851459287 -1.5710559503
С	6.0 2.0613944466 -6.6837999087 -1.5711299685
Н	1.0 -2.9373619896 7.2910613234 -1.7645937810
Н	1.0 2.9408227323 -7.2889059041 -1.7649468601
С	6.0 -2.0060225092 5.3817507032 -2.0489841701
С	6.0 2.0074999820 -5.3805581905 -2.0493212943
Н	$1.0 \ -2.8330585664 \ \ 4.9651402086 \ \ -2.6137276320$
Н	1.0 2.8338680721 -4.9632773913 -2.6145505100
С	$6.0 \ -1.0450014303 \ \ 3.0105230731 \ -3.6625752208$
С	6.0 1.0429564455 -3.0106494669 -3.6630745682
С	6.0 -1.6348166216 1.8119404111 -4.0831347379
С	6.0 1.6313585824 -1.8116693283 -4.0844972515
Η	1.0 -1.9917467068 1.0968124613 -3.3507084177

1.0 1.9883098023 -1.0960133239	-3.3525991164
6.0 -1.8003793992 1.5560215819	-5.4387325733
6.0 1.7955526664 -1.5560056254	-5.4403071597
1.0 -2.2639456426 0.6252995090	-5.7494294730
1.0 2.2580634123 -0.6249788229	-5.7516654750
6.0 -1.3956014560 2.4876880031	-6.3897235221
6.0 1.3908092077 -2.4883079299	-6.3906943347
1.0 -1.5308631701 2.2859890352	-7.4468446530
1.0 1.5250172200 -2.2867870122	-7.4479834395
6.0 -0.8209179794 3.6866512755	-5.9697319694
6.0 0.8175424278 -3.6876463192	-5.9698617423
1.0 -0.4987437449 4.4206631163	-6.7011518740
1.0 0.4954034841 -4.4221856540	-6.7007681030
6.0 -0.6403927360 3.9506515499	-4.6200329443
6.0 0.6383984678 -3.9514104196	-4.6199285874
1.0 -0.1767025576 4.8775030000	-4.3032605822
1.0 0.1757933478 -4.8785831040	-4.3025094810
6.0 -0.3641663633 1.1648656359	5.0181180728
6.0 0.3659441218 -1.1648946337	5.0179677455
7.0 -0.6742538196 2.1578762990	5.5410549055
7.0 0.6759780451 -2.1579885961	5.5407722802
	1.0 1.9883098023 -1.0960133239 6.0 -1.8003793992 1.5560215819 6.0 1.7955526664 -1.5560056254 1.0 -2.2639456426 0.6252995090 1.0 2.2580634123 -0.6249788229 6.0 -1.3956014560 2.4876880031 6.0 1.3908092077 -2.4883079299 1.0 -1.5308631701 2.2859890352 1.0 1.5250172200 -2.2867870122 6.0 -0.8209179794 3.6866512755 6.0 0.8175424278 -3.6876463192 1.0 -0.4987437449 4.4206631163 1.0 0.4954034841 -4.4221856540 6.0 -0.6403927360 3.9506515499 6.0 0.6383984678 -3.9514104196 1.0 0.1757933478 -4.8785831040 6.0 -0.3641663633 1.1648656359 6.0 0.3659441218 -1.1648946337 7.0 -0.6742538196 2.1578762990 7.0 0.6759780451 -2.1579885961

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $\boldsymbol{2d}$ in vacuo

С	6.0	0.7874659466	-0.8177665615	-0.6813527239
С	6.0	0.8755256195	-2.1692793544	-0.5107701218
С	6.0	-0.2402736687	-0.6355217775	1.4977694217
0	8.0	0.4093674517	-2.7564866278	0.6474812033
С	6.0	-0.1403807981	-1.9724399918	1.6353937031
С	6.0	0.2256070906	0.0121952386	0.3120032575
Η	1.0	-0.6807212905	-0.0671020356	2.3070302516
С	6.0	-0.5773324385	-2.7918699790	2.7969959824
Η	1.0	1.1652976245	-0.4022105111	-1.6072372463
Н	1.0	-1.3308088707	-3.5254023421	2.4903933060
Η	1.0	-1.0028341399	-2.1572845018	3.5752513761
Н	1.0	0.2680643891	-3.3462936208	3.2183653558
С	6.0	0.1309966741	1.4579486065	0.1417594469
С	6.0	1.2185975379	2.3185771321	0.5716468889
Ν	7.0	1.0866844679	3.6936626974	0.3188567835
С	6.0	-0.0451556933	4.2874816493	-0.2062514014
Ν	7.0	-1.0914540740	3.4512322263	-0.5465723678
С	6.0	-1.0536447228	2.0507189151	-0.4523330751
0	8.0	2.2199667373	1.8797276116	1.1202812228
S	16.0	-0.1451984457	5.9376534587	-0.4165583638
0	8.0	-1.9938818895	1.3753941140	-0.8479111338
С	6.0	-2.3453749454	4.0068102908	-1.0951349615
С	6.0	2.2539590937	4.5145043979	0.7006170273
С	6.0	1.4270668598	-3.0948131904	-1.4618093860
Н	1.0	1.7938813300	-2.6537370834	-2.3805230604
С	6.0	1.5004357516	-4.4296207684	-1.2406409305
Н	1.0	1.0982587791	-4.8309136593	-0.3163611066
Ν	7.0	2.0767582689	-5.3675675416	-2.0578240056
С	6.0	2.5583594114	-4.9638917647	-3.3591576692
С	6.0	1.6347012165	-6.7428954706	-1.9355555523
Н	1.0	3.2434779091	-4.1181905746	-3.2590281392
Н	1.0	1.7410541541	-4.6705570922	-4.0363244540
Н	1.0	3.1063908303	-5.7918304998	-3.8126934224
Н	1.0	1.4229733414	-6.9680733675	-0.8882906682
Н	1.0	2.4242069336	-7.4178813077	-2.2759550896
Н	1.0	0.7260151785	-6.9464876690	-2.5223560293
С	6.0	2.1841216039	4.9862655706	2.1454623436
H	1.0	2.2910097044	5.3571707563	0.0148185840
Н	1.0	3.1277076294	3.8821678410	0.5498361827
Н	1.0	-3.1416034471	3.3434818903	-0.7599972254
	1.0	2.1.10000.171	2.2.2.010705	

С	6.0 -2.3266818225	4.0895907795	-2.6142873112
Н	1.0 -2.4796205571	4.9899145208	-0.6513755746
Н	1.0 1.3046276785	5.6132134251	2.3086736713
Н	1.0 3.0722673669	5.5811109609	2.3767710053
Н	1.0 2.1573144298	4.1370202907	2.8321450660
Н	1.0 -2.2115871595	3.0977488530	-3.0575979471
Н	1.0 -1.5178886764	4.7379022866	-2.9591277174
Н	1.0 -3.2724740666	4.5105397016	-2.9670590500

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $\mathbf{3d}$ in vacuo

~	6.0	1 0 4 40 4 (= = 0 (1 000 500 0 50 50 5	0 10 50 (5 50 0 0
С	6.0	1.2448467596	1.9985933737	-0.4250655923
С	6.0	1.1883995825	0.6426781151	-0.1638094123
С	6.0	-1.1149305961	2.1121596132	-0.2294772359
0	8.0	0.0002572629	-0.0100140622	0.0822288932
С	6.0	-1.1452996638	0.7548201915	0.0301911676
С	6.0	0.0903183567	2.8330143981	-0.4710043130
Η	1.0	-2.0557529591	2.6438567329	-0.2510489708
Η	1.0	2.2159930559	2.4384622929	-0.6023974156
С	6.0	0.1380154586	4.2493682200	-0.7345589730
С	6.0	1.3939607741	4.9149158312	-0.9257644874
Ν	7.0	1.3724661233	6.3169489761	-1.1331614705
С	6.0	0.2355810944	7.0727977428	-1.2427392138
Ν	7.0	-0.9507465487	6.4034149371	-1.0993546049
С	6.0	-1.0687497436	5.0211548697	-0.8077335460
0	8.0	2.5066910623	4.3693134911	-0.9133177226
S	16.0	0.2939205963	8.7321660530	-1.5376670066
0	8.0	-2.2155706504	4.5792947195	-0.6483201966
С	6.0	-2.2258981912	7.1319745097	-1.2221160947
С	6.0	2.6955577494	6.9534418821	-1.2600174161
С	6.0	2.3253333044	-0.1952386708	-0.1172004803
Н	1.0	3.2772374357	0.2874664617	-0.2987113051
С	6.0	2.2484273983	-1.5462218874	0.1499150764
Н	1.0	1.2796625842	-1.9879863388	0.3546339495
Ν	7.0	3.2896291235	-2.4079691610	0.1641724417
С	6.0	4.6445077088	-1.9393085106	-0.0483866484
С	6.0	3.1218340179	-3.7422139947	0.7042397859
Н	1.0	5.0012012589	-1.3350192014	0.7970338222
Н	1.0	4.6994953021	-1.3342686674	-0.9569965535
Н	1.0	5.3050001868	-2.7988237238	-0.1669426180
Н	1.0	2.0677541742	-4.0222859750	0.6708549445
Н	1.0	3.4641950941	-3.8021538454	1.7470865689
Н	1.0	3.6903119020	-4.4627252856	0.1101864396
С	6.0	3.2051982698	6.9444329804	-2.6942803758
Н	1.0	2.5945062217	7.9714771216	-0.8922232914
Н	1.0	3.3690450199	6.3912534599	-0.6160934232
Н	1.0	-2.0566622784	7.9502351943	-1.9178079576
С	6.0	-2.7256519813	7.6558346427	0.1166995372
Н	1.0	-2.9417578781	6.4292548501	-1.6441523497
Н	1.0	2.5287771266	7.4997086187	-3.3484532628
Н	1.0	4.1895181394	7.4212973498	-2.7392786653
Н	1.0	3.3047055827	5.9193384224	-3.0590802009
Н	1.0	-2.0015678769	8.3453569856	0.5570630920
Н	1.0	-2.9092239698	6.8301094296	0.8083956199
Н	1.0	-3.6660595411	8.1970722776	-0.0281407134
С	6.0	-2.3321225528	0.0264855521	0.2714844275
Н	1.0	-3.2511503712	0.5985527645	0.2531311423
С	6.0	-2.3378405977	-1.3298378467	0.5210341404
Ň	7.0	-3.4366277658	-2.0924068914	0.7178016025
С	6.0	-3.2971820126	-3.4468943492	1.2146241281
Н	1.0	-3.4088266368	-3.4921031724	2.3073353931
H	1.0	-2.3114844459	-3.8341126513	0.9509902745
Н	1.0	-4.0537206362	-4.0920939656	0.7609035063
Н	1.0	-1.3941070514	-1.8627805466	0.5506655182

С	6.0 -4.7554359163 -1.4934131945	0.7631333785
Н	1.0 -5.5071076024 -2.2830273908	0.7716720545
Н	1.0 -4.9208965936 -0.8700140985	-0.1194840183
Η	1.0 -4.8869912586 -0.8720976771	1.6598087279

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $\boldsymbol{2a}$ in DMSO

С	6.0 0.7602837061 1.6161073768 0.0436457128
С	6.0 0.1322760594 0.3759072028 0.1308669067
0	8.0 0.8377206933 -0.7851374635 -0.1261718936
С	6.0 2.1751479561 -0.6949230919 -0.4406451613
С	6.0 2.8112582557 0.4916717734 -0.5275274366
С	6.0 2.1225605365 1.7312307129 -0.2938328845
С	6.0 2.7733501169 3.0090306951 -0.3939997913
С	6.0 -1.2171590924 0.1914205935 0.4725671013
С	6.0 -1.8217329462 -1.0727390008 0.5334403625
С	6.0 2.7674150635 -2.0377528122 -0.6609191092
Ν	7.0 -3.0914133134 -1.2929239067 0.8736724124
С	6.0 -3.9932996239 -0.2092687286 1.2266783885
С	6.0 -3.6460010205 -2.6365121727 0.8457501998
С	6.0 4.1388925292 3.1111144519 -0.7132261796
Ν	7.0 5.2738102344 3.1700260899 -0.9787447974
С	6.0 2.0849406171 4.2149055214 -0.1729319811
Ν	7.0 1.5023309115 5.2080153104 0.0187134479
Н	1.0 0.1600347536 2.4959494788 0.2504851975
Η	1.0 3.8658173509 0.4867279761 -0.7780574188
Н	1.0 -1.7879321827 1.0863467125 0.6920871613
Н	1.0 -1.2391436671 -1.9501490733 0.2783036165
Н	1.0 2.2607293175 -2.5522685505 -1.4855783768
Н	1.0 3.8292837387 -1.9589435126 -0.8985181292
Н	1.0 2.6532336948 -2.6630643096 0.2320117332
Н	1.0 -3.5926797095 0.3764927149 2.0607029579
Н	1.0 -4.1609651954 0.4537576967 0.3692463063
Н	1.0 -4.9518970817 -0.6282586216 1.5302063760
Н	1.0 -2.8772499803 -3.3560123902 0.5633538311
Н	1.0 -4.0333529875 -2.9048409902 1.8341065991
Н	1.0 -4.4661107513 -2.6910829551 0.1205596380

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $\mathbf{3a}$ in DMSO

С	6.0 -0.2443313901 -1.1667257591 2.2147712119
С	6.0 0.3000444084 1.1501264596 2.2166166566
С	6.0 -0.2280663286 -1.1673650917 0.8257104987
С	6.0 0.3043810719 1.1482995228 0.8276414594
0	8.0 0.0377994450 -0.0087147900 0.1211040363
С	6.0 0.0164471944 -0.0064473268 2.9733479704
С	6.0 -0.0095963365 0.0000081865 4.4262487118
С	6.0 -0.4793415616 -2.2995314978 0.0329768615
С	6.0 0.5471295386 2.2824271750 0.0355645043
С	6.0 -0.4584880535 -2.2734365682 -1.3579182773
С	6.0 0.5022228701 2.2610403292 -1.3549425482
Ν	7.0 -0.7125774839 -3.3146031464 -2.1523411372
Ν	7.0 0.6918836899 3.3181970541 -2.1461832560
С	6.0 -0.6564223798 -3.1854802106 -3.5992359555
С	6.0 0.5809070259 3.2051287526 -3.5911655297
С	6.0 -1.0460271503 -4.6206638394 -1.6086164274
С	6.0 0.9925379713 4.6306699538 -1.5995081578
С	6.0 -0.3513900466 -1.1448929410 5.1558669891
С	6.0 0.3034416314 1.1565287387 5.1502434348
Ν	7.0 -0.6410813495 -2.1091001475 5.7510935873
Ν	7.0 0.5758841024 2.1372021129 5.7266578232
Н	1.0 -0.4655801945 -2.1097311054 2.7031894871
Н	1.0 0.5191456432 2.0929171641 2.7067072760

Н	1.0 -0.6974918230 -3.2183105673 0.5638696293
Н	1.0 0.7570628221 3.2030315265 0.5664900005
Н	1.0 -0.2270671951 -1.3450401175 -1.8655540151
Н	1.0 0.2858930733 1.3291915865 -1.8634423416
Н	1.0 0.0770043511 -3.8834415027 -4.0168303955
Н	1.0 -0.2333766887 3.8379649616 -3.9606307405
Н	1.0 -1.6357060059 -3.4025006260 -4.0396971310
Н	1.0 1.5138014184 3.5193812061 -4.0705012897
Н	1.0 -0.3670194840 -2.1707317379 -3.8742067621
Н	1.0 0.3751158786 2.1715752145 -3.8721983356
Н	1.0 -1.9237317899 -4.5606104903 -0.9559693603
Н	1.0 1.9130567149 4.6038544341 -1.0057625013
Н	1.0 -1.2742227973 -5.3023497877 -2.4276050065
Н	1.0 1.1353513032 5.3351249179 -2.4185586767
Η	1.0 -0.2056182865 -5.0338841589 -1.0390160861
Н	1.0 0.1723401780 4.9924206435 -0.9690851955

Cartesian coordinates (Å) of the $S_{\rm l}$ relaxed geometry for compound 11e in DMSO

0	8.0 0.0504751716 0.0097	555176 0.0087440296
С	6.0 -0.3054528585 1.1404	648705 2.0972826729
С	6.0 0.3676467259 -1.1464	877595 2.0891882251
С	6.0 -0.2964899068 1.1442	948210 0.7107397009
С	6.0 0.3676295140 -1.1371	780974 0.7031358838
С	6.0 0.0327236773 -0.0050	226278 2.8467615881
Н	1.0 -0.5842455395 2.0643	644481 2.5921967159
Н	1.0 0.6327883197 -2.0778	896146 2.5776523585
С	6.0 0.0306595662 -0.0124	658977 4.2948956298
С	6.0 -0.6301691650 2.2597	576903 -0.0777115121
С	6.0 0.6801322485 -2.2500	297430 -0.0965780145
Н	1.0 -0.9050869815 3.1625	597289 0.4546562995
Н	1.0 0.9288331435 -3.1668	323114 0.4244107880
С	6.0 -0.6257843038 2.2316	797631 -1.4586999517
С	6.0 0.6835007914 -2.2033	088850 -1.4765146776
Н	1.0 -0.3894343661 1.3110	177396 -1.9738336472
Н	1.0 0.4763050996 -1.2700	334026 -1.9829288465
Ν	7.0 -0.9034903827 3.2837	510510 -2.2743858955
Ν	7.0 0.9234149958 -3.2608	736265 -2.2965918396
С	6.0 -0.9149749644 4.6278	272479 -1.7841312688
С	6.0 0.8668894707 -4.6025	332669 -1.7945156816
С	6.0 0.2076676924 5.1413	421341 -1.1336113508
С	6.0 -0.3207569053 -5.0761	907663 -1.2376651817
Н	1.0 1.0903793340 4.5238	195962 -1.0027696211
Н	1.0 -1.1928149604 -4.4313	717712 -1.1940872133
С	6.0 0.1905681325 6.4534	333995 -0.6741448893
С	6.0 -0.3805010064 -6.3802	083099 -0.7597693723
Н	1.0 1.0668924231 6.8557	471665 -0.1752182003
Н	1.0 -1.3062711316 -6.7531	860877 -0.3331772193
С	6.0 -0.9360991051 7.2509	170324 -0.8646791464
С	6.0 0.7393885630 -7.2060	844184 -0.8375259467
Н	1.0 -0.9427975723 8.2758	959042 -0.5068321431
Н	1.0 0.6894865471 -8.2245	788165 -0.4643888870
С	6.0 -2.0523359825 6.7318	520076 -1.5181431618
С	6.0 1.9215269497 -6.7255	538543 -1.3975627801
Н	1.0 -2.9337662426 7.3476	953113 -1.6678475547
Н	1.0 2.7974455714 -7.3646	063125 -1.4548142209
С	6.0 -2.0466490465 5.4202	608095 -1.9784028706
С	6.0 1.9916566190 -5.4218	764564 -1.8772438312
Н	1.0 -2.9152093599 5.0089	166740 -2.4825898663
Н	1.0 2.9116382430 -5.0387	563857 -2.3069589165
С	6.0 -1.1859407543 3.0470	392028 -3.6462862850
С	6.0 1.2125439319 -3.0467	563397 -3.6678913940
С	6.0 -1.8787331879 1.8937	347351 -4.0293088658
С	6.0 1.8835190600 -1.8874	426809 -4.0751428046

Н	1.0 -2.2638677535 1.2120324050	5 -3.2784192660
Н	1.0 2.2440998559 -1.1724013103	3 -3.3436673643
С	6.0 -2.1082445579 1.6395714497	-5.3767132566
С	6.0 2.1249474079 -1.6649506314	4 -5.4258246364
Н	1.0 -2.6516220036 0.7446857895	5 -5.6640439639
Н	1.0 2.6493543068 -0.7639443750	0 -5.7294007727
С	6.0 -1.6662459397 2.5338875807	-6.3477069740
С	6.0 1.7212268270 -2.5952844903	6.3799776933
Н	1.0 -1.8491129767 2.3356071448	3 -7.3989126877
Н	1.0 1.9165176913 -2.4200865230	5 -7.4330914889
С	6.0 -0.9928044772 3.6922129163	3 -5.9606421626
С	6.0 1.0681547383 -3.7569103643	3 -5.9694548698
Н	1.0 -0.6419448555 4.3944905510	-6.7106108973
Н	1.0 0.7463961131 -4.4892754646	5 -6.7034992280
С	6.0 -0.7498277525 3.9541226120	-4.6190679328
С	6.0 0.8111447008 -3.9874608710	-4.6245787933
Н	1.0 -0.2082143636 4.8473648429	9 -4.3281423394
Н	1.0 0.2861958822 -4.885820273	7 -4.3200864289
С	6.0 -0.3250694063 1.1257172430	5.0312674470
С	6.0 0.3840436733 -1.1624086378	3 5.0139330834
Ν	7.0 -0.6252583244 2.0819913508	3 5.6319775123
Ν	7.0 0.6845693110 -2.1349471193	3 5.5879450484

Cartesian coordinates (Å) of the S_1 relaxed geometry for compound $\boldsymbol{2d}$ in DMSO

С	6.0	0.8929978211	-0.8050776683	-0.5416219777
С	6.0	0.8564523358	-2.1917778679	-0.5033230308
С	6.0	-1.1345343398	-0.7547031245	0.7464913544
0	8.0	-0.1535397772	-2.8505003849	0.1596377579
С	6.0	-1.1337719129	-2.1035885918	0.7746203032
С	6.0	-0.0912832151	-0.0058875474	0.0922337531
Η	1.0	-1.9437551646	-0.2396757293	1.2414590752
С	6.0	-2.1308849147	-2.9778008465	1.4442667304
Η	1.0	1.7026092276	-0.3407241509	-1.0855979215
Η	1.0	-2.5861293579	-3.6680065159	0.7246908496
Н	1.0	-2.9215664942	-2.3821772556	1.9032651335
Н	1.0	-1.6566903833	-3.5867724626	2.2227279102
С	6.0	-0.0475140890	1.4313363411	0.0296389647
С	6.0	1.2109494635	2.1196097803	-0.0914170037
Ν	7.0	1.1752757948	3.5262988168	-0.2201104791
С	6.0	0.0403635207	4.2839345648	-0.1243099470
Ν	7.0	-1.1376759577	3.6125174435	0.0578809311
С	6.0	-1.2581832678	2.2053634360	0.0932292112
0	8.0	2.3157123131	1.5609358857	-0.0896185484
S	16.0	0.0902659882	5.9769051555	-0.2266320483
0	8.0	-2.3911264003	1.7157615187	0.1746283940
С	6.0	-2.4104382923	4.3506694825	0.1766179198
С	6.0	2.4901545598	4.1692496404	-0.4137658279
С	6.0	1.8350958761	-3.0205722025	-1.0865252558
Н	1.0	2.6285423675	-2.5184648592	-1.6279845390
С	6.0	1.8166674351	-4.4115022865	-0.9754326892
Н	1.0	1.0070234014	-4.8880569720	-0.4340741493
Ν	7.0	2.7268131938	-5.2323590772	-1.4985473362
С	6.0	3.8698394390	-4.7317039760	-2.2434594105
С	6.0	2.5895038807	-6.6751811094	-1.3767891780
Н	1.0	4.4505142470	-4.0261725744	-1.6404944420
Н	1.0	3.5481794550	-4.2336452283	-3.1658505831
Н	1.0	4.5156806314	-5.5665778189	-2.5134033634
Н	1.0	1.6746340801	-6.9212126445	-0.8373726456
Н	1.0	3.4442722219	-7.0911294896	-0.8326388628
Н	1.0	2.5478851330	-7.1343326876	-2.3704006588
С	6.0	3.1803709246	4.4913397425	0.9020169821
Н	1.0	2.3251310858	5.0697447534	-0.9991886294
Η	1.0	3.0896482232	3.4714494091	-0.9946674665

Н	1.0 -3.0448629707	3.7630583434	0.8370269536
С	6.0 -3.0906087067	4.5553605303	-1.1677156028
Н	1.0 -2.1880210971	5.3029896234	0.6504560055
Η	1.0 2.5935499517	5.1972617614	1.4953609039
Η	1.0 4.1562929380	4.9456114168	0.7030952708
Н	1.0 3.3427620708	3.5849866078	1.4905397692
Η	1.0 -3.3004293049	3.5972647907	-1.6498958965
Η	1.0 -2.4709358421	5.1581593992	-1.8365767711
Η	1.0 -4.0417010962	5.0776054843	-1.0232922627

Cartesian coordinates (Å) of the $S_{\rm l}$ relaxed geometry for compound 3d in DMSO

С	6.0	1.2366050656	1.9929678513	-0.5067521501
С	6.0	1.1985380933	0.6321183136	-0.2311675324
С	6.0	-1.0798837145	2.1493120803	-0.0238175224
0	8.0	0.0326397031	0.0200078636	0.1802463334
С	6.0	-1.1122384165	0.7863353291	0.2419280181
С	6.0	0.0996513511	2.8297571575	-0.4065606690
Н	1.0	-2.0133477784	2.6880602439	0.0468335269
Н	1.0	2.1866169721	2.4062860511	-0.8125886042
С	6.0	0.1384246160	4.2622725345	-0.6961306479
С	6.0	1.3575734044	4.9803053386	-0.5663359811
Ν	7.0	1.3355059461	6.3755545043	-0.8663771828
С	6.0	0.2285385430	7.0535971992	-1.2778689296
Ν	7.0	-0.9269779820	6.3408137355	-1.3839238060
С	6.0	-1.0396746581	4.9459646643	-1.1006972596
0	8.0	2.4420708884	4.4982013579	-0.2001595599
S	16.0	0.2881064137	8.7198964151	-1.6449112218
0	8.0	-2.1609311171	4.4298591727	-1.2446481677
С	6.0	-2.1739067749	6.9964262376	-1.8159267348
Ċ	6.0	2.6217231528	7.0737477115	-0.6947638081
Ċ	6.0	2.3073329391	-0.2253361334	-0.3441278841
Н	1.0	3.2428177511	0.2333903089	-0.6410438272
C	6.0	2.2324955408	-1.5915929281	-0.0963215723
Ĥ	1.0	1.2822557880	-2.0209510969	0.1983972198
N	7.0	3.2443193098	-2.4542773191	-0.1969100319
C	6.0	4.5789136978	-2.0223051268	-0.5775384664
Č	6.0	3.0632420514	-3.8621507613	0.1181175354
H	1.0	5.0133002211	-1.3657436980	0.1859405075
Н	1.0	4.5598464434	-1.4931584425	-1.5358287058
Н	1.0	5.2189654514	-2.8976763484	-0.6832595045
Н	1.0	2.0285745041	-4.0505548657	0.4071779547
Н	1.0	3.7155977082	-4.1545093828	0.9482817884
Н	1.0	3.3032025674	-4.4824039453	-0.7519422895
C	6.0	3.4679817446	7.0547037059	-1.9579969883
Ĥ	1.0	2.4004496434	8.0935083598	-0.3905519361
Н	1.0	3.1402504623	6.5615920250	0.1125473057
Н	1.0	-1.9026874808	7.7912949735	-2.5057182938
C	6.0	-2.9753852419	7.5450027471	-0.6454826219
H	1.0	-2.7500175719	6.2408253120	-2.3448471320
Н	1.0	2.9655275764	7.5732948667	-2.7785422674
Н	1.0	4 4218855608	7 5590456208	-1 7721447051
Н	1.0	3.6829069627	6.0288186358	-2.2689471291
Н	1.0	-2 4083232320	8 3043981179	-0 1009098055
Н	1.0	-3 2510183962	6 7458045592	0.0475419923
Н	1.0	-3 8967326804	8 0082227799	-1 0130972771
C	6.0	-2 2819792677	0.0846359219	0.5852716196
й	1.0	-3 1904871708	0 6718564758	0.6409862995
C	6.0	-2.3054761063	-1.2806382212	0.8425405182
Ň	7.0	-3 3953113318	-1 9984040463	1 1234729228
Ċ	6.0	-3 2940139303	-3 4019321944	1 4899894367
й	1.0	-3.6193122452	-3.5502214596	2.5260549395
Н	1.0	-2.2609816762	-3.7387960960	1.3993299629
Н	1.0	-3.9238740417	-4.0116239221	0.8345117228
-				

Н	1.0 -1.3769412521 -1.8381049854	0.8152780122
С	6.0 -4.7133916409 -1.3908007442	1.1865183006
Η	1.0 -5.4669323023 -2.1780970887	1.2212620732
Н	1.0 -4.8982048652 -0.7807535536	0.2979526957
Н	1.0 -4.8255268632 -0.7648863006	2.0804882970

4. Table S1. Ground state frontier orbitals for compounds 2a,d, 3a,d, 11e in vacuo

(isosurfaces correspond to 0.02 psi/ 0.0004 rho)

5. Table S2. Frontier orbitals of the first singlet excited states for the relaxed geometry of compounds 2a,d, 3a,d, 11e in vacuo

(isosurfaces correspond to 0.02 psi/ 0.0004 rho)

6. Table S3. Ground state frontier orbitals for compounds 2a,d, 3a,d, 11e in DMSO

НОМО	LUMO
Ground state of 2a	Ground state of 2a

(isosurfaces correspond to 0.02 psi/ 0.0004 rho)

7. Table S4. Frontier orbitals of first singlet excited states for relaxed geometry of compounds 2a,d, 3a,d, 11e in DMSO

(isosurfaces correspond to 0.02 psi/ 0.0004 rho)

8. Calculated normalized UV-vis spectra for compounds 2a,d, 3a,d, 11e in DMSO

Fig. S1. Normalized absorption and emission spectra of 2a in DMSO at the CAM-B3LYP level.

Fig. S2. Normalized absorption and emission spectra of 3a in DMSO at the CAM-B3LYP level.

Fig. S3. Normalized absorption and emission spectra of 11e in DMSO at the CAM-B3LYP level.

Fig. S4. Normalized absorption and emission spectra of 2d in DMSO at the CAM-B3LYP level.

Fig. S5. Normalized absorption and emission spectra of 3d in DMSO at the CAM-B3LYP level.

Entry	Cmpd	Solvent	λ_{abs}, nm	$f_{\rm GS}$	λem, nm	\mathbf{f}_{s_1}	$\mu_{GS,}D$	$\mu_{S1,}D$	$\mu_{ GS->S1 ,}D$
1	2a	Vacuum	345	1,059	368	1,041	14,508	15,777	1,269
2		DMSO	407	1,350	421	1,305	0,769	3,794	3,025
3	3a	Vacuum	344	1,057	357	0,997	17,338	21,043	3,705
4		DMSO	370	1,793	462	0,582	0,927	4,820	3,893
5	11e	Vacuum	358	1,323	417	0,440	15,153	19,780	4,627
6		DMSO	396	2,794	486	0,650	0,305	24,209	23,904
7	2d	Vacuum	379	1,193	360*	0,441*	13,223	4,425	8,808
8		DMSO	435	1,375	460	1,250	0,775	3,149	2,374
9	3d	Vacuum	393	0,372	421	0,353	16,273	21,669	5,396
10		DMSO	476	0,559	507	0,556	0,770	5,275	4,505

9. Table S5. Calculated absorption and emission properties for 2a,d, 3a,d, 11e in vacuo and in DMSO

* Oscillator strengths turned out to be negligible for S1-S4, S5 wavelength and oscillator strength provided

10. Table S6. Calcula	ated energies of the grou	nd state, frontier or	bitals, conformer	populations
in DMSO, and impo	rtant angles for the S ₁ ex	cited state for com	pounds 2a,d, 3a,d,	11e

Compound	Energy of GS, Hartrees	HOMO energy, eV	LUMO energy, eV	S ₁ MDN- Pyran ring angle, degrees	S ₁ TB- Pyran ring dihedral angle, degrees	S ₁ Enamine double bond- Pyran ring angle, degrees	Relative energy, kcal/mol	DMSO populations *, %
NC_CN Me NMe ₂ s-trans-E-2a	-742.2538560703	-5.44	-2.04	0.6–0.8	-	0.9	0	96.90
NC_CN Me NMe ₂ s-cis-E-2a	-742.2506015618	-5.50	-1.99	4.3–5.2	-	8.6	+2.04	3.10
NC_CN Me Me S-trans-7-29	-742.2408961328	-5.47	-2.07	n/d	-	n/d	+8.13	~0
NC_CN Me O_NMe ₂ s-cis-Z-2a	-742.2393898005	-5.55	-2.07	n/d	-	n/d	+9.09	~0
NC CN Me ₂ N NMe ₂ s-trans-s- trans-E- 3a	-914.2249613805	-5.17	-1.96	2.6–2.7	-	2.2; 0.1	0	80.90

Compound	Energy of GS, Hartrees	HOMO energy, eV	LUMO energy, eV	S ₁ MDN- Pyran ring angle, degrees	S ₁ TB- Pyran ring dihedral angle, degrees	S ₁ Enamine double bond- Pyran ring angle, degrees	Relative energy, kcal/mol	DMSO populations *, %
NC CN Me ₂ N S-cis-s-trans- E-39	-914.2229249549	-5.19	-1.85	0.5–0.7	-	0.4; 1.9	+1.28	18.70
$\frac{1}{1} \frac{1}{1} \frac{1}$	-914.2199711401	-5.19	-1.77	0.4–0.8	-	3.1; 3.6	+3.13	0.40
NC CN Ph ₂ N NPh ₂ s-trans-s- trans-E-11e	-1680.7552654405	-5.36	-2.29	0.6–1.0	-	0.7; 0.7	0	89.47
NC_CN Ph ₂ N s-trans-s-cis- E-11e	-1680.7525737227	-5.39	-2.20	0.1–0.8	-	4.8 (trans); 16.6 (cis)	+1.69	10.32
$rac{NC}{CN}$ $rac{CN}{Ph_2N}$ $rac{CN}{NPh_2}$ $rac{NPh_2}{S-cis-s-cis-E-11e}$	-1680.7495365241	-5.42	-2.12	0.2–1.5	-	11.7; 2.6	+3.60	0.21
S EtN NEt O Me S-trans-E-2d	-1487.2881759075	-5.42	-2.23	-	26.9– 29.3	3.5	0	91.53
S EtN NEt Me O NMe ₂ s-cis-E-2d	-1487.2859282924	-5.44	-2.15	-	84.9– 86.9	25.3	+1.41	8.47

Compound	Energy of GS, Hartrees	HOMO energy, eV	LUMO energy, eV	S ₁ MDN- Pyran ring angle, degrees	S ₁ TB- Pyran ring dihedral angle, degrees	S ₁ Enamine double bond- Pyran ring angle, degrees	Relative energy, kcal/mol	DMSO populations *, %
Me ₂ N <i>He</i> ₂ N <i>He</i> ₂ N <i>He</i> ₂ N <i>He</i> ₂ S <i>He</i> ₃ S	-1659.2587790345	-5.06	-2.12	-	24.0– 25.5	0.3; 1.8	0	77.15
s-trans-s-cis- E- 3d	-1659.2569222035	-5.06	-2.04	-	26.3– 27.2	1.1; 3.8	+1.16	21.74
s-cis-s-cis-E- 3d	-1659.2541133737	-5.06	-1.96	-	15.4– 16.7	3.8; 4.8	+2.51	1.11

* Boltzmann populations were calculated assuming that only the considered conformers contribute to the total population.

Fig. S6. The absorbance spectra of 8f upon prolonged photoexcitation at 400 nm.

S46

Determination of relative fluorescence quantum yields

The quantum yield for synthesized fluorescent derivatives was calculated according to the procedure described in the literature with the use of Rhodamine 6G as a standard. All measurements were proceeded in 3-4 various concentrations ($2 \times 10^{-7} - 10^{-6}$ M). The quantum yield was calculated by the formula:

$$\Phi_{\rm x} = \Phi_{\rm st} \times (\frac{Grad_x}{Grad_{st}}) \times (\frac{n_x^2}{n_{st}^2})$$

where *Grad* is the gradient from the plot of integrated fluorescence intensity, n is the refractive index of the solvent, Φ is the quantum yield, the subscript x corresponds to the novel compounds, the subscript st – for the standard.

S107

S108