Supporting Information

Synthesis of mono-nitroxides and of bis-nitroxides with varying electronic through-bond communication

Angeliki Giannoulis,^{*,a,b} Katrin Ackermann,^b Alexey Bogdanov,^a David B. Cordes,^b Catherine Higgins,^b Joshua Ward,^b Alexandra M. Z. Slawin,^b James E. Taylor^{*,b,c} and Bela E. Bode^{*,b}

^aDepartment of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.

^bEaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.

^cDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.

E-mail: beb2@st-andrews.ac.uk; angeliki.giannoulis@weizmann.ac.il; j.e.taylor@bath.ac.uk

Additional CW-EPR spectra

Figure S1 CW-EPR of mono-radicals recorded at room temperature at X-band (a) full spectrum and (b) zoom-in the high field ¹⁴N line with the experiment and simulation in red and blue colour, respectively. Simulations were run with Easyspin and simulation parameters are given in **Table S1**.

Figure S1 continued CW-EPR of mono-radicals recorded at room temperature at X-band (a) full spectrum and (b) zoom-in the high field ¹⁴N line with the experiment and simulation in red and blue colour, respectively. Simulations were run with Easyspin and simulation parameters are given in **Table S1**.

Table S1 Parameters used for the simulations of the mono-radicals.

	g-value	A ₁₄ /	A _{1_{H(1)}/}	A _{1_{H(2)}/}	A ₁₃ /	linewidth /
		MHz	MHz	MHz	MHz	Voigtian
4	2.01049	40.044	0.655	1.31	17.45	0.010,
						0.035
5	2.00776	39.95	0.66	1.32	16.75	0.007
						0.037
6	2.00393	39.8	0.625	1.25	16.75	0.00,
						0.047
9	2.00594	40.044	0.655	1.3	16.75	0.017,
						0.025
10	2.00658	40.3	0.625	1.25	16.75	0.00, 0.09
12	2.00613	40.19	0.645	1.29	16.75	0.00, 0.04
14	2.00901	40.25	0.685	1.37	16.75	0.013,
						0.075
15	2.00898	40.090	0.65	1.3	17.13	0.005,
						0.034

Figure S2 CW-EPR of **3** recorded at room temperature (298 K) and at 343 K at X-band along with simulations in black and red colour, respectively. Simulations were run with positive and negative value of J using a self-written Matlab script with the simulation parameters given in main text. The blue arrows denote the deviation of the simulation from the experimental spectrum, suggesting a J > 0. Parameters of experiment: 9.48 GHz, 23 dB attenuation, modulation amplitude 0.01 mT, 10 scans.

Figure S3 CW-EPR of **20** recorded at 5 K with the arrow indicating the half-field transition. Parameters of experiment: 9.346GHz, 13 dB attenuation, modulation amplitude 0.2 mT, 1 scan.

Characterization spectra

Figure S4 Mass spectrum of 2.

Figure S5 IR spectrum of 2.

Figure S6 Mass spectrum of 3.

Figure S7 IR spectrum of 3.

Figure S8 Mass spectrum of 4 from 15.

Figure S9 IR spectrum of 4.

Figure S10 Mass spectrum of 5 from 12.

Figure S11 Mass spectrum of 5 from 10.

Figure S13 Mass spectrum of 6.

Figure S15 IR spectrum of the first product of reaction from 7 to 8.

Figure S16 ¹H NMR spectrum of 8.

Figure S18 Mass spectrum of 9.

Figure S19 IR spectrum of 9.

Figure S20 Mass spectrum of 10.

Figure S21 IR spectrum of 10.

Figure S22 ¹H NMR spectrum of **11**.

Figure S23 Mass spectrum of 11.

Figure S24 IR spectrum of 11.

Figure S26 IR spectrum of 12.

Figure S28 IR spectrum of 14.

Figure S29 Mass spectrum of 15.

Figure S30 IR spectrum of 15.

Figure S32 IR spectrum of 20.

Experiment repeats

Compound 8:

Run	ID	SM*	NH3	Yield**	Reaction	Temperature
		(g/mmol)	(mL/mmol)	nL/mmol) (g/%)		
1	AG008	22.8/58.0	71/1286	7.5/ 58	2 h	rt
2	KA1.2	23.0/58.0	79/1431	5.1/38	2 h	rt

*SM refers to the intermediate compound from 7 to 8

**The yield is with respect to the starting material (over two steps)

Compound **9**:

Run	ID	SM	EDTA*	Na ₂ WO ₄ ·2H ₂ O	H ₂ O ₂	Yield	Reaction time	Temperature
		(g/mmol)	(g/mmol)	(g/mmol)	(mL/mmol)	(g/%)		
1	AG011	7.5/45	0.42/1.4	0.4/1.27	8.3/268	1.8/22	5 min then 6 d	rt then 4 °C
2	KA1.3	5.0/30	0.3/0.9	0.3/0.85	5.5/178	4.0/ 73	5 min then 5 d	rt then 4 °C
Ζ	KAL.5	5.0/50	0.5/0.9	0.5/0.65	5.5/1/6	4.0/75	5 min then 5 u	rt then

*For AG011 was used EDTA, while for KA1.3 Na₂ EDTA 2H₂O was used

Compound 6 (TPC):

Run	ID	SM	10% NaOH	Yield	Reaction time	Temperature
		(g/mmol)	(mL/mmol)	(g/%)		
1	AG015	1.78/9.7	45/112	0.7/39	2 h	reflux
2	KA1.4	4.0/22	100/249	2.1/ 52	2 h	reflux
3	JWSTEP3TPC	1.5/8.2	75	0.4/28	2 h	reflux

Compound **10**:

Run	ID	SM	Red-Al [®]	Yield	Reaction	Temperature
		(g/mmol)	(mL/mmol)	(g/%)	time	
1	AG171	1.0/5.4	6/19.8	0.35/40	1.5 h	55 °C
2	KA2_1	2.0/10.8	12/39	1.6/ 87	1.5 h	55 °C

Compound 11:

Run	ID	SM*	Me(MeO)NH.HCl	Yield**	Reaction	Temperature
		(g/mmol)	(g/mmol)	(g/%)	time	
1	AG061	10/25.0	3.0/30	3.8/71	overnight	rt+50 °C
					+6 h	
2	AG064	13.2/33.5	3.9/40	3.1/44	48 h+6 h	rt+50 °C
3	AG095	24.7/62.8	7.3/75.4	6.7/50	48 h+6 h	rt+50 °C
4	AG119	37.1/94.0	11.0/113.0	5.6/28	overnight	rt+50 °C
					+6 h	
5	AG122	29.8/75.8	8.8/90.1	4.7/29	5 d	rt
6	AG163	33.5/85.2	9.9/101.6	13.0/ 65	7 d	rt

*SM refers to the intermediate compound from 7 to 8

**The yield is with respect to the starting material (over two steps)

Compound **12**:

Run	ID	SM	EDTA*	Na ₂ WO ₄ ·2H ₂ O	H ₂ O ₂	Yield	Reaction time	Temperat
		(g/mmol)	(g/mmol)	(g/mmol)	(mL/mmol)	(g/%)		ure
1	AG065	3.1/14.8	0.14/0.5	0.14/0.4	2.75/91	2.5/ 75	8 min then 48 h	rt then rt
2	AG096	6.7/31.6	0.33/1.0	0.30/0.9	6.3/211	3.9/55	8 min then 5 d	rt then rt
3	AG120	5.6/26.3	0.28/0.8	0.25/0.75	5.2/210	3.6/60	8 min then 8 d	rt then rt
4	AG123	4.7/22.3	0.24/0.7	0.21/0.64	4.4/147	3.3/65	8 min then 10 d	rt then rt
5	AG164	13.1/62	0.66/2.0	0.59/1.79	12/400	4.8/34	9 min then 8 d	rt then rt

*For AG065 EDTA was used, while for AG096, AG120, AG123 and AG164 Na₂ EDTA 2H₂O was used.

Compound	5	from	12 :
----------	---	------	-------------

Run	ID	SM	DIBAL*	Yield	Reaction	Temperature
		(g/mmol)	(mL/mmol)	(g/%)	time**	
1	AG066	2.5/11.0	11.3/13.6	1.4/75	50 min	−78 °C
2	AG098	3.9/17.4	18.0/21.6	2.8/ 95	45 min	−78 °C
3	AG124	3.6/15.9	19.6/19.6	1.2/47	35 min	−78 °C
4	AG147	3.3/14.6	18.0/18.0	0.3/12	35 min	−78 °C
5	AG165	4.8/20.9	21.0/25.2	2.4/69	35 min	−78 °C

* For AG066, AG098 and AG165 the concentration of DIBAL was 1.2 M, while for AG124, AG147 1.0 M ** Refers to DIBAL addition time and further stirring

Compound **5** from **10**:

Run	ID	SM C ₂ O ₂ Cl ₂		DMSO	Yield	Reaction	Temperature
		(g/mmol)	(mL/mmol)	(mL/mmol)	(g/%)	time	
1	JWTPAS2	0.4/2.4	0.25/2.6	0.4/5.6	0.2/ 56	15 min	−65 °C
2	KA2.2	1.6/9.4	0.93/10.3	1.6/22.4	0.7/44	15 min	-60 (to -53) °C

Compound 14:

Run	ID	SM	$CICH_2P(CI)(C_6H_5)_3$	<i>n</i> -BuLi*	Yield	Reaction	Temperature
		(g/mmol)	(g/mmol)	(mL/mmol)	(g/%)	time	
1	AG075	1.4/8.3	11.5/33.0	11.1/29.6	1.6/ 98	30 min	0 °C
2	AG099	1.9/11.4	15.7/45.2	18.2/41.7	0.3/15	45 min	0 °C
3	AG102	1.0/5.7	8.0/23.2	12.4/21	0.1/11	40 min	0 °C
4	AG166	2.4/14.5	5.5/15.9	9.5/16.1	3.0/96	2 h then 1 h	rt then 50 °C
5	KA5.1	0.25/1.5	0.6/1.6	1.0/1.6	0.15/49	2 h then 1 h	rt then 50 °C

* *n*-BuLi in hexanes in 2.5 $\,$ M concentation for AG075, 2.3 $\,$ M for AG099, 1.7 $\,$ M for AG102 and AG166 determined after titration with diphenylacetic acid

Compound 15:

Run	ID	SM	CBr ₄	PPh₃	Yield	Reaction time	Temperature
		(g/mmol)	(g/mmol)	(g/mmol)	(g/%)		
1	AG125	1.2/7.0	4.6/14.0	7.3/28.0	1.5/ 66	20 min then rt	0 °C then 1 h
2	JW01	0.07/0.4	0.3/0.8	0.4/1.7	0.03/6	15 min	0 °C
3	KA7.1b	0.25/1.5	1.0/3.0	1.6/6.0	0.06/12	15 min	0 °C

Compound 4 (TPA) from 14:

Run	ID	SM	KO ^t Bu (g/mmol)	Yield	Reaction	Temperature
		(g/mmol)		(g/%)	time	
1	AG100	0.3/1.6	0.5/4.1	0.06/22	55 °C	2 h
2	AG167	1.0/5.0	1.2/10.9	0.04/5	55 °C	2 h
3	AG169	0.3/1.6	0.5/4.1	0.03/11	55 °C	2 h
4	KA6.1	0.15/0.7	0.5/4.1	0.03/ 26	55 °C	2 h

Compound 4 (TPA) from 15:

Run	ID	SM	CBr ₄	Yield	Reaction time	Temperature
		(g/mmol)	(g/mmol)	(g/%)		
1	AG126	0.47/1.5	1.5/2.9	0.02/ 10	45 min then 3 h	-78 °C then rt