Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information for

Diastereoselective Synthesis of Tetrahydropyranes via Ag(I)-Catalyzed Dimerization of Cinnamyl Ethers

Davide Ruggeri, Elena Motti, Nicola Della Ca' and Giovanni Maestri

Table of contents

General remarks	3
Synthesis and characterization of substrates	6
Synthesis and characterization of products	10
NOESY NMR experiment	18
Copies of NMR spectra	19
XYZ coordinates	51
Comprehensive table in AU	66
References	67

General remarks

All chemicals were purchased from commercial sources and used as received. Solvents were dried passing through alumina columns using an Inert[®] system and were stored under nitrogen. Chromatographic purifications were performed under gradient or isocratic regimes using a Combiflash system and prepacked disposable silica cartridges. ¹H NMR and ¹³C NMR spectra were recorded at 300 K on Bruker 400 MHz spectrometer using the solvent as internal standard (7.26 ppm for ¹H NMR and 77.00 ppm for ¹³CNMR for CDCl₃). Reported assignments are based on decoupling, COSY, NOESY, HSQC, and HMBC correlation experiments. The terms m, s, d, t, q, and quint represent multiplet, singlet, doublet, triplet, quadruplet, and quintuplet, respectively, and the term br means a broad signal. Exact masses were recorded on an LTQ ORBITRAP XL Thermo Mass Spectrometer (electrospray source). Cinnamyl ethers **3a-m** were synthesized according to literature procedures.^{1–4} Spectroscopic data of **3a-c,e,g,i-l** correspond to those described in the literature.

Calculations were performed at the DFT level using Gaussian16.⁵ Optimization were performed without any constraint using the hybrid M06 functional described by Zhao and Truhlar⁶ in combination with the the Def2-SVP basis set described by Weigend and Ahlrichs.⁷ Solvated structures were modeled using DCM as implicit solvent through the use of the CPCM method introduced by Barone and Cossi.⁸ All values and geometries reported hereafter are those of freely optimized solvated structures, calculated at the M06/Def2-SVP level. All intermediates were characterized by the absence of any imaginary frequency in their Hessian matrix. All transition states were characterized by the presence of a single imaginary frequency in their Hessian matrix, which corresponds to the molecular vibration connecting the reactant with the product.

Synthesis and characterization of substrates

Synthesis of Diendiyne 1

To a stirred solution of 4-methylbenzenesulfonamide (260 mg, 1.52 mmol, 1 eq.) in acetone (16 mL) was added (E)-(3-((4-bromobut-2-yn-1-yl)oxy)prop-1-en-1-yl)benzene (807 mg, 3.04 mmol, 2.0 eq.) and K_2CO_3 (630 mg, 4.56 mmol, 3.0 eq.). The reaction mixture was stirred overnight under reflux. The mixture was quenched by addition of water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (*n*-hexane/ EtOAc, gradient).

General Procedure I for the Synthesis of Cynnamyl Ethers 3a-b, j

A solution of cinnamyl alcohol (387 μ L, 3 mmol, 1 equiv) in THF (5 mL) was added to a suspension of NaH (60% in mineral oil, 160 mg, 4 mmol, 1.3 equiv) in THF (10 mL). The resulting mixture was stirred for 30 min prior to the addition of the corresponding halide (4 mmol, 1.3 equiv). The mixture was then stirred at r.T. overnight. After completion, the reaction was quenched with NH₄Cl acqueous solution. The mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude was purified by chromatography on silica gel (*n*-hexane/ EtOAc, gradient).

General Procedure II for the Synthesis of Cynnamyl Ethers 3c-d, I

A solution of the desired alcohol (2.6 mmol, 1 equiv) in THF (4 mL) was added to a suspension of NaH (60% in mineral oil, 136 mg, 3.4 mmol, 1.3 equiv) in THF (8 mL). The resulting mixture was stirred for 30 min prior to the addition of cinnamyl bromide (3.4 mmol, 1.3 equiv). The mixture was then stirred at r.T. overnight. After completion, the reaction was quenched with NH₄Cl acqueous solution. The mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude was purified by chromatography on silica gel (*n*-hexane/ EtOAc, gradient).

General Procedure III for the Synthesis of Cynnamyl Ethers 3e, g, i, k, m

A solution of the desired alcohol (0.82 mmol, 1 equiv) in THF (4 mL) was added to a suspension of NaH (60% in mineral oil, 43 mg, 1.1 mmol, 1.3 equiv) in DMF (1 mL). The resulting mixture was stirred for 30 min prior to the addition of benzyl bromide (0.96 mmol, 1.1 equiv). The mixture was then stirred at r.T. overnight. After completion, the reaction was quenched with NH₄Cl acqueous solution. The mixture was extracted with diethyl ether. The combined organic layers were washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude was purified by chromatography on silica gel (*n*-hexane/ EtOAc, gradient).

General Procedure IV for the Synthesis of Cynnamyl Ethers 3h, f

A solution of the desired alcohol (1.32 mmol, 1 equiv) in THF (4 mL) was added to a suspension of NaH (60% in mineral oil, 79 mg, 1.97 mmol, 1.5 equiv) in DMF (4 mL). The resulting mixture was stirred for 30 min prior to the addition of 1-iodo propane (335 mg, 1.97 mmol, 1.5 equiv). The

mixture was then stirred at r.T. overnight. After completion, the reaction was quenched with NH₄Cl acqueous solution. The mixture was extracted with diethyl ether. The combined organic layers were washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude was purified by chromatography on silica gel (*n*-hexane/ EtOAc, gradient).

N,N-bis(4-(cinnamyloxy)but-2-yn-1-yl)-4-methylbenzenesulfonamide (1)

Diendiyne **1** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (552 mg, 1.02 mmol, 67%). The NMR data was consistent with previously reported spectra.⁹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.23 (m, 12H), 6.59 (d, *J* = 16.0 Hz, 2H), 6.22 (dt, *J* = 15.9, 6.2 Hz, 2H), 4.24 – 4.21 (m, 4H), 4.10 (dd, *J* = 6.2, 1.4 Hz, 4H), 4.06 – 4.03 (m, 4H), 2.37 (s, 3H).

(E)-(3-(benzyloxy)prop-1-en-1-yl)benzene (3a)

Following general procedure I, **3a** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (656 mg, 2.92 mmol, 78%). The NMR data was consistent with previously reported spectra.⁴ ¹H **NMR** (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 6H), 7.36 – 7.30 (m, 3H), 7.27 – 7.22 (m, 1H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.34 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.59 (s, 2H), 4.21 (dd, *J* = 6.0, 1.5 Hz, 2H).

(E)-(3-propoxyprop-1-en-1-yl)benzene (3b)

Following general procedure **I**, **3b** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (129 mg, 0.73 mmol, 33%). The NMR data was consistent with previously reported spectra.³ ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.34 – 7.29 (m, 2H), 7.27 – 7.21 (m, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.31 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.14 (dd, *J* = 6.0, 1.5 Hz, 2H), 3.45 (t, *J* = 6.7 Hz, 2H), 1.71 – 1.58 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

(E)-(3-ethoxyprop-1-en-1-yl)benzene (3c)

Following general procedure **II**, **3c** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (377 mg, 2.32 mmol, 70%). The NMR data was consistent with previously reported spectra.² ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.34 – 7.29 (m, 2H), 7.26 – 7.21 (m, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.31 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.15 (dd, *J* = 6.0, 1.5 Hz, 2H), 3.56 (q, *J* = 7.0 Hz, 2H), 1.25 (t, *J* = 7.0 Hz, 3H).

1-((cinnamyloxy)methyl)-4-methylbenzene) (3d)

Following general procedure II, **3d** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (563 mg, 2.36 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.36 – 7.23 (m, 5H), 7.21 – 7.15 (m, 2H), 6.64 (d, *J* = 16.0 Hz, 1H), 6.34 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.55 (s, 2H), 4.19 (dd, *J* = 6.0, 1.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.5 (Cq), 136.9 (Cq), 135.4 (Cq), 132.6 (CH), 129.2 (2CH), 128.7 (2CH), 128.1 (2CH), 127.8 (CH), 126.6 (2CH), 126.3 (CH), 72.2 (CH₂), 70.7 (CH₂), 21.3 (CH₃). **(ESI)-HRMS** calcd for C₁₇H₁₈O [M + Na]⁺ 261.1256, found 261.1249.

(E)-1-(3-(benzyloxy)prop-1-en-1-yl)-4-chlorobenzene (3e)

Following general procedure **III**, **3e** was isolated (silica gel, n-hexane/EtOAc, gradient) as a transparent oil (185 mg, 0.71 mmol, 87%). The NMR data was consistent with previously reported spectra.¹¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 4H), 7.33 – 7.26 (m, 5H), 6.59 (d, *J* = 15.9 Hz, 1H), 6.30 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.58 (s, 2H), 4.19 (dd, *J* = 5.9, 1.5 Hz, 2H).

(E)-1-chloro-4-(3-propoxyprop-1-en-1-yl)benzene (3f)

Following general procedure IV, **3f** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (105 mg, 0.50 mmol, 38%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 4H), 6.56 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.12 (dd, *J* = 5.9, 1.5 Hz, 2H), 3.44 (t, *J* = 6.7 Hz, 2H), 1.64 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.5 (Cq), 133.3 (Cq), 130.8 (CH), 128.8 (2CH), 127.8 (2CH), 127.3 (CH), 72.5 (CH₂), 71.3 (CH₂), 23.1 (CH₂), 10.8 (CH₃). **(ESI)-HRMS** calcd for C₁₂H₁₅ClO [M + Na]⁺ 233.0709, found 233.0711.

(E)-1-(3-(benzyloxy)prop-1-en-1-yl)-4-methylbenzene (3g)

Following general procedure III, **3g** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (144 mg, 0.60 mmol, 90%). The NMR data was consistent with previously reported spectra.^{1 1}**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 4H), 7.33 – 7.28 (m, 3H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.29 (dt, *J* = 15.9, 6.1 Hz, 1H), 4.58 (s, 2H), 4.20 (dd, *J* = 6.2, 1.4 Hz, 2H), 2.35 (s, 3H).

(E)-1-methyl-4-(3-propoxyprop-1-en-1-yl)benzene (3h)

Following general procedure **IV**, **3h** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (53 mg, 0.28 mmol, 28%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.27 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.15 (dd, *J* = 6.0, 1.5 Hz, 2H), 3.47 (t, *J* = 6.7 Hz, 2H), 2.36 (s, 3H), 1.74 – 1.60 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.4 (Cq), 134.3 (Cq), 132.1 (CH), 129.3 (2CH), 126.5 (2CH), 125.7 (CH), 72.2 (CH₂), 71.6 (CH₂), 23.1 (CH₂), 21.2 (CH₃), 10.7 (CH₃). **(ESI)-HRMS** calcd for C₁₃H₁₈O [M + Na]⁺ 213.1256, found 213.1250.

(E)-1-(3-(benzyloxy)prop-1-en-1-yl)-4-bromobenzene (3i)

Following general procedure III, **3i** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (132 mg, 0.44 mmol, 87%). The NMR data was consistent with previously reported spectra.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.5 Hz, 2H), 7.39 – 7.28 (m, 5H), 7.27 – 7.23 (m, 2H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.32 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.58 (s, 2H), 4.19 (dd, *J* = 5.9, 1.5 Hz, 2H).

1-bromo-4-((cinnamyloxy)methyl)benzene (3j)

Following general procedure I, **3j** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (681 mg, 2.25 mmol, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.31 (m, 2H), 7.30 – 7.23 (m, 3H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.33 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.53 (s, 2H), 4.20 (dd, *J* = 6.1, 1.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.5 (Cq), 136.7 (Cq), 132.9 (CH), 131.6 (2CH), 129.5 (2CH), 128.7 (2CH), 127.9 (CH), 126.6 (2CH), 125.9 (CH), 121.6 (Cq), 71.5 (CH₂), 71.0 (CH₂). **(ESI)-HRMS** calcd for C₁₆H₁₅BrO [M + Na]⁺ 325.0204, found 325.0201.

(E)-(3-(benzyloxy)but-1-en-1-yl)benzene (3k)

Following general procedure **III**, **3k** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (432 mg, 1.81 mmol, 60%). The NMR data was consistent with previously reported spectra.¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.39 – 7.32 (m, 6H), 7.31 – 7.24 (m, 2H), 6.56 (d, *J* = 16.0 Hz, 1H), 6.19 (dd, *J* = 15.9, 7.7 Hz, 1H), 4.63 (d, *J* = 11.9 Hz, 1H), 4.46 (d, *J* = 12.1 Hz, 1H), 4.12 (p, *J* = 6.4 Hz, 1H), 1.40 (d, *J* = 6.4 Hz, 3H).

(E)-(3-(cyclopropylmethoxy)prop-1-en-1-yl)benzene (3l)

Following general procedure II, **3I** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (360 mg, 1.91 mmol, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.31 (dt, *J* = 15.9, 6.1 Hz, 1H), 4.17 (dd, *J* = 6.1, 1.5 Hz, 2H), 3.33 (d, *J* = 6.9 Hz, 2H), 1.16 – 1.05 (m, 1H), 0.61 – 0.51 (m, 2H), 0.26 – 0.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 136.9 (Cq), 132.4 (CH), 128.7 (2CH), 127.8 (CH), 126.6 (2CH), 126.5 (CH), 75.2 (CH₂), 71.3 (CH₂), 10.8 (CH), 3.2 (2CH₂). **(ESI)-HRMS** calcd for C₁₃H₁₆O [M + Na]⁺ 211.1100, found 211.1105.

(E)-1-(3-(benzyloxy)prop-1-en-1-yl)-3-methylbenzene (3m)

Following general procedure **III**, **3m** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (263 mg, 1.10 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 7.21 (dd, J = 4.7, 1.7 Hz, 3H), 7.11 – 7.04 (m, 1H), 6.61 (d, J = 15.9 Hz, 1H), 6.33 (dt, J = 15.9, 6.0 Hz, 1H), 4.58 (s, 2H), 4.21 (dd, J = 6.1, 1.5 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4 (Cq), 138.2 (Cq), 136.8 (Cq), 132.8 (CH), 128.62 (CH), 128.59 (CH), 128.56 (2CH), 127.9 (2CH), 127.8 (CH), 127.4 (CH), 126.0 (CH), 123.8 (CH), 72.2 (CH₂), 70.9 (CH₂), 21.5 (CH₃). **(ESI)-HRMS** calcd for C₁₇H₁₈O [M + Na]⁺ 261.1256, found 261.1258.

1-((cinnamyloxy)methyl-d2)benzene-2,3,4,5,6-d5 (7d-3a)

Following general procedure I, 7*d*-**3a** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a transparent oil (522 mg, 2.26 mmol, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.35 – 7.29 (m, 2H), 7.27 – 7.22 (m, 1H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.34 (dt, *J* = 15.9, 6.0 Hz, 1H), 4.21 (dd, *J* = 6.0, 1.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1 (Cq), 136.9 (Cq), 132.7 (CH), 128.7 (2CH), 127.8 (CH), 126.6 (2CH), 126.2 (CH), 70.8 (CH₂). **(ESI)-HRMS** calcd for C₁₆H₉D₇O [M + Na]+ 254.1538, found 254.1535.

Synthesis and characterization of products

Catalytic Synthesis of 2

A solution of **1** (81.0 mg, 0.15 mmol, 1 equiv) in DCM (45 mL) was stirred under nitrogen in a Schlenktype flask equipped with a magnetic stirring bar and a septum. $AgSbF_6$ (5.2 mg, 0.015 mmol, 10 mol %) was added and the reaction's conversion was monitored by TLC. Upon complete conversion of the substrate, the mixture was directly purified by chromatography on silica gel (*n*-hexane/EtOAc, gradient).

Catalytic Synthesis I (4a-d, f-h, j-m, d14-4a)

A solution of the desired substrate (0.4 mmol, 1 equiv) in DCM (4 mL) was stirred under nitrogen in a Schlenk-type flask equipped with a magnetic stirring bar and a septum. AgSbF₆ (6.9 mg, 0.02 mmol, 5 mol %) was added and the reaction's conversion was monitored by TLC. Upon complete conversion of the substrate, the mixture was directly purified by chromatography on silica gel (*n*-exane/EtOAc, gradient).

Catalytic Synthesis II (4e, i)

A solution of the desired substrate (0.4 mmol, 1 equiv) in DCM (4 mL) was stirred under nitrogen in a Schlenk-type flask equipped with a magnetic stirring bar and a septum. AgSbF₆ (20.6 mg, 0.06 mmol, 15 mol %) was added in three different batches (5 mol % each). The reaction's conversion was monitored by TLC. Upon complete conversion of the substrate, the mixture was directly purified by chromatography on silica gel (*n*-hexane/EtOAc, gradient).

3-cinnamyl-2-phenyl-10-tosyl-1,5-dioxa-10-azacyclotetradeca-7,12-diyne (2)

Macrocycle **2** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (26.8 mg, 0.050 mmol, 33% yield) from starting material **1** (81 mg, 0.15 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.39 – 7.14 (m, 12H), 6.18 (d, *J* = 15.8 Hz, 1H), 5.93 (ddd, *J* = 15.8, 7.8, 6.2 Hz, 1H), 4.48 (d, *J* = 8.9 Hz, 1H), 4.36 (dd, *J* = 17.6, 6.5 Hz, 2H), 4.30 – 4.23 (m, 1H), 4.19 – 4.10 (m, 2H), 4.04 (dd, *J* = 8.7, 1.7 Hz, 1H), 3.95 (dd, *J* = 16.5, 1.3 Hz, 1H), 3.78 (d, *J* = 16.4, 1H), 3.59 (d, *J* = 16.5, 1H), 3.31 (dd, *J* = 8.7, 3.4 Hz, 1H), 2.43 (s, 3H), 2.04 – 1.88 (m, 2H), 1.70 – 1.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0 (Cq), 139.7 (Cq), 137.8 (Cq), 134.9 (Cq), 131.5 (CH), 129.6 (2CH), 128.62 (2CH), 128.57 (2CH), 128.46 (CH), 128.29 (CH), 128.25 (2CH), 128.0 (2CH), 127.1 (CH), 126.0 (2CH), 83.9 (Cq), 83.6 (Cq), 80.1 (CH), 79.3 (Cq), 79.0 (Cq), 67.6 (CH₂), 58.3 (CH₂), 55.5 (CH₂), 45.4 (CH), 38.03 (CH₂), 37.99 (CH₂), 31.0 (CH₂), 21.7 (CH₃). **(ESI)-HRMS** calcd for C₃₃H₃₃NO₄S [M + Na]⁺ 562.2130, found 562.2137.

(±)(2R,3R,5R)-5-benzyl-3-((S)-(benzyloxy)(phenyl)methyl)-2-phenyltetrahydro-2H-pyran (4a)

Following catalytic synthesis I, 4a was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (40.0 mg, 0.178 mmol, 60% yield, *dr* 73:27 based on ¹H NMR integration) from starting material **3a** (100 mg, 0.45 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 13H), 7.29 – 7.22 (m, 3H), 7.20 – 7.10 (m, 4H), 4.54 (d, *J* = 10.0 Hz, 1H), 4.40 (d, *J* = 11.5 Hz, 1H), 4.14 – 4.11 (m, 1H), 4.11 – 4.06 (m, 1H), 3.94 (ddd, *J* = 11.1, 4.3, 1.7 Hz, 1H), 3.28 (t, *J* = 11.1 Hz, 1H), 2.57 (dd, *J* = 13.7, 5.9 Hz, 1H), 2.43 (dd, *J* = 13.7, 8.5 Hz, 1H), 1.99 – 1.81 (m, 2H), 1.73 – 1.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3 (Cq), 140.3 (Cq), 139.9 (Cq), 138.7 (Cq), 128.9 (2CH), 128.7 (2CH), 128.5 (2CH), 128.34 (2CH), 128.27 (2CH), 128.1 (CH), 127.71 (2CH), 127.69 (CH), 127.62 (2CH), 127.2 (CH), 126.7 (2CH), 126.1 (CH), 83.2 (CH), 80.2 (CH), 73.2 (CH₂), 71.0 (CH₂), 49.9 (CH), 39.6 (CH₂), 38.3 (CH), 29.1 (CH₂). **(ESI)-HRMS** calcd for C₃₂H₃₂O₂ [M + Na]⁺ 471.2300, found 471.2309.

(±)(2S,3R,5R)-5-benzyl-2-ethyl-3-((S)-phenyl(propoxy)methyl)tetrahydro-2H-pyran (4b)

Following catalytic synthesis **I**, **4b** was isolated (silica gel, n-hexane/EtOAc, gradient) as a white solid (32.1 mg, 0.182 mmol, 73% yield, *dr* 90:10 based on ¹H NMR integration) from starting material **3b** (44 mg, 0.25 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 2H), 7.25 – 7.16 (m, 5H), 7.16 – 7.08 (m, 1H), 7.03 (d, *J* = 7.4 Hz, 2H), 4.48 (br s, 1H), 3.76 (dd, *J* = 11.2, 4.5 Hz, 1H), 3.45 – 3.34 (m, 2H), 3.15 – 3.07 (m, 1H), 3.02 (t, *J* = 11.1 Hz, 1H), 2.46 (dd, *J* = 13.6, 5.8 Hz, 1H), 2.30 (dd, *J* = 13.6, 8.6 Hz, 1H), 1.97 – 1.84 (m, 1H), 1.68 – 1.48 (m, 5H), 1.46 – 1.38 (m, 1H), 1.37 – 1.28 (m, 1H), 1.02 (t, *J* = 7.3 Hz, 3H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1 (Cq), 140.1 (Cq), 128.9 (2CH), 128.3 (2CH), 128.2 (2CH), 127.0 (CH), 126.8 (2CH), 125.9 (CH), 80.9 (CH), 80.0 (CH), 72.7 (CH₂), 71.5 (CH₂), 46.8 (CH), 39.6 (CH₂), 38.4 (CH), 29.4 (CH₂), 25.8 (CH₂), 23.3 (CH₂), 11.0 (CH₃), 9.7 (CH₃). **(ESI)-HRMS** calcd for C₂₄H₃₂O₂ [M + Na]⁺ 375.2300, found 375.2298.

(±)(2S,3R,5R)-5-benzyl-3-((S)-ethoxy(phenyl)methyl)-2-methyltetrahydro-2H-pyran (4c)

Following catalytic synthesis **I**, **4c** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (42.2 mg, 0.260 mmol, 65% yield, *dr* 86:14 based on ¹H NMR integration) from starting material **3c**

(65 mg, 0.40 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 7.25 – 7.17 (m, 5H), 7.15 – 7.07 (m, 1H), 7.06 – 7.01 (m, 2H), 4.49 (d, *J* = 2.3 Hz, 1H), 3.73 (ddd, *J* = 11.0, 4.3, 1.9 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.51 – 3.43 (m, 1H), 3.31 – 3.20 (m, 1H), 3.06 (t, *J* = 11.1 Hz, 1H), 2.45 (dd, *J* = 13.6, 5.9 Hz, 1H), 2.31 (dd, *J* = 13.7, 8.6 Hz, 1H), 1.76 – 1.65 (m, 1H), 1.44 – 1.38 (m, 2H), 1.35 (d, *J* = 6.1 Hz, 3H), 1.32 – 1.25 (m, 1H), 1.20 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0 (Cq), 140.0 (Cq), 128.9 (2CH), 128.3 (2CH), 128.2 (2CH), 127.1 (CH), 126.7 (2CH), 126.0 (CH), 81.0 (CH), 75.4 (CH), 72.6 (CH₂), 65.1 (CH₂), 49.5 (CH), 39.6 (CH₂), 38.3 (CH), 29.3 (CH₂), 19.8 (CH₃), 15.5 (CH₃). **(ESI)-HRMS** calcd for C₂₂H₂₈O₂ [M + Na]⁺ 347.1987, found 347.1981.

(±)(2R,3R,5R)-5-benzyl-3-((S)-((4-methylbenzyl)oxy)(phenyl)methyl)-2-(p-tolyl)tetrahydro-2Hpyran (4d)

Following catalytic synthesis **I**, **4d** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (24.4 mg, 0.102 mmol, 26% yield, *dr* 86:14 based on ¹H NMR integration) from starting material **3d** (95 mg, 0.40 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.01 (m, 18H), 4.45 (d, *J* = 9.9 Hz, 1H), 4.30 (d, *J* = 11.2 Hz, 1H), 4.08 (d, *J* = 2.2 Hz, 1H), 3.99 (d, *J* = 11.3 Hz, 1H), 3.92 – 3.83 (m, 1H), 3.21 (t, *J* = 11.1 Hz, 1H), 2.51 (dd, *J* = 13.7, 5.8 Hz, 1H), 2.41 (s, 3H), 2.40 – 2.36 (m, 1H), 2.36 (s, 3H), 1.91 – 1.76 (m, 2H), 1.66 – 1.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5 (Cq), 140.0 (Cq), 138.3 (Cq), 137.7 (Cq), 137.4 (Cq), 135.7 (Cq), 129.3 (2CH), 129.2 (2CH), 128.9 (2CH), 128.3 (2CH), 128.2 (2CH), 127.9 (2CH), 127.5 (2CH), 127.1 (CH), 126.7 (2CH), 126.0 (CH), 83.0 (CH), 80.2 (CH), 73.2 (CH₂), 71.0 (CH₂), 49.8 (CH), 39.6 (CH₂), 38.3 (CH), 29.1 (CH₂), 21.4 (2CH₃). **(ESI)-HRMS** calcd for C₃₄H₃₆O₂ [M + Na]⁺ 499.2613, found 499.2611.

(±)(2R,3R,5R)-3-((S)-(benzyloxy)(4-chlorophenyl)methyl)-5-(4-chlorobenzyl)-2-phenyltetrahydro-2H-pyran (4e)

Following catalytic synthesis **II**, **4e** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (50.3 mg, 0.194 mmol, 50% yield, *dr* 90:10 based on ¹H NMR integration) from starting material **3e** (101 mg, 0.39 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.26 (m, 12H), 7.24 – 7.19 (m, 2H), 7.07 – 7.00 (m, 4H), 4.47 (d, *J* = 10.0 Hz, 1H), 4.33 (d, *J* = 11.3 Hz, 1H), 4.10 – 4.01 (m, 2H), 3.93 – 3.86 (m, 1H), 3.23 (t, *J* = 11.1 Hz, 1H), 2.50 (dd, *J* = 13.8, 5.9 Hz, 1H), 2.39 (dd, *J* = 13.8, 8.4 Hz, 1H), 1.92 – 1.73 (m, 2H), 1.64 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0 (Cq), 138.8 (Cq), 138.3 (Cq), 138.2 (Cq), 133.0 (Cq), 131.9 (Cq), 130.2 (2CH), 128.8 (2CH), 128.6 (2CH), 128.53 (2CH), 128.51 (2CH), 128.3 (CH), 128.0 (2CH), 127.9 (CH), 127.7 (2CH), 127.6 (2CH), 83.1 (CH), 79.6 (CH), 73.0 (CH₂), 71.2 (CH₂),

49.8 (CH), 38.8 (CH₂), 38.1 (CH), 29.0 (CH₂). **(ESI)-HRMS** calcd for $C_{32}H_{30}Cl_2O_2$ [M + Na]⁺ 539.1521, found 539.1515.

(±)(2S,3R,5R)-5-(4-chlorobenzyl)-3-((S)-(4-chlorophenyl)(propoxy)methyl)-2-ethyltetrahydro-2H-pyran (4f)

Following catalytic synthesis I, **4f** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (20.1 mg, 0.095 mmol, 38% yield, *dr* 93:7 based on ¹H NMR integration) from starting material **3f** (52 mg, 0.25 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.20 – 7.11 (m, 4H), 6.99 – 6.94 (m, 2H), 4.45 (d, *J* = 2.6 Hz, 1H), 3.74 (ddd, *J* = 11.1, 4.4, 2.0 Hz, 1H), 3.42 – 3.32 (m, 2H), 3.15 – 3.06 (m, 1H), 3.00 (t, *J* = 11.1 Hz, 1H), 2.41 (dd, *J* = 13.7, 5.9 Hz, 1H), 2.28 (dd, *J* = 13.8, 8.6 Hz, 1H), 1.94 – 1.82 (m, 1H), 1.65 – 1.43 (m, 5H), 1.34 – 1.23 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6 (Cq), 138.4 (Cq), 132.7 (Cq), 131.8 (Cq), 130.2 (2CH), 128.4 (4CH), 128.0 (2CH), 80.3 (CH), 79.9 (CH), 72.5 (CH₂), 71.6 (CH₂), 46.7 (CH), 38.9 (CH₂), 38.3 (CH), 29.2 (CH₂), 25.7 (CH₂), 23.3 (CH₂), 11.0 (CH₃), 9.7 (CH₃). **(ESI)-HRMS** calcd for C₂₄H₃₀Cl₂O₂ [M + Na]⁺ 443.1521, found 443.1522.

(±)(2R,3R,5R)-3-((S)-(benzyloxy)(p-tolyl)methyl)-5-(4-methylbenzyl)-2-phenyltetrahydro-2Hpyran (4g)

Following catalytic synthesis I, 4g was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (29.0 mg, 0.122 mmol, 22% yield, *dr* 87:13 based on ¹H NMR integration) from starting material **3g** (129 mg, 0.54 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 10H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.07 – 6.95 (m, 6H), 4.48 (d, *J* = 9.9 Hz, 1H), 4.35 (d, *J* = 11.6 Hz, 1H), 4.07 – 3.98 (m, 2H), 3.93 – 3.85 (m, 1H), 3.22 (t, *J* = 11.1 Hz, 1H), 2.51 (dd, *J* = 13.7, 5.5 Hz, 1H), 2.39 – 2.32 (m, 1H), 2.33 (s, 3H), 2.29 (s, 3H), 1.89 – 1.76 (m, 2H), 1.73 – 1.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4 (Cq), 138.9 (Cq), 137.3 (Cq), 136.88 (Cq), 136.84 (Cq), 135.5 (Cq), 129.04 (2CH), 128.99 (2CH), 128.8 (2CH), 128.7 (2CH), 128.5 (2CH), 128.1 (CH), 127.71 (2CH), 127.65 (3CH), 126.7 (2CH), 83.2 (CH), 80.1 (CH), 73.3 (CH₂), 70.9 (CH₂), 49.9 (CH), 39.2 (CH₂), 38.3 (CH), 29.2 (CH₂), 21.2 (CH₃), 21.1 (CH₃). **(ESI)-HRMS** calcd for C₃₄H₃₆O₂ [M + Na]⁺ 499.2613, found 499.2618.

(±)(2S,3R,5R)-2-ethyl-5-(4-methylbenzyl)-3-((S)-propoxy(p-tolyl)methyl)tetrahydro-2H-pyran (4h)

Following catalytic synthesis I, **4h** was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (25.5 mg, 0.134 mmol, 52% yield, *dr* 88:12 based on ¹H NMR integration) from starting material **3h** (50 mg, 0.26 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.07 (m, 4H), 7.03 – 6.98 (m, 2H), 6.95 – 6.89 (m, 2H), 4.45 (d, *J* = 2.5 Hz, 1H), 3.76 (ddd, *J* = 11.0, 4.3, 2.0 Hz, 1H), 3.46 – 3.33 (m, 2H), 3.14 – 3.06 (m, 1H), 3.00 (t, *J* = 11.1 Hz, 1H), 2.43 (dd, *J* = 13.7, 5.5 Hz, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 2.27 – 2.18 (m, 1H), 1.90 (ddd, *J* = 14.2, 7.4, 2.8 Hz, 1H), 1.65 – 1.49 (m, 4H), 1.49 – 1.41 (m, 2H), 1.36 – 1.27 (m, 1H), 1.01 (t, *J* = 7.5 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0 (Cq), 137.0 (Cq), 136.6 (Cq), 135.3 (Cq), 128.94 (2CH), 128.87 (2CH), 128.78 (2CH), 126.8 (2CH), 80.9 (CH), 80.0 (CH), 72.8 (CH₂), 71.4 (CH₂), 46.8 (CH), 39.2 (CH₂), 38.5 (CH), 29.5 (CH₂), 25.8 (CH₂), 23.3 (CH₂), 21.3 (CH₃), 21.1 (CH₃), 11.0 (CH₃), 9.7 (CH₃). **(ESI)-HRMS** calcd for C₂₆H₃₆O₂ [M + Na]⁺ 403.2613, found 403.2608.

Following catalytic synthesis II, 4i was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (45.2 mg, 0.149 mmol, 38% yield, *dr* 92:8 based on ¹H NMR integration) from starting material **3i** (118 mg, 0.39 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 14H), 6.97 (dd, *J* = 8.4, 3.1 Hz, 4H), 4.46 (d, *J* = 9.9 Hz, 1H), 4.32 (d, *J* = 11.3 Hz, 1H), 4.07 – 4.02 (m, 2H), 3.92 – 3.85 (m, 1H), 3.22 (t, *J* = 11.1 Hz, 1H), 2.49 (dd, *J* = 13.8, 5.9 Hz, 1H), 2.37 (dd, *J* = 13.8, 8.4 Hz, 1H), 1.90 – 1.74 (m, 2H), 1.63 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9 (Cq), 139.3 (Cq), 138.7 (Cq), 138.3 (Cq), 131.5 (4CH), 130.6 (2CH), 128.8 (2CH), 128.6 (2CH), 128.35 (2CH), 128.27 (CH), 127.9 (CH), 127.7 (2CH), 127.6 (2CH), 83.1 (CH), 79.6 (CH), 73.0 (CH₂), 71.2 (CH₂), 49.7 (CH), 38.9 (CH₂), 38.1 (CH), 29.0 (CH₂). **(ESI)-HRMS** calcd for C₃₃H₃₂Br₂O₂ [M + Na]⁺ 641.0667, found 641.0664.

(±)(2R,3R,5R)-5-benzyl-3-((S)-((4-bromobenzyl)oxy)(phenyl)methyl)-2-(4bromophenyl)tetrahydro-2H-pyran (4j/4j')

Following catalytic synthesis I, 4j (50.1 mg, 0.165 mmol, 41% yield) and 4j' (14.8 mg, 0.049 mmol, 12% yield) were isolated (silica gel, n-hexane/EtOAc, gradient) as white solids from starting material **3j** (121 mg, 0.40 mmol). **4j**: ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.11 (m, 8H), 7.09 – 7.05 (m, 4H), 4.39 (d, J = 9.9 Hz, 1H), 4.33 (d, J = 11.8 Hz, 1H), 4.02 (d, J = 2.3 Hz, 1H), 3.96 (d, J = 11.9 Hz, 1H), 3.88 (ddd, J = 11.2, 4.3, 1.9 Hz, 1H), 3.21 (t, J = 11.2 Hz, 1H), 2.53 (dd, J = 13.7, 5.9 Hz, 1H), 2.40 (dd, J = 13.6, 8.5 Hz, 1H), 1.90 - 1.82 (m, 1H), 1.80 - 1.72 (m, 1H), 1.70 - 1.63 (m, 1H), 1.63 - 1.54 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.2 (Cq), 139.7 (Cq), 139.7 (Cq), 137.4 (Cq), 131.8 (2CH), 131.7 (2CH), 129.5 (2CH), 129.3 (2CH), 128.9 (2CH), 128.4 (4CH), 127.5 (CH), 126.7 (2CH), 126.1 (CH), 122.0 (Cq), 121.7 (Cq), 82.4 (CH), 80.1 (CH), 73.2 (CH₂), 70.2 (CH₂), 49.7 (CH), 39.5 (CH₂), 38.2 (CH), 29.1 (CH₂). (ESI)-HRMS calcd for C₃₂H₃₀Br₂O₂ [M + Na]⁺ 627.0511, found 627.0514. **4j'**: ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.22 – 7.16 (m, 4H), 7.12 – 7.06 (m, 4H), 6.84 (d, J = 8.4 Hz, 2H), 4.13 (d, J = 11.8 Hz, 1H), 4.02 (d, J = 4.7 Hz, 1H), 3.90 – 3.80 (m, 3H), 3.03 (t, J = 11.1 Hz, 1H), 2.46 (dd, J = 13.7, 6.5 Hz, 1H), 2.40 - 2.33 (m, 1H), 2.09 - 1.99 (m, 1H), 1.97 - 1.90 (m, 1H), 1.66 -1.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0 (Cq), 139.5 (Cq), 138.8 (Cq), 137.2 (Cq), 131.7 (2CH), 131.4 (2CH), 129.9 (2CH), 129.2 (2CH), 129.0 (2CH), 128.4 (2CH), 128.3 (2CH), 127.9 (CH), 127.8 (2CH), 126.2 (CH), 122.1 (Cq), 121.4 (Cq), 82.9 (CH), 81.5 (CH), 73.4 (CH₂), 69.6 (CH₂), 46.9 (CH), 39.3 (CH₂), 37.9 (CH), 32.7 (CH₂). **(ESI)-HRMS** calcd for C₃₂H₃₀Br₂O₂ [M + Na]⁺ 627.0511, found 627.0515.

(±)(3S,5S,6R)-3-benzyl-5-((S)-(benzyloxy)(phenyl)methyl)-2,4-dimethyl-6-phenyltetrahydro-2Hpyran (4k/4k')

Following catalytic synthesis I, 4k (26.1 mg, 0.110 mmol, 22% yield, *dr* 80:20 based on ¹H NMR integration) and 4k' (21.8 mg, 0.091 mmol, 18% yield, *dr* 70:30 based on ¹H NMR integration) were isolated (silica gel, *n*-hexane/EtOAc, gradient) as white solids from starting material 3k (119 mg, 0.50 mmol). 4k: ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.42 – 7.28 (m, 10H), 7.25 – 7.18 (m, 4H), 7.15 – 7.09 (m, 2H), 7.06 – 6.98 (m, 4H), 6.81 – 6.75 (m, 2H), 5.00 (d, *J* = 10.4 Hz, 1H), 4.33 – 4.24 (m, 2H), 4.07 (d, *J* = 3.5 Hz, 1H), 3.84 (d, *J* = 11.7 Hz, 1H), 2.91 (dd, *J* = 13.8, 4.1 Hz, 1H), 2.70 – 2.56 (m, 1H), 2.31 (dt, *J* = 10.4, 3.7 Hz, 1H), 1.32 (d, *J* = 7.1 Hz, 2H), 1.26 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8 (Cq), 141.2 (Cq), 140.0 (Cq), 139.2 (Cq), 129.1 (2CH), 128.7 (2CH), 128.4 (2CH), 128.3 (2CH), 128.1 (CH), 71.4 (CH₂), 70.3 (CH), 48.9 (CH), 47.6 (CH), 32.3 (CH₂), 28.0

(CH), 19.5 (CH₃), 17.3 (CH₃). **(ESI)-HRMS** calcd for $C_{34}H_{36}O_2$ [M + Na]⁺ 499.2613, found 499.2617. **4k** ': **¹H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 7.22 – 7.14 (m, 9H), 7.09 – 7.06 (m, 2H), 6.89 – 6.85 (m, 2H), 6.80 – 6.75 (m, 2H), 4.76 (d, *J* = 10.3 Hz, 1H), 4.23 – 4.17 (m, 1H), 4.07 (d, *J* = 6.0 Hz, 1H), 3.94 (d, *J* = 11.1 Hz, 1H), 3.79 (d, *J* = 11.2 Hz, 1H), 3.02 (dd, *J* = 14.1, 4.7 Hz, 1H), 2.86 (dd, *J* = 14.1, 11.2 Hz, 1H), 2.71 – 2.63 (m, 1H), 1.70 – 1.63 (m, 1H), 1.61 – 1.55 (m, 1H), 1.23 (d, *J* = 6.5 Hz, 3H), 1.03 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 142.8 (Cq), 141.4 (Cq), 140.6 (Cq), 138.4 (Cq), 129.3 (2CH), 128.5 (2CH), 128.1 (2CH), 128.0 (2CH), 127.9 (2CH), 127.8 (2CH), 127.46 (2CH), 127.43 (CH), 127.37 (2CH), 127.1 (CH), 126.9 (CH), 125.9 (CH), 83.1 (CH), 79.4 (CH), 70.08 (CH), 70.05 (CH₂), 47.4 (CH), 45.1 (CH), 32.4 (CH), 32.2 (CH₂), 19.4 (CH₃), 14.8 (CH₃). **(ESI)-HRMS** calcd for C₃₄H₃₆O₂ [M + Na]⁺ 499.2613, found 499.2619.

(±)(2S,3R,5R)-5-benzyl-2-cyclopropyl-3-((S)-(cyclopropylmethoxy)(phenyl)methyl)tetrahydro-2Hpyran (4I)

Following catalytic synthesis **I**, **4I** was isolated (silica gel, n-hexane/EtOAc, gradient) as a white solid (45.5 mg, 0.242 mmol, 40% yield, *dr* 87:13 based on ¹H NMR integration) from starting material **3I** (115 mg, 0.61 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.27 – 7.15 (m, 5H), 7.12 (d, *J* = 7.3 Hz, 1H), 7.06 – 6.99 (m, 2H), 4.87 (d, *J* = 2.3 Hz, 1H), 3.77 (ddd, *J* = 11.1, 4.4, 2.1 Hz, 1H), 3.20 – 3.07 (m, 2H), 3.02 (t, *J* = 11.1 Hz, 1H), 2.78 (t, *J* = 9.1 Hz, 1H), 2.46 (dd, *J* = 13.7, 5.9 Hz, 1H), 2.31 (dd, *J* = 13.7, 8.5 Hz, 1H), 1.72 – 1.61 (m, 1H), 1.62 – 1.58 (m, 1H), 1.50 – 1.45 (m, 1H), 1.38 (t, *J* = 12.3 Hz, 1H), 1.07 – 1.00 (m, 1H), 0.99 – 0.92 (m, 1H), 0.73 – 0.64 (m, 1H), 0.63 – 0.55 (m, 1H), 0.55 – 0.46 (m, 2H), 0.47 – 0.38 (m, 2H), 0.18 – 0.11 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1 (Cq), 140.0 (Cq), 128.9 (2CH), 128.3 (2CH), 128.2 (2CH), 127.0 (CH), 126.9 (2CH), 126.0 (CH), 83.8 (CH), 80.3 (CH), 73.6 (CH₂), 72.9 (CH₂), 49.5 (CH), 39.5 (CH₂), 38.2 (CH), 28.8 (CH₂), 14.9 (CH), 11.0 (CH), 4.5 (CH₂), 3.2 (CH₂), 3.1 (CH₂), 1.9 (CH₂). **(ESI)-HRMS** calcd for C₂₆H₃₂O₂ [M + Na]⁺ 399.2300, found 399.2307.

(±)(2R,3R,5R)-3-((S)-(benzyloxy)(m-tolyl)methyl)-5-(3-methylbenzyl)-2-phenyltetrahydro-2Hpyran (4m)

Following catalytic synthesis I, 4m was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (50.4 mg, 0.211 mmol, 53% yield, *dr* 87:13 based on ¹H NMR integration) from starting material **3m** (95 mg, 0.40 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.30 (m, 10H), 7.24 – 7.18 (m, 1H), 7.17 – 7.11 (m, 1H), 7.08 – 7.03 (m, 1H), 7.00 – 6.88 (m, 5H), 4.52 (d, *J* = 9.9 Hz, 1H), 4.39 (d, *J* = 11.4 Hz, 1H), 4.10 – 4.02 (m, 2H), 3.98 – 3.90 (m, 1H), 3.26 (t, *J* = 11.1 Hz, 1H), 2.51 (dd, *J* = 13.8, 5.8 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.34 (s, 3H), 2.31 (s, 3H), 1.94 – 1.79 (m, 2H), 1.76 – 1.54 (m, 2H). ¹³C NMR (101

MHz, CDCl₃) δ 141.3 (Cq), 140.3(Cq), 139.9 (Cq), 138.9 (Cq), 137.87 (Cq), 137.84 (Cq), 129.8 (CH), 128.7 (2CH), 128.5 (2CH), 128.2 (CH), 128.12 (CH), 128.06 (CH), 127.99 (CH), 127.70 (2CH), 127.66 (CH), 127.64 (2CH), 127.4 (CH), 126.7 (CH), 126.0 (CH), 123.8 (CH), 83.2 (CH), 80.3 (CH), 73.4 (CH₂), 71.0 (CH₂), 49.8 (CH), 39.5 (CH₂), 38.3 (CH), 29.2 (CH₂), 21.6 (CH₃), 21.5 (CH₃). **(ESI)-HRMS** calcd for C₃₄H₃₆O₂ [M + Na]⁺ 499.2613, found 499.2609.

(±)(2R,3S,5R)-2-(phenyl-d5)-3-((S)-phenyl((phenyl-d5)methoxy-d2)methyl)-5-(phenylmethyl-d)tetrahydro-2H-pyran-2-d (*d14*-4a)

Following catalytic synthesis I, *d14-4a* was isolated (silica gel, *n*-hexane/EtOAc, gradient) as a white solid (58.5 mg, 0.25 mmol, 58% yield, *dr* 83:17 based on ¹H NMR integration) from starting material *d7-***3a** (100 mg, 0.43 mmol). ¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.11 (m, 10H), 4.11 (d, *J* = 2.2 Hz, 1H), 3.94 (ddd, *J* = 11.2, 4.3, 1.7 Hz, 1H), 3.28 (t, *J* = 11.1 Hz, 1H), 2.55 (d, *J* = 5.7 Hz, 1H), 1.95 – 1.84 (m, 1H), 1.74 – 1.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0 (Cq), 140.3 (Cq), 139.9 (Cq), 138.4 (Cq), 128.9 (2CH), 128.3 (2CH), 127.2 (CH), 126.7 (2CH), 126.0 (CH), 80.1 (CH), 73.2 (CH2), 49.7 (CH), 39.2 (CHD, t, 19.8), 38.2 (CH), 29.1 (CH₂). **(ESI)-HRMS** calcd for C₃₂H₁₈D₁₄O₂ [M + Na]⁺ 485.3179, found 485.3170.

NOESY NMR experiment

4a, NOESY (400 MHz, CDCl₃)

Copies of NMR spectra

1, ¹**H NMR** (400 MHz, CDCl₃)

2, ¹H NMR (400 MHz, CDCl₃)

3b, ¹**H NMR** (400 MHz, CDCl₃)

3d, ¹H NMR (400 MHz, CDCl₃)

3e, ¹**H NMR** (400 MHz, CDCl₃)

3h, ¹H NMR (400 MHz, CDCl₃)

3i, ¹**H NMR** (400 MHz, CDCl₃)

f1 (ppm) **3m**, ¹H NMR (400 MHz, CDCl₃)

7d-3a, ¹H NMR (400 MHz, CDCl₃)

4a, ¹H NMR (400 MHz, CDCl₃)

4b, ¹H NMR (400 MHz, CDCl₃)

4c, ¹H NMR (400 MHz, CDCl₃)

4d, ¹H NMR (400 MHz, CDCl₃)

4e, ¹H NMR (400 MHz, CDCl₃)

4f, ¹H NMR (400 MHz, CDCl₃)

4g, ¹H NMR (400 MHz, CDCl₃)

4h, ¹H NMR (400 MHz, CDCl₃)

4i, ¹H NMR (400 MHz, CDCl₃)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

4j, ¹H NMR (400 MHz, CDCl₃)

4k, ¹H NMR (400 MHz, CDCl₃)

4k', ¹H NMR (400 MHz, CDCl₃)

4l, ¹H NMR (400 MHz, CDCl₃)

4m, ¹H NMR (400 MHz, CDCl₃)

14d-4a, ¹H NMR (400 MHz, CDCl₃)

XYZ coordinates

DCM 5

scf	, done: -2065	509311	
C	-0.161483	3.629494	0.100909
CI	-0.134190	2.117474	1.056507
Cl	-0.280737	3.298530	-1.650590
Н	0.771669	4.178582	0.282206
н	-1.045809	4.202865	0.408222
Ag 1	(DCM)₂⁺ 1		
scf	- done: -2065	.510770	
С	-3.705513	0.981668	0.843739
Cl	-2.997056	-0.507244	0.142404
Ag	-1.463003	0.865179	-1.676896
Cl	-0.007759	3.162648	-1.601962
С	-0.336023	3.551607	0.120962
Cl	-0.358142	2.095839	1.126424
Cl	-3.702621	2.316877	-0.328030
Н	-4.741062	0.759069	1.126082
Н	-3.090810	1.278195	1.702697
Н	0.465606	4.217056	0.462247
Η	-1.321196	4.031186	0.170958
3c			
2	6		
scf	done: -502.	045902	
С	1.191514	-0.102444	-0.695004
С	-0.015427	-0.056186	-0.002478
С	-0.005699	0.028062	1.390665
C	1.197071	0.065677	2.084151
С	2.423346	0.024332	1.401130
C	2.395666	-0.063491	0.001944
C	3.716918	0.070571	2.086541
C	3.932810	0.214191	3.399807
	5.279370	1 275040	4.029055
C C	6 596525	1.273940	4.912332 5.63558/
н	5 425419	-0 758530	<i>A</i> 583155
н	6 074138	0.756556	3 249806
н	3 096458	0.225054	4 100339
н	4.593519	-0.023750	1.429032
н	3.344424	-0.099378	-0.544701
Н	1.196334	-0.169846	-1.786749
Н	-0.964480	-0.087568	-0.545339
Н	-0.949668	0.061448	1.942779
н	1.187731	0.124736	3.176753
С	6.633511	2.474661	6.533780
н	6.679158	0.329203	6.228458
Н	7.466093	1.267672	4.940740
Н	7.559217	2.499351	7.128070
Н	6.576874	3.399169	5.938675
Н	5.776590	2.466211	7.224922

Ag(DCM)(**3c**)⁺

32 scf do

_		
done: -1608	.257801	
2.404786	-1.827953	-0.059005
2.446847	-0.871042	-1.066258
2.200947	-1.229539	-2.402026
1.919806	-2.572505	-2.695711
1.874933	-3.530933	-1.687219
2.115918	-3.160529	-0.365138
2.200677	-0.256174	-3.496336
-0.341570	1.203276	-3.243669
-0.686770	0.651053	-0.438181
-1.109733	-1.030519	-0.840284
-1.539690	-1.199123	-2.569017
2.376627	1.078818	-3.410302
2.283781	1.973902	-4.599007
1.002106	2.589921	-4.564514
3.066074	2.756322	-4.582099
-0.233558	-1.664067	-0.643157
-1.980627	-1.326163	-0.243920
2.398467	1.399006	-5.539629
2.037496	-0.681625	-4.498100
2.565897	1.560878	-2.441412
1.727866	-2.861772	-3.734322
1.652966	-4.572466	-1.934582
2.084251	-3.910587	0.429841
2.599232	-1.534476	0.976258
2.674170	0.167983	-0.809614
0.752330	3.519643	-5.609808
-0.652499	4.033871	-5.476894
1.492539	4.340262	-5.540090
0.910026	3.020174	-6.586099
-0.873599	4.766437	-6.266281
-1.380842	3.210336	-5.564879
-0.799190	4.526680	-4.502509
	done: -1608 2.404786 2.446847 2.200947 1.919806 1.874933 2.115918 2.200677 -0.341570 -0.686770 -1.109733 -1.539690 2.376627 2.283781 1.002106 3.066074 -0.233558 -1.980627 2.398467 2.037496 2.565897 1.727866 1.652966 2.084251 2.599232 2.674170 0.752330 -0.652499 1.492539 0.910026 -0.873599 -1.380842 -0.799190	done: -1608.257801 2.404786 -1.827953 2.446847 -0.871042 2.200947 -1.229539 1.919806 -2.572505 1.874933 -3.530933 2.115918 -3.160529 2.200677 -0.256174 -0.341570 1.203276 -0.686770 0.651053 -1.109733 -1.030519 -1.539690 -1.199123 2.376627 1.078818 2.283781 1.973902 1.002106 2.589921 3.066074 2.756322 -0.233558 -1.664067 -1.980627 -1.326163 2.398467 1.399006 2.037496 -0.681625 2.565897 1.560878 1.727866 -2.861772 1.652966 -4.572466 2.084251 -3.910587 2.599232 -1.534476 2.674170 0.167983 0.752330 3.519643 -0.652499 4.033871 1.492539 4.340262 0.910026 3.020174

TS C-O cleavage

scf	done: -1608	.211128	
С	0.046180	0.085974	-0.069818
С	-0.013847	0.036158	1.322890
С	1.163807	-0.039818	2.072607
С	2.397132	-0.059845	1.435482
С	2.473727	-0.009462	0.031657
С	1.280807	0.057901	-0.709272
С	3.735938	0.002143	-0.688459
С	4.985868	0.105739	-0.168041
С	6.127873	0.178764	-1.030177
0	6.329042	2.087821	-1.338417
Ag	4.391847	3.053233	-1.094274
Cl	3.118972	3.337177	1.712327
С	1.605400	3.474957	0.816645
Cl	1.893473	3.775913	-0.940828
С	7.178982	2.319363	-2.430558
С	7.234261	3.797497	-2.729674
Н	7.125608	0.006274	-0.617869
Н	1.047265	2.531467	0.896683

Н	1.030884	4.328953	1.193993
Н	5.998253	-0.113181	-2.078917
Н	3.650743	-0.069290	-1.783176
Н	5.144928	0.195129	0.912386
Н	1.333721	0.095597	-1.802346
Н	-0.873276	0.141528	-0.658114
Н	-0.982547	0.050854	1.829759
Н	1.115249	-0.084955	3.163691
Н	3.310525	-0.120762	2.033976
Н	8.196242	1.943398	-2.197187
Н	6.837121	1.767583	-3.332797
Н	7.919765	4.003948	-3.566101
Н	6.237308	4.177957	-3.016401
Н	7.582459	4.365001	-1.851824

Ag(DCM)(OEt)

scf done: -1260.549230

С	0.702614	1.305207	-4.721448
Cl	1.113699	0.748228	-3.050114
Ag	-1.184710	0.222300	-2.136751
Cl	-0.473191	0.258416	-5.503388
0	-3.021139	-0.148959	-1.287277
С	-3.920841	-0.916756	-1.984849
Н	0.292121	2.317343	-4.626555
Н	1.643827	1.297177	-5.283908
Н	-4.720612	-1.284693	-1.294632
Н	-4.478820	-0.339137	-2.767680
С	-3.319690	-2.134936	-2.666790
Н	-4.080387	-2.755835	-3.171547
Н	-2.579290	-1.823724	-3.430393
Н	-2.791822	-2.767318	-1.931323

Π

18

scf	done: -347.	603322	
С	-5.553615	1.236707	-3.703538
С	-4.368575	0.532320	-3.443871
С	-3.206418	0.883268	-4.096915
С	-3.214000	1.957292	-5.030378
С	-4.428331	2.656081	-5.276567
С	-5.586175	2.296501	-4.616450
С	-2.064486	2.360772	-5.729472
С	-0.763198	1.817112	-5.632517
С	0.229986	2.333633	-6.397320
Н	1.249612	1.942753	-6.353899
Н	0.036690	3.161922	-7.087313
Н	-0.556688	0.989276	-4.948198
Н	-2.188356	3.194712	-6.433756
Н	-4.428917	3.481765	-5.993713
Н	-6.519296	2.831344	-4.803282
Н	-6.470363	0.950563	-3.180797
Н	-4.370168	-0.291054	-2.726924
Н	-2.283503	0.333885	-3.897936

TS II-IIIc

scf	done: -849.	657720	
С	-0.457393	0.558534	-0.267843
С	-0.065521	-0.022277	0.959596
С	1.289049	-0.373657	1.147612
С	2.220978	-0.154306	0.144954
С	1.815098	0.419331	-1.060937
С	0.476952	0.774495	-1.265486
С	-0.986386	-0.270541	2.026231
С	-2.335134	0.015591	2.057463
С	-3.086560	-0.244315	3.203591
С	-4.366640	-2.166821	2.916930
С	-4.628228	-2.088559	1.446074
0	-5.576439	-3.059933	1.124830
С	-5.969022	-3.024240	-0.228217
С	-6.976231	-4.113644	-0.471546
С	-3.337847	-2.899312	3.435154
С	-3.091091	-3.220534	4.823243
С	-1.908089	-3.907021	5.154162
С	-1.620021	-4.228023	6.475042
С	-2.509045	-3.864827	7.485719
С	-3.688098	-3.181619	7.173397
С	-3.980180	-2.862812	5.856088
н	-4.999848	-1.076421	1.169890
н	-3.680856	-2.246363	0.882394
н	-5.190699	-1.849332	3.568542
н	-2.576399	-3.256156	2.725069
н	-1.215481	-4.189892	4.354895
Н	-0.699475	-4.764024	6.719455
Н	-2.285496	-4.116535	8.525975
н	-4.384103	-2.901522	7.968192
Н	-4.909577	-2.335283	5.622717
Н	-6.393561	-2.026404	-0.470398
Н	-5.079384	-3.151465	-0.881469
н	-7.306301	-4.113220	-1.520653
н	-6.543301	-5.100621	-0.246365
н	-7.861008	-3.974711	0.168847
Н	-4.085939	0.182913	3.317787
Н	-2.588576	-0.551665	4.128527
н	-2.832286	0.463372	1.190645
н	-0.558007	-0.737335	2.925198
н	1.594919	-0.821837	2.097813
Н	3.267319	-0.428402	0.298163
Н	2.548185	0.593817	-1.853048
Н	0.169961	1.223520	-2.213003
Н	-1.500065	0.840707	-0.434686

IIIc

scf	done: -849.	686114	
С	3.043957	-0.015947	0.633198
С	2.001420	0.036752	-0.267191
С	0.686297	-0.060817	0.203873
С	0.399525	-0.210410	1.570760
С	1.430852	-0.261921	2.480544
С	2.781946	-0.171806	2.027647
С	3.864373	-0.259114	2.894707
С	3.833389	-0.537797	4.341784

С	5.024018	0.125410	5.003204
0	4.971340	1.476087	4.657883
С	6.053478	2.233927	5.154118
С	5.878482	3.667301	4.736543
Н	4.983977	-0.024651	6.102184
Н	5.971861	-0.337976	4.648450
Н	2.911286	-0.124460	4.786852
Н	4.861922	-0.171835	2.437934
Н	4.081672	0.053960	0.295014
Н	2.194086	0.153054	-1.335132
Н	-0.140683	-0.016007	-0.510291
Н	-0.637311	-0.278164	1.905160
Н	1.217926	-0.365149	3.547519
Н	6.092732	2.142059	6.259593
Н	7.008167	1.817239	4.770029
Н	6.708051	4.285167	5.109646
Н	5.851936	3.753315	3.639113
Н	4.937346	4.076340	5.135332
С	3.807142	-2.079492	4.536655
С	4.847789	-2.813429	3.750368
Н	3.925884	-2.256474	5.620920
Н	2.805157	-2.447356	4.259381
С	4.551996	-3.608012	2.710274
Н	5.894938	-2.672673	4.050693
С	5.485908	-4.357234	1.865998
Н	3.490809	-3.727265	2.443233
С	4.974477	-5.118219	0.804011
С	5.818303	-5.844439	-0.032189
С	7.194926	-5.824015	0.179660
С	7.719341	-5.073347	1.234088
С	6.876271	-4.348614	2.067667
Н	3.891993	-5.136878	0.637539
Н	5.397476	-6.431003	-0.853791
Н	7.861619	-6.393356	-0.474059
Н	8.799089	-5.055077	1.407891
Н	7.306299	-3.769379	2.890571

TS IIIc-IVc

scf	done: -849.	679553	
С	-0.550069	-0.026963	-0.622018
С	-0.111873	0.044495	0.711053
С	1.267287	-0.021656	0.960185
С	2.181168	-0.148820	-0.082550
С	1.730999	-0.214876	-1.399094
С	0.361058	-0.154101	-1.663453
С	-1.028150	0.180035	1.846724
С	-2.360782	0.338379	1.805668
С	-3.218932	0.445141	3.023069
С	-4.097691	-0.792858	3.285258
С	-5.206820	-0.925483	2.189333
0	-5.430059	-2.274484	1.872365
С	-4.339313	-2.873075	1.366374
С	-4.429789	-4.352654	1.296893
С	-3.282635	-2.036227	3.436519
С	-3.660090	-3.128448	4.309463
С	-2.698242	-4.118627	4.598885

С	-3.032861	-5.217286	5.374509
С	-4.333796	-5.345450	5.867504
С	-5.297042	-4.374005	5.589465
С	-4.967471	-3.269701	4.815744
Н	-6.157198	-0.505264	2.540864
Н	-4.894292	-0.374329	1.283764
н	-4.623328	-0.645535	4.243838
Н	-2.197317	-1.919549	3.282962
Н	-1.683948	-4.011240	4.200932
Н	-2.282811	-5.979048	5.599206
Н	-4.598958	-6.211275	6.480037
Н	-6.310475	-4.479404	5.983496
Н	-5.729344	-2.513914	4.607818
Н	-3.885159	-2.349246	0.499890
Н	-3.421555	-2.620328	2.174682
Н	-3.499549	-4.788443	0.910063
Н	-4.659331	-4.776878	2.288737
Н	-5.252877	-4.629326	0.618311
Н	-3.893725	1.316775	2.944646
Н	-2.589165	0.620044	3.911460
Н	-2.862093	0.396374	0.829318
Н	-0.544575	0.159110	2.835137
Н	1.623443	0.031511	1.994604
Н	3.251937	-0.196085	0.135028
Н	2.444991	-0.315149	-2.221357
Н	0.000466	-0.207758	-2.694708
Н	-1.619856	0.014269	-0.850076

IVc

scf	done: -849.	711434	
С	-0.060882	0.193467	-0.678517
С	0.147155	0.487799	0.679473
С	1.458740	0.745946	1.106103
С	2.526603	0.712708	0.212951
С	2.303204	0.419398	-1.130313
С	1.003749	0.159911	-1.571053
С	-0.939346	0.538033	1.661915
С	-2.247241	0.334212	1.444992
С	-3.290766	0.413704	2.511915
С	-3.918578	-0.936130	2.901500
С	-4.581823	-1.555429	1.687855
0	-5.610559	-2.497079	2.134552
С	-5.479756	-3.737696	2.006367
С	-6.465487	-4.634867	2.568458
С	-2.884869	-1.852957	3.561002
С	-3.394607	-3.155471	4.120561
С	-2.931849	-4.381769	3.623734
С	-3.351834	-5.590074	4.183696
С	-4.255024	-5.589326	5.243512
С	-4.736316	-4.373646	5.739359
С	-4.308491	-3.171178	5.184563
Н	-5.135215	-0.811437	1.097108
Н	-3.882050	-2.101237	1.031129
Н	-4.728359	-0.715254	3.622871
Н	-2.414483	-1.278748	4.380644
Н	-2.207406	-4.386511	2.800949

Н	-2.964964	-6.534438	3.790949
Н	-4.581529	-6.532332	5.690375
Н	-5.441772	-4.365600	6.574941
Н	-4.674553	-2.223345	5.594911
Н	-4.609971	-4.122227	1.443904
Н	-2.075367	-2.056323	2.836660
Н	-5.954514	-5.202709	3.374433
Н	-7.330405	-4.097337	2.974708
Н	-6.752921	-5.390873	1.820969
Н	-4.104716	1.088274	2.187907
Н	-2.857677	0.858579	3.424161
Н	-2.595897	0.103782	0.427226
Н	-0.624230	0.779400	2.688158
Н	1.637026	0.978112	2.161658
Н	3.540042	0.918484	0.569319
Н	3.138710	0.392969	-1.835510
Н	0.819909	-0.070373	-2.624551
Н	-1.071506	-0.011767	-1.044998

TS IVc-Vc

scf	done: -849.	707235	
С	0.244506	-0.817158	0.361586
С	0.023283	0.090856	1.418608
С	1.073865	0.954539	1.793088
С	2.302832	0.884456	1.150378
С	2.512648	-0.045791	0.131406
С	1.479620	-0.895357	-0.265675
С	-1.285906	0.084767	2.034933
С	-1.688730	0.483349	3.283812
С	-0.924208	1.266293	4.310017
С	-1.435847	1.064335	5.733873
С	-1.221394	-0.365570	6.184325
0	-1.890561	-1.276949	5.287859
С	-1.360776	-1.523649	4.135616
С	-0.735969	2.023439	6.700425
С	-1.208315	1.910603	8.122873
С	-2.479519	2.373727	8.483722
С	-2.941179	2.242088	9.790844
С	-2.136124	1.643955	10.760467
С	-0.868124	1.182007	10.414349
С	-0.409613	1.315119	9.104317
С	-2.052902	-2.537156	3.320766
Н	-2.065086	-0.395283	1.428178
Н	-2.773139	0.429306	3.457770
Н	0.154123	1.020075	4.282242
Н	-0.988847	2.341634	4.055348
Н	-2.525221	1.267271	5.757652
Н	-0.145054	-0.621274	6.207772
Н	-1.655992	-0.562403	7.173545
Н	-0.270108	-1.381910	4.035702
Н	-0.573926	-1.468928	0.038759
Н	1.637278	-1.612471	-1.075038
Н	3.484119	-0.097504	-0.367458
Н	3.104431	1.568683	1.439623
Н	0.917073	1.718548	2.556022
Н	-1.585942	-2.666660	2.337545

Н	-1.976138	-3.492206	3.869642
Н	-3.122657	-2.303267	3.217652
Н	0.354723	1.847228	6.650615
Н	-0.900741	3.050238	6.328214
Н	0.589379	0.952213	8.835789
Н	-0.228872	0.715597	11.169576
Н	-2.497224	1.541978	11.787796
Н	-3.935121	2.613358	10.057019
Н	-3.112070	2.852869	7.727149

Vc 44

scf	done: -849.	720358	
С	-0.461135	-2.591555	1.021385
С	0.500932	-2.016978	0.181767
С	0.072638	-1.392408	-0.994071
С	-1.281119	-1.340626	-1.324003
С	-2.228613	-1.914667	-0.479054
С	-1.814168	-2.542070	0.695946
С	1.954098	-2.047632	0.563434
С	2.308779	-1.081395	1.694671
С	3.768748	-1.228407	2.093276
С	4.134138	-0.188191	3.170617
С	3.741105	1.251686	2.657980
0	2.389892	1.247382	2.342871
С	2.032535	0.360138	1.306375
С	5.514621	-0.222051	3.651803
С	6.715612	-0.094132	2.951070
С	6.809897	0.113690	1.540656
С	8.043502	0.257913	0.946179
С	9.208032	0.188219	1.726818
С	9.149282	-0.015702	3.110005
С	7.919519	-0.150310	3.718482
С	3.980495	2.319015	3.692610
Н	5.639475	-0.327969	4.738169
Н	3.471977	-0.359185	4.038047
Н	4.400105	-1.106734	1.195116
Н	3.963964	-2.242991	2.478346
Н	1.678225	-1.316011	2.576027
Н	2.596557	0.609944	0.379431
Н	0.963240	0.523798	1.101889
Н	4.345762	1.448902	1.742739
Н	7.846610	-0.301544	4.799235
Н	10.067519	-0.063154	3.698118
Н	10.182157	0.296091	1.241999
н	8.118800	0.421024	-0.130482
н	5.908183	0.163146	0.928364
н	5.052012	2.422288	3.926643
н	3.614523	3.285847	3.318858
н	3.437302	2.080146	4.620965
н	2.579169	-1.811262	-0.3181/5
н	2.23/335	-3.06/541	0.880814
н	0.815217	-0.940723	-1.662098
н	-1.59/022	-0.849236	-2.248952
н	-3.290889	-1.8/6533	-0.736841
н	-2.551551	-3.000251	1.361667
н	-0.138988	-3.092105	1.942191

TS Vc-VIc

70				
scf	done: -1351	.788662		
С	-0.051981	0.015891	-0.021134	
С	-0.006036	0.034920	1.378188	
C	1.244570	0.061955	2.003596	
c	2 419314	0.071643	1 252100	
c	2.415514	0.05/612	-0 13991/	
c	1 110761	0.034012	0.133314	
c	1.110201	0.025651	-0.775721	
C	-1.281/83	0.060169	2.1/2413	
C	-1.984145	1.416652	2.150170	
C	-3.32/5/8	1.342595	2.862183	
С	-3.989191	2.740492	2.938201	
С	-3.006887	3.723183	3.594835	
0	-1.827469	3.733441	2.822875	
С	-1.144824	2.505682	2.792283	
С	-5.340594	2.461498	3.497886	
С	-5.634856	2.109278	4.871617	
С	-6.598067	1.104081	5.087149	
С	-6.926009	0.703279	6.375539	
С	-6.315496	1.321666	7.465577	
С	-5.372478	2.333710	7.269116	
C	-5.025107	2,722198	5,983907	
c	-3 482245	5 152903	3 658489	
0	-6 3/1083	1 083757	3 203026	
c	-7.416055	4.003737	J.203020	
c	7.410033	4.400200	4.110501	
C	-7.003043	5.594751	4.970754	
C	-6.637848	4.333647	1.806214	
C	-6.752590	5.788882	1.544293	
С	-7.878066	6.359144	1.087616	
С	-8.091819	7.773969	0.781937	
С	-7.092696	8.747015	0.951257	
С	-7.345411	10.080579	0.655592	
С	-8.599890	10.471765	0.182576	
С	-9.600301	9.518131	0.008207	
С	-9.346767	8.181993	0.305722	
Н	-5.955314	1.897586	2.781908	
Н	-8.320582	4.587035	3.515144	
Н	-7.612287	3.512610	4.730385	
Н	-7.917389	5.849288	5.616465	
Н	-6.204205	5.380303	5.625408	
Н	-6.826185	6.475623	4.353748	
Н	-4.111060	3.084438	1.892954	
н	-3.174125	0.962685	3,892236	
н	-3 989378	0.619557	2 353719	
н	-2 163663	1 710652	1 096153	
н	-0.865917	2 191957	3 824703	
Ц	0.200120	2.131337	2 224/027	
LI LI	-0.203100 -7 75/170	2.0/0440	2.234037 1 617610	
17 L1	7 002066	0 622015	4.012019	
н	-1.082966	0.032815	4.220394	
Н	-/.664/81	-0.086058	0.531832	
H	-6.5/9242	1.016808	8.481/29	
Н	-4.905670	2.821003	8.128179	
Н	-4.298409	3.525796	5.847837	
Н	-4.372989	5.275000	4.288950	
Н	-2.676562	5.786257	4.057214	

Н	-3.724887	5.512632	2.644647
Н	-1.079423	-0.221237	3.222984
Н	-1.981430	-0.698631	1.776898
Н	1.296520	0.074326	3.098555
Н	3.388559	0.091033	1.759104
Н	3.280143	0.060416	-0.730419
Н	1.062462	0.006339	-1.868169
Н	-1.025973	-0.014927	-0.523767
Н	-5.796271	3.891682	1.249317
Н	-7.558347	3.788808	1.528214
Н	-5.852347	6.385431	1.742930
Н	-8.748058	5.709202	0.912485
Н	-10.133505	7.432492	0.168724
Н	-10.585038	9.816100	-0.362438
Н	-8.794869	11.522338	-0.050258
Н	-6.556412	10.825228	0.793552
Н	-6.103417	8.457721	1.318579

VIc

70 scf done: -1351.799045 C -2.575602 6.948039 0.090149 C -3.438815 5.873252 0.326800 C -4.756646 6.149443 0.711453 C -5.199119 7.461820 0.858006 C -4.327207 8.524562 0.621387 C -3.013778 8.263686 0.235868 C -2.964767 4.451675 0.212602 C -2.733478 3.773233 1.561556 C -2.321912 2.319526 1.380833 C -1.985369 1.660536 2.725539 C -0.917311 2.506674 3.440392 0 -1.418067 3.817009 3.590327 C -1.668841 4.482277 2.378823 -1.703023 С 0.185544 2.445323 C -0.533881 -0.075975 1.542834 C -0.786163 -0.577743 0.260830 C 0.256116 -0.774519 -0.641454 C 1.565380 -0.486786 -0.264371 C 1.828348 0.002679 1.014607 C 0.786036 0.215731 1.911521 C -0.533313 2.050060 4.827730 0 -1.535708 -0.621803 3.731907 C -1.016587 -2.019490 3.583064 С 0.266519 -2.189847 4.333476 С -2.692029 -0.553599 4.692491 Н -2.612910 -0.248259 1.991424 Н -1.820054 -2.671689 3.952762 -0.910003 -2.187361 2.504223 Н 0.587968 -3.237187 4.228798 Н 1.065204 -1.552380 Н 3.928076 -1.981693 Н 0.147279 5.407564 -2.902218 1.744192 Н 3.338392 2.284378 H -1.431966 0.721011 1.756948 H -3.119269 0.861086 H -3.676793 3.804533 2.144535 H -0.733952 4.554372 1.775759

Н	-1.976176	5.509523	2.633460
Н	-0.014251	2.545841	2.790416
Н	-1.814434	-0.811333	-0.035837
Н	0.042541	-1.160818	-1.641327
Н	2.386434	-0.646775	-0.968183
Н	2.854764	0.226105	1.316501
Н	1.014335	0.599486	2.909969
Н	-0.073441	1.050851	4.838318
Н	0.183491	2.763894	5.258787
Н	-1.419963	2.038637	5.483964
Н	-2.024964	4.415543	-0.370107
Н	-3.703297	3.854641	-0.353164
н	-1.541604	6.747484	-0.213752
Н	-2.323570	9.090842	0.045065
Н	-4.673267	9.556018	0.734527
Н	-6.233612	7.657819	1.155441
Н	-5.447134	5.317051	0.892361
н	-2.982778	0.502183	4.687974
Н	-3.499188	-1.160606	4.249640
С	-2.273258	-1.006747	6.030003
С	-2.777746	-2.106451	6.614242
Н	-1.541563	-0.375469	6.549172
С	-2.436195	-2.627839	7.935556
Н	-3.527131	-2.689891	6.059524
С	-3.131759	-3.743007	8.426628
С	-2.831918	-4.277560	9.676263
С	-1.826723	-3.706578	10.453839
С	-1.122334	-2.599508	9.975570
С	-1.423050	-2.064550	8.729976
Н	-3.919917	-4.192246	7.813424
Н	-3.385236	-5.145675	10.044563
Н	-1.587638	-4.125107	11.435384
Н	-0.329975	-2.151596	10.581475
Н	-0.857693	-1.200320	8.368399

TS VIc-II

7	0		
scf	done: -1351	.788277	
С	0.485455	-0.181527	0.251822
С	0.073582	-0.000258	1.588844
С	1.038993	-0.050093	2.614041
С	2.375962	-0.271347	2.315478
С	2.766560	-0.447895	0.988089
С	1.821047	-0.403780	-0.041458
С	-1.299726	0.221866	1.953811
С	-2.374332	0.352124	1.114282
С	-3.663145	0.573427	1.632029
0	-4.616094	-1.122922	1.692077
С	-3.710565	-2.165885	2.122157
С	-3.131153	-2.871152	0.929403
С	-5.881719	-1.061844	2.416165
С	-6.558915	-2.412476	2.398234
С	-7.028912	-2.953058	3.598914
С	-7.690072	-4.179548	3.617091
С	-7.874434	-4.888674	2.432786
С	-7.396048	-4.365282	1.232215
С	-6.745748	-3.134309	1.213100

С	-6.768026	0.081424	1.906489
С	-7.941343	0.247482	2.876789
С	-8.843956	1.407559	2.488079
С	-9.244935	1.237001	1.034761
0	-8.121157	1.110168	0.204025
С	-7.315419	-0.020185	0.471822
С	-10.056792	1.499826	3.411884
С	-10.946370	2.677062	3.127229
C	-12.169066	2.521459	2.465925
c	-12 972016	3 623926	2 175850
c	-12 562309	4 903700	2 544592
c	-11 345923	5 072865	3 206162
c	-10 547556	3 968549	3 493524
c	-6 287941	-0.046904	-0 636429
н	-5 6319/13	-0.822/155	3 /70918
 Ц	2 020664	1 709752	2 757409
Ц	4 260505	-1.708733	2.737408
	-4.209303	-2.600220	2.700807
п 	-2.431104	-3.051587	1.203292
н	-3.923039	-3.353106	0.335519
н	-2.5/9/10	-2.181/3/	0.271132
н	-6.189855	1.023581	1.955875
н	-8.549299	-0.679851	2.882011
Н	-7.569509	0.381221	3.909519
Н	-8.263618	2.350470	2.563058
Н	-9.902013	0.340850	0.941515
Н	-9.819061	2.104762	0.670250
Н	-7.953875	-0.931657	0.417187
Н	-6.875300	-2.403676	4.534263
Н	-8.054906	-4.585687	4.564402
Н	-8.387131	-5.854363	2.444616
Н	-7.531578	-4.919591	0.299556
Н	-6.371869	-2.740269	0.263420
Н	-5.564351	-0.868728	-0.537507
Н	-6.798575	-0.138456	-1.606465
Н	-5.735982	0.908403	-0.653272
Н	-10.638259	0.561919	3.330634
Н	-9.694278	1.549104	4.455152
Н	-12.495757	1.516325	2.174688
Н	-13.925746	3.481034	1.659151
Н	-13.191667	5.769658	2.319795
Н	-11.019083	6.073616	3.504249
Н	-9.595560	4.105571	4.020154
Н	-4.416103	1.017426	0.981480
Н	-3.777669	0.760612	2.706798
Н	-2.252130	0.313167	0.026894
Н	-1.491704	0.307243	3.033044
н	0.720968	0.088757	3.651944
н	3.118224	-0.307553	3.116386
н	3.819189	-0.622959	0.749897
н	2.135538	-0.544854	-1.078327
н	-0.246941	-0.150726	-0.559613

4c + II

70 scf done: -1351.793511 C 0.590516 -0.132386 0.556366 C -0.080705 0.099025 1.786466

С	0.603048	-0.145142	3.006015
С	1.908322	-0.599094	2.996653
С	2.549872	-0.819862	1.773931
С	1.893067	-0.588243	0.557486
С	-1.415584	0.554414	1.848468
С	-2.260382	0.867384	0.769787
С	-3.563455	1.178811	1.010200
0	-4 774618	-1 201020	1 169854
c	-3 688511	-2 013269	1 560809
c	2 058656	2.015205	0 222774
c	-2.956050	-2.400200	0.555774
C	-5.842055	-1.130857	2.100183
C	-6.493962	-2.490461	2.304320
C	-6.936538	-2.866480	3.5/5/92
С	-7.570771	-4.091056	3.778554
С	-7.756341	-4.965277	2.709969
С	-7.300254	-4.608934	1.441329
С	-6.673824	-3.381415	1.240126
С	-6.820626	-0.036072	1.667572
С	-7.806717	0.258881	2.796669
С	-8.775550	1.375850	2.444734
С	-9.417295	1.045537	1.110042
0	-8.453144	0.824539	0.117059
c	-7 592469	-0 274715	0 360980
c	-9 812847	1 579975	3 547171
c	-10 7/2733	2 73/1578	3 302112
c	12 052022	2.734370	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c	-12.052925	2.552109	2.655052
c	-12.897017	3.011/12	2.000042
C	-12.443067	4.915435	2.788605
C	-11.139331	5.131642	3.234963
С	-10.299505	4.049906	3.488261
С	-6.748268	-0.400601	-0.884832
Н	-5.434166	-0.817673	3.087043
Н	-3.018446	-1.440325	2.242420
Н	-4.048342	-2.874585	2.154180
Н	-2.076924	-3.085104	0.607487
Н	-3.621301	-3.108916	-0.288790
н	-2.622537	-1.638518	-0.285503
Н	-6.217261	0.879216	1.501217
н	-8.398121	-0.653988	3.014191
н	-7.261068	0.501740	3.727799
н	-8.202755	2.317311	2.312096
н	-10 065997	0 146199	1 233188
н	-10 061845	1 868243	0 757650
н	-8 21/1960	-1 101225	0./97050
	6 779607	2 1002/5	1 122021
	-0.778097	4 266770	4.422081
	-7.912729	-4.300770	4.760222
	-8.248500	-5.929200	2.8000//
н	-7.431531	-5.294589	0.599320
н	-6.306389	-3.115523	0.243766
Н	-6.071202	-1.263704	-0.853623
Н	-7.406585	-0.487119	-1.762443
Н	-6.136396	0.508255	-1.014013
Н	-10.396034	0.646639	3.662812
Н	-9.277332	1.729872	4.502751
Н	-12.415343	1.508144	2.707460
Н	-13.919530	3.432132	2.252895
Н	-13.105116	5.763528	2.591123
н	-10.775895	6.151830	3.391066

Н	-9.277520	4.224099	3.845584
Н	-4.256695	1.418886	0.200583
Н	-3.942557	1.242631	2.036221
Н	-1.889497	0.826704	-0.258659
Н	-1.841889	0.673313	2.854730
Н	0.082323	0.033305	3.951240
Н	2.435626	-0.785306	3.934393
Н	3.581874	-1.180700	1.765511
Н	2.412435	-0.769256	-0.385771
Н	0.078490	0.044883	-0.392571

4c 52

	_
	L

scf done: -1004.182576						
С	7.220840	1.391271	2.579088			
С	6.595765	0.215667	3.009887			
С	7.075873	-1.008221	2.532855			
С	8.130797	-1.059088	1.623152			
С	8.733690	0.119114	1.187657			
С	8.279314	1.344260	1.674632			
С	5.425015	0.253922	3.974394			
0	5.537053	1.300266	4.905059			
С	6.537038	1.110826	5.877114			
С	6.602650	2.336200	6.747502			
С	4.045944	0.337676	3.303136			
С	3.742309	-0.951776	2.544594			
С	2.366032	-0.935290	1.900435			
С	2.247486	0.328491	1.069133			
0	2.500113	1.473515	1.834157			
С	3.806449	1.543866	2.385378			
С	2.120011	-2.194104	1.071505			
С	3.882507	2.893979	3.056524			
Н	5.428703	-0.716268	4.523333			
Н	6.307105	0.204691	6.477991			
Н	7.518773	0.923727	5.394170			
Н	7.356923	2.215953	7.539156			
Н	6.869411	3.222470	6.149623			
Н	5.628553	2.528386	7.223975			
Н	3.318675	0.430318	4.135939			
Н	4.495592	-1.092197	1.741835			
Н	3.841400	-1.823920	3.217760			
Н	1.599511	-0.876422	2.700887			
Н	2.959455	0.263246	0.211697			
Н	1.234845	0.438967	0.645203			
Н	4.544360	1.491465	1.549072			
Н	6.620139	-1.939662	2.888042			
Н	8.490758	-2.026716	1.261230			
Н	9.565233	0.082773	0.477908			
Н	8.756783	2.273540	1.349893			
Н	6.880766	2.354660	2.972424			
Н	4.883479	3.108872	3.450530			
Н	3.598109	3.676260	2.336121			
Н	3.175232	2.930792	3.901645			
С	0.733202	-2.283658	0.500338			
Н	2.866350	-2.234261	0.255312			
Н	2.315564	-3.073771	1.712264			
С	0.482219	-2.028069	-0.851973			

С	-0.814273	-2.080692	-1.362726
С	-1.883906	-2.391372	-0.525412
С	-1.647713	-2.649926	0.824975
С	-0.351115	-2.595951	1.329974
Н	1.320698	-1.782927	-1.514456
Н	-0.989201	-1.878382	-2.423710
Н	-2.901462	-2.434882	-0.924587
Н	-2.480895	-2.899508	1.488894
Н	-0.169014	-2.805415	2.390821

Comprehensive table in AU

M06/Def2-svp CPCM = DCM	H (hartrees)	S (cal/K*mol)	imaginary freq. (cm-1)
DCM	-959.291172	65.937	
Ag(DCM) ₂ ⁺	-2065.451193	113.472	
3c	-501.829144	112.155	
Ag(DCM)(3c)⁺	-1608.005336	150.085	
TS C-O cleavage	-1607.961310	148.238	-342.6528
Ag(DCM)(OEt)	-1260.451686	111.117	
Cinnamyl cation (II)	-347.453425	86.884	
TS II-IIIc	-849.285091	157.534	-204.6774
llic	-849.310607	155.746	
TS IIIc-IVc	-849.306473	145.416	-368.1151
IVc	-849.332457	146.745	
TS IVc-Vc	-849.329977	141.433	-271.8465
Vc	-849.341535	142.687	
TS Vc-Vlc	-1351.185333	202.517	-168.5970
VIc	-1351.193065	200.259	
TS VIC-II	-1351.184646	200.335	-241.8321
4c + II	-1351.191185	207.894	
4c	-1003.732271	164.272	

References

- 1 G. Benoit and A. B. Charette, J. Am. Chem. Soc., 2017, 139, 1364.
- 2 M. Bakos, Á. Gyömöre, A. Domján and T. Soós, *Angew. Chem. Int. Ed.*, 2017, **129**, 5301.
- 3 S. Kumar, S. Joyasawal, B. V. S. Reddy, P. Chakravarthy, A. D. Krishna and J. S. Yadav, *Indian J. Chem.*, 2005, **44b**, 1686.
- 4 Zoua Pa Vang, Albert Reyes, Reilly E. Sonstrom, Martin S. Holdren, Samantha E. Sloane, Isabella Y. Alansari, Justin L. Neill, Brooks H. Pate and Joseph R. Clark*, *J. Am. Chem. Soc.*, 2021, **143**, 7707.
- Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- 6 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- 7 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.
- 8 (a) V. Barone and M. Cossi, *J. Phys. Chem. A*, 1998, **102**, 1995. (b) M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.*, 2003, **24**, 669.
- 9 M. Lanzi, V. Santacroce, D. Balestri, L. Marchiò, F. Bigi, R. Maggi, M. Malacria and G. Maestri, *Angew. Chem. Int. Ed.*, 2019, **131**, 6775.