Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Synthetic procedures

Scheme S1. Synthesis of both enantiomers of 1.

Synthesis of S-(2-acetamidoethyl) (R)-3-hydroxybutanethioate ((R)-1).¹

The alcohol (*R*)-**S1** (100 mg, 0.96 mmol) was dissolved in CH₂Cl₂ (10 mL). DMAP (23 mg, 0.19 mmol), EDC·HCl (203 mg, 1.06 mmol) and N-acetylcysteamine (114 mg, 0.96 mmol) were added to this solution. The mixture was stirred overnight at room temperature and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc) to yield (*R*)-**1** as a colourless oil (105 mg, 0.51 mmol, 53%).² ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 4.52 (br s, NH), 4.07 (dqt, ³J_{H,H} = 9.8 Hz, ³J_{H,H} = 6.4 Hz, ³J_{H,H} = 3.5 Hz, 1H), 3.12 (m, 2H), 2.68 (m, 2H), 2.53 (br d, ³J_{H,H} = 4.4 Hz, OH), 2.39 (dd, ²J_{H,H} = 14.9 Hz, ³J_{H,H} = 8.6 Hz, 1H), 2.26 (dd, ²J_{H,H} = 14.9 Hz, ³J_{H,H} = 6.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 198.5 (C_q), 169.3 (C_q), 65.1 (CH), 53.1 (CH₂), 39.0 (CH₂), 29.2 (CH₂), 22.9 (CH₃), 22.7 (CH₃) ppm. Optical rotation: [α]25 D = -28.3 (*c* 0.40, CH₂Cl₂), lit. [α]25 D = -23.2 (*c* 1.0, CHCl₃).²

Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxybutanethioate ((S)-1).

Following the same procedure as for (*R*)-1, (*S*)-**S1** (100 mg, 0.96 mmol) was converted into (*S*)-1 that was obtained as a colourless oil (112 mg, 0.55 mmol, 57%).² Spectroscopic data were identical to those of (*R*)-1. Optical rotation: [α]25 D = +26.1 (c 0.50, CH₂Cl₂), lit. [α]25 D = +27.9 (c 1.0, CHCl₃).²

Scheme S2. Synthesis of 2.

Synthesis of S-(2-acetamidoethyl) 3-hydroxy-3-methylbutanethioate (2).

Following the same procedure as for (*R*)-1, S2 (50 mg, 0.42 mmol) was converted into 2 that was obtained as a colourless oil (89 mg, 0.41 mmol, 96%). ¹H NMR (500 MHz, C_6D_6): δ_H 4.69 (br s, NH), 3.13 (q, ³J_{H,H} = 6.5 Hz, 2H), 3.09 (br s, OH), 2.69 (t, ³J_{H,H} = 6.6 Hz, 2H), 2.42 (s, 2H), 1.48 (s, 3H)), 1.15 (s, 6H) ppm; ¹³C NMR (126 MHz, C_6D_6): δ_C 199.3 (C_q), 169.2 (C_q), 69.8 (C_q), 56.1 (CH₂), 39.1 (CH₂), 29.4 (CH₃), 29.2 (CH₂), 22.8 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for $C_9H_{17}NO_3SNa^+$ *m*/*z* 242.0821; found *m*/*z* 242.0820.

Scheme S3. Synthesis of all four stereoisomers of 3.

Synthesis of (S)-4-benzyl-3-propionyloxazolidin-2-one ((S)-S4).

To a solution of (*S*)-4-benzyl-2-oxazolidinone ((*S*)-**S3**, 6.50 g, 36.7 mmol) in THF (60 mL) was added ⁿBuLi (23.4 mL, 1.6 \bowtie in hexane, 37.4 mmol) dropwise at –78 °C under

Ar. After 20 min, propionyl chloride (3.90 g, 42.2 mmol) was added dropwise. The reaction mixture was allowed to stir at -78 °C for 2.5 h. The mixture was poured into a saturated aqueous solution of NH₄Cl (60 mL). After removal of THF under reduced pressure, the aqueous layer was extracted with CH_2Cl_2 (3 x 60 mL). The combined organic layers were washed with 10% NaOH solution and dried with MgSO₄, filtered and concentrated to dryness. The residue was puridied through silica gel column (cyclohexane/EtOAc, 5:1) chromatography to afford (S)-4-benzyl-3propionyloxazolidin-2-one ((S)-S4) as a white solid (8.00 g, 34.3 mmol, 94%). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 7.28 (m, 5H), 4.68 (ddt, ${}^{3}J_{\rm H,\rm H}$ = 9.5 Hz, ${}^{3}J_{\rm H,\rm H}$ = 7.5 Hz, ${}^{3}J_{\rm H,\rm H}$ = 3.2 Hz, 1H), 4.18 (m, 2H), 3.31 (dd, ${}^{2}J_{H,H}$ = 13.3 Hz, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H), 2.95 (m, 2H), 2.77 (dd, ${}^{2}J_{H,H}$ = 13.3 Hz, ${}^{3}J_{H,H}$ = 9.6 Hz, 1H), 1.21 (t, ${}^{3}J_{H,H}$ = 7.3 Hz, 3H) ppm; ${}^{13}C$ NMR (126 MHz, CDCl₃): δ_C 174.2 (C_q), 153.7 (C_q), 135.5 (C_q), 129.6 (2xCH), 129.1 (2xCH), 127.5 (CH), 66.4 (CH₂), 55.3 (CH), 38.1 (CH₂), 29.4 (CH₂), 8.4 (CH₃) ppm.

Synthesis of (*R*)-4-benzyl-3-propionyloxazolidin-2-one ((*R*)-S4).

Following the same procedure as for (*S*)-**S4**, (*R*)-4-benzyloxazolidin-2-one ((*R*)-**S3**, 2.00 g, 11.3 mmol) was converted into (*R*)-**S4** that was obtained as a white solid (2.25 g, 9.60 mmol, 85%). Spectroscopic data were identical to those of (*S*)-**S4**.

Synthesis of (*S*)-4-benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2one ((*S*,2R,3R)-S5) and (*S*)-4-benzyl-3-((2R,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one ((*S*,2R,3S)-S5).³

(S)-3-Acetyl-4-benzyloxazolidin-2-one ((S)-**S4**) (2.10 g, 9.00 mmol) was dissolved in CH₂Cl₂ (60 mL, -78 °C) under Ar. TiCl₄ (3.46 g, 18.2 mmol) was added dropwise, followed by the addition of diisopropylethylamine (2.35 g, 18.2 mmol). The resulting mixture was allowed to stir at -78 °C for 1 h, and then a solution of crotonaldehyde (1.28 g, 18.2 mmol) was added dropwise. Stirring was continued at -78 °C for 5 h, and then the reaction mixture was allowed to warm to room temperature with continued stirring overnight. The mixture was poured onto a saturated aqueous solution of NH₄Cl (50 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated to dryness. Purification of the crude product by column chromatography on silica gel (cyclohexane/EtOAc, 3:1) gave (*S*,2*R*,3*R*)-**S5** (1.18 g, 4.24 mmol, 47 %) and (*S*,2*R*,3*S*)-**S5** (1.01 g, 3.60 mmol, 40 %) as white solids.⁴

(S)-4-Benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one

((*S*,2*R*,3*R*)-S5). ¹H NMR (500 MHz, CDCl₃): δ_{H} 7.28 (m, 5H), 4.69 (dddd, ³*J*_{H,H} = 9.5 Hz, ³*J*_{H,H} = 7.3 Hz, ³*J*_{H,H} = 3.5 Hz, ³*J*_{H,H} = 2.9 Hz, 1H), 4.18 (m, 2H), 3.95 (m, 1H), 3.82 (qd, ³*J*_{H,H} = 7.0 Hz, ³*J*_{H,H} = 7.0 Hz, 1H), 3.33 (dd, ²*J*_{H,H} = 13.5 Hz, ³*J*_{H,H} = 3.5 Hz, 1H), 2.79 (dd, ²*J*_{H,H} = 13.5 Hz, ³*J*_{H,H} = 9.5 Hz, 1H), 1.31 (d, ³*J*_{H,H} = 6.3 Hz, 3H), 1.20 (d, ³*J*_{H,H} = 6.9 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 176.8 (C_q), 153.7 (C_q), 135.4 (C_q), 129.6 (2xCH), 129.1 (2xCH), 127.5 (CH), 70.9 (CH), 66.2 (CH₂), 55.7 (CH), 45.2 (CH), 38.0 (CH₂), 21.4 (CH₃), 14.7 (CH₃) ppm. Optical rotation: [*α*]25 D = +32.2 (*c* 0.37, CH₂Cl₂).⁵

(S)-4-Benzyl-3-((2R,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one

((*S*,2*R*,3*S*)-*S*5). ¹H NMR (500 MHz, CDCl₃): δ_{H} 7.28 (m, 5H), 4.70 (m, 1H), 4.20 (m, 3H), 3.85 (qd, ${}^{3}J_{H,H}$ = 7.0 Hz, ${}^{3}J_{H,H}$ = 3.2 Hz, 1H), 3.31 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 3.5 Hz, 1H), 2.78 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 9.6 Hz, 1H), 1.24 (d, ${}^{3}J_{H,H}$ = 6.4 Hz, 3H), 1.21 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 176.9 (C_q), 153.6 (C_q), 135.3 (C_q), 129.6 (2xCH), 129.1 (2xCH), 127.6 (CH), 68.3 (CH), 66.3 (CH₂), 55.6 (CH), 43.1 (CH), 38.2 (CH₂), 19.6 (CH₃), 10.7 (CH₃) ppm. Optical rotation: [*a*]25 D = +61.5 (*c* 0.34, CH₂Cl₂), lit. [*a*]30 D = +42.0 (*c* 0.50, CHCl₃).⁴

Synthesis of (*R*)-4-benzyl-3-((2*S*,3*S*)-3-hydroxy-2-methylbutanoyl)oxazolidin-2one ((*R*,2*S*,3*S*)-S5) and (*R*)-4-benzyl-3-((2*S*,3*R*)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one ((*R*,2*S*,3*R*)-S5).⁴

Following the same procedure as for (S,2R,3R)-**S5** and (S,2R,3S)-**S5**, (R)-**S4** (2.10 g, 9.00 mmol) was converted into (R,2S,3S)-**S5** (1.14 g, 4.11 mmol, 46%) and (R,2S,3R)-**S5** (0.85 g, 3.08 mmol, 34%) that were obtained as white solids.

(R)-4-Benzyl-3-((2S,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one

((*R*,2*S*,3*S*)-*S*5). Spectroscopic data were identical to those of (*S*,2*R*,3*R*)-*S*5. Optical rotation: $[\alpha]25 \text{ D} = -31.5 (c \ 0.20, \ CH_2CI_2)$, lit. $[\alpha]30 \text{ D} = -19.8 (c \ 0.50, \ CHCI_3).^4$

(R)-4-Benzyl-3-((2S,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one

((*R*,2*S*,3*R*)-*S*5). Spectroscopic data were identical to those of (*S*,2*R*,3*S*)-*S*5. Optical rotation: $[\alpha]$ 25 D = -55.0 (*c* 0.20, CH₂Cl₂).

Synthesis of (2R,3R)-3-hydroxy-2-methylbutanoic acid ((2R,3R)-S6).⁴

(*S*)-4-Benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one ((*S*,2R,3R)-**S5**, 86 mg, 0.31 mmol) was dissolved in THF (2 mL) and H₂O (0.5 mL). The solution was

cooled to 0 °C and a solution of H₂O₂ (35%, 0.2 mL, 18.2 mmol) was added dropwise. LiOH (36 mg, 1.50 mmol) was added and the resulting mixture was allowed to stir for 2 h and then quenched by the addition of an aqueous solution of Na₂SO₃ (270 mg in 1.6 mL H₂O). After removal of THF under reduced pressure the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL), then acidified by the addition of 2 N HCl solution to pH 1, and extracted with Et₂O (3 x 10 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated to yield (2*R*,3*R*)-3-hydroxy-2-methylbutanoic acid ((2*R*,3*R*)-**S6**) as a colourless oil (17 mg, 0.14 mmol, 46 %). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 3.92 (dq, ³J_{H,H} = 7.2 Hz, ³J_{H,H} = 6.4 Hz, 1H), 2.49 (qd, ³J_{H,H} = 7.2 Hz, ³J_{H,H} = 7.2 Hz, 1H), 1.26 (d, ³J_{H,H} = 6.4 Hz, 3H), 1.22 (d, ³J_{H,H} = 7.2 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 180.7 (C_q), 69.6 (CH), 47.0 (CH), 20.9 (CH₃), 14.1 (CH₃) ppm. Optical rotation: [*a*]25 D = -23.2 (*c* 0.20, CH₂Cl₂), lit. [*a*]24 D = -29.0 (*c* 1.00, CHCl₃).⁶

Synthesis of (2*R*,3*S*)-3-hydroxy-2-methylbutanoic acid ((2*R*,3*S*)-S6).

Following the same procedure as for (2R,3R)-**S6**, (S,2R,3S)-**S5** (86 mg, 0.31 mmol) was converted into (2R,3S)-**S6** that was obtained as a colourless oil (28 mg, 0.24 mmol, 76%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 4.14 (qd, ³ $J_{H,H}$ = 6.5 Hz, ³ $J_{H,H}$ = 3.8 Hz, 1H), 2.59 (qd, ³ $J_{H,H}$ = 7.2 Hz, ³ $J_{H,H}$ = 3.8 Hz, 1H), 1.23 (d, ³ $J_{H,H}$ = 6.5 Hz, 3H), 1.22 (d, ³ $J_{H,H}$ = 7.2 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 180.6 (C_q), 68.1 (CH), 45.3 (CH), 19.8 (CH₃), 11.0 (CH₃) ppm. Optical rotation: [α]25 D = +4.9 (c 0.20, CH₂Cl₂), lit. [α]30 D = +6.9 (c 1.02, CHCl₃).⁴

Synthesis of (2S,3S)-3-hydroxy-2-methylbutanoic acid ((2S,3S)-S6).

Following the same procedure as for (2R,3R)-**S6**, (R,2S,3S)-**S5** (90 mg, 0.32 mmol) was converted into (2S,3S)-**S6** that was obtained as a colourless oil (20 mg, 0.17 mmol, 52%). Spectroscopic data were identical to those of (2R,3R)-**S6**. Optical rotation: [α]25 D = +16.9 (c 0.40, CH₂Cl₂).⁷

Synthesis of (2S,3R)-3-hydroxy-2-methylbutanoic acid ((2S,3R)-S6).

Following the same procedure as for (2R,3R)-**S6**, (2S,3R)-**S5** (120 mg, 0.43 mmol) was converted into (2S,3R)-**S6** that was obtained as a colourless oil (40 mg, 0.34 mmol, 78%). Spectroscopic data were identical to those of (2R,3S)-**S6**. Optical rotation: [α]25 D = -3.8 (c 0.5, CH₂Cl₂), lit. [α]30 D = -6.8 (c 1.02, CHCl₃).⁴

Synthesis of S-(2-acetamidoethyl) (2R,3R)-3-hydroxy-2-methylbutanethioate ((2R,3R)-3).

Following the same procedure as for (*R*)-1, (2*R*,3*R*)-**S6** (17 mg, 0.14 mmol) was converted into (2*R*,3*R*)-**3** that was obtained as a colourless oil (15 mg, 0.07 mmol, 48%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 5.88 (br s, NH), 3.94 (dq, ³*J*_{H,H} = 7.0 Hz, ³*J*_{H,H} = 6.4 Hz, 1H), 3.47 (m, 2H), 3.06 (m, 2H), 2.69 (m, 1H), 1.97 (s, 3H), 1.24 (d, ³*J*_{H,H} = 6.4 Hz, 3H), 1.20 (d, ³*J*_{H,H} = 7.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 204.1 (C_q), 170.7 (C_q), 70.2 (CH), 56.0 (CH), 39.6 (CH₂), 28.8 (CH₂), 23.3 (CH₃), 21.3 (CH₃), 15.1 (CH₃) ppm. Optical rotation: [*a*]25 D = -18.7 (*c* 0.10, CH₂Cl₂), lit. [*a*] D = -32.8 (*c* 0.33, CHCl₃).²

Synthesis of S-(2-acetamidoethyl) (2R,3S)-3-hydroxy-2-methylbutanethioate ((2R,3S)-3).

Following the same procedure as for (*R*)-1, (2*R*,3*S*)-**S6** (28 mg, 0.24 mmol) was converted into (2*R*,3*S*)-**3** that was obtained as a colourless oil (20 mg, 0.09 mmol, 38%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 5.88 (br s, NH), 4.11 (qd, ${}^{3}J_{H,H}$ = 6.4 Hz, ${}^{3}J_{H,H}$ = 4.0 Hz, 1H), 3.46 (m, 2H), 3.03 (m, 2H), 2.70 (qd, ${}^{3}J_{H,H}$ = 7.1 Hz, ${}^{3}J_{H,H}$ = 4.0 Hz, 1H), 1.98 (s, 3H), 1.23 (d, ${}^{3}J_{H,H}$ = 7.1 Hz, 3H), 1.20 (d, ${}^{3}J_{H,H}$ = 6.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 204.2 (Cq), 170.7 (Cq), 68.5 (CH), 54.6 (CH), 39.6 (CH₂), 28.7 (CH₂), 23.3 (CH₃), 20.3 (CH₃), 11.6 (CH₃) ppm. Optical rotation: [*α*]25 D = -3.7 (*c* 0.07, CHCl₃), lit. [*α*]30 D = -4.9 (*c* 1.0, CHCl₃).²

Synthesis of S-(2-acetamidoethyl) (2S,3S)-3-hydroxy-2-methylbutanethioate ((2S,3S)-3).

Following the same procedure as for (*R*)-1, (2*S*,3*S*)-**S6** (17 mg, 0.14 mmol) was converted into (2*S*,3*S*)-**3** that was obtained as a colourless oil (14 mg, 0.06 mmol, 44%). Spectroscopic data were identical to those of (2*R*,3*R*)-**3**. Optical rotation: [α]25 D = +17.3 (*c* 0.20, CHCl₃), lit. [α] D = +36.8 (*c* 0.64, CHCl₃).²

Synthesis of S-(2-acetamidoethyl) (2S,3R)-3-hydroxy-2-methylbutanethioate ((2S,3R)-3).

Following the same procedure as for (*R*)-1, (2*S*,3*R*)-**S6** (40 mg, 0.34 mmol) was converted into (2*S*,3*R*)-**3** that was obtained as a colourless oil (24 mg, 0.11 mmol, 32%). Spectroscopic data were identical to those of (2*R*,3*S*)-**3**. Optical rotation: [α]25

D = +2.7 (c 0.10, CHCl₃), lit. [α]30 D = +3.0 (c 1.0, CHCl₃).²

Scheme S4. Preparation of both enantiomers of 4.

Synthesis of (*R*)-3-acetyl-4-benzyloxazolidin-2-one ((*R*)-S7).

Following the same procedure as for (*S*)-**S4**, (*R*)-**S3** (3.30 g, 18.5 mmol) was converted into (*R*)-**S7** that was obtained as a white solid (2.80 g, 12.8 mmol, 69%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 7.03 (m, 3H), 6.84 (m, 2H), 4.08 (ddt, ${}^{3}J_{H,H}$ = 9.5 Hz, ${}^{3}J_{H,H}$ = 8.0 Hz, ${}^{3}J_{H,H}$ = 3.0 Hz, 1H), 3.45 (dd, ${}^{2}J_{H,H}$ = 8.9 Hz, ${}^{3}J_{H,H}$ = 2.8 Hz, 1H), 3.17 (dd, ${}^{2}J_{H,H}$ = 8.8 Hz, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 2.95 (dd, ${}^{2}J_{H,H}$ = 13.3 Hz, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H), 2.56 (s, 3H), 2.26 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H) ppm; 13 C NMR (126 MHz, C₆D₆): δ_{C} 169.6 (C_q), 153.5 (C_q), 136.0 (C_q), 129.6 (2xCH), 129.0 (2xCH), 127.3 (CH), 65.6 (CH₂), 54.9 (CH₃), 37.7 (CH₂), 23.6 (CH₃) ppm. HRMS (ESI): [M+H]⁺ calculated for C₁₂H₁₃NO₃H⁺ *m*/*z* 220.0968; found *m*/*z* 220.0971. Optical rotation: [*α*]25 D = -77.2 (*c* 0.30, CH₂Cl₂).

Synthesis of (*R*)-4-benzyl-3-((*R*,*E*)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((*R*,3*R*)-S8) and (*R*)-4-benzyl-3-((*S*,*E*)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((*R*,3*S*)-S8). Following the same procedure as for (2R,3R)-S5, (*R*)-S7 (2.50 g, 11.4 mmol) was converted into the minor diastereomer (*R*)-4-benzyl-3-((*R*,*E*)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((*R*,3*R*)-S8, 450 mg, 1.56 mmol, 14%) and the major diastereomer (*R*)-4-benzyl-3-((*S*,*E*)-3-hydroxyhex-4-enoyl)oxazolidin-2-one

((R,3S)-**S8**) (1.40 g, 4.84 mmol, 42%), dr = 1 : 3, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as white solids.

(R)-4-Benzyl-3-((R,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((R,3R)-S8). ^{1}H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 7.04 (m, 3H), 6.85 (m, 2H), 5.72 (dqd, ${}^{3}J_{\rm H,\rm H}$ = 15.3 Hz, ${}^{3}J_{\rm H,\rm H}$ = 6.5 Hz, ${}^{4}J_{HH}$ = 1.3 Hz, 1H), 5.55 (ddg, ${}^{3}J_{HH}$ = 15.3 Hz, ${}^{3}J_{HH}$ = 5.9 Hz, ${}^{4}J_{HH}$ = 1.7 Hz, 1H), 4.68 (m, 1H), 4.07 (m, 1H), 3.41 (dd, ${}^{2}J_{H,H}$ = 9.0 Hz, ${}^{3}J_{H,H}$ = 2.8 Hz, 1H), 3.34 (dd, ${}^{2}J_{H,H}$ = 16.8 Hz, ${}^{3}J_{H,H}$ = 8.9 Hz, 1H), 3.13 (dd, ${}^{2}J_{H,H}$ = 8.9 Hz, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 3.07 $(dd, {}^{2}J_{H,H} = 16.8 Hz, {}^{3}J_{H,H} = 3.5 Hz, 1H), 2.87 (dd, {}^{2}J_{H,H} = 13.5 Hz, {}^{3}J_{H,H} = 3.4 Hz, 1H),$ 2.83 (m, OH), 2.23 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 9.4 Hz, 1H), 1.53 (ddd, ${}^{3}J_{H,H}$ = 6.5 Hz, ${}^{4}J_{H,H}$ = 1.7 Hz, ${}^{5}J_{H,H}$ = 1.1 Hz, 3H) ppm; ${}^{13}C$ NMR (125 MHz, C₆D₆): δ_{C} 172.1 (C_a), 153.3 (C_a), 135.8 (C_a), 133.2 (CH), 129.7 (2xCH), 129.0 (2xCH), 127.4 (CH), 126.3 (CH), 69.0 (CH), 65.7 (CH₂), 54.9 (CH), 43.3 (CH₂), 37.6 (CH₂), 17.7 (CH₃) ppm. HRMS (ESI): $[M+Na]^+$ calculated for $C_{16}H_{19}NO_4Na^+$ m/z 312.1206; found m/z 312.1206. Optical rotation: $[\alpha]25 D = -51.7 (c 0.30, CH_2Cl_2)$, lit. $[\alpha]25 D = -35.0 (c 1.35, CHCl_3).^8$ (R)-4-Benzyl-3-((S,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((*R*,3*S*)-*S*8). ^{1}H NMR (500 MHz, C₆D₆): δ_{H} 7.04 (m, 3H), 6.85 (m, 2H), 5.71 (dqd, ${}^{3}J_{H,H}$ = 15.4 Hz, ${}^{3}J_{H,H}$ = 6.5 Hz, ${}^{4}J_{H,H}$ = 1.3 Hz, 1H), 5.54 (ddq, ${}^{3}J_{H,H}$ = 15.3 Hz, ${}^{3}J_{H,H}$ = 6.0 Hz, ${}^{4}J_{H,H}$ = 1.6 Hz, 1H), 4.70 (m, 1H), 4.05 (m, 1H), 3.40 (dd, ${}^{2}J_{H,H}$ = 8.9 Hz, ${}^{3}J_{H,H}$ = 2.8 Hz, 1H), 3.23 (d, ${}^{3}J_{H,H}$ = 2.7 Hz, 1H), 3.22 (d, ${}^{3}J_{H,H}$ = 0.6 Hz, 1H), 3.10 (dd, ${}^{2}J_{H,H}$ = 8.8 Hz, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H), 2.92 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H), 2.73 (br s, OH), 2.26 (dd, ${}^{2}J_{H,H}$ = 13.4 Hz, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H), 1.53 (ddd, ${}^{3}J_{H,H}$ = 6.5 Hz, ${}^{4}J_{H,H}$ = 1.7 Hz, ${}^{5}J_{H,H}$ = 1.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, C_6D_6): δ_C 172.0 (C_a), 153.3 (C_a), 135.8 (C_a), 133.1 (CH), 129.6 (2xCH), 129.0 (2xCH), 127.4 (CH), 126.4 (CH), 68.9 (CH), 65.7 (CH₂), 54.9 (CH), 43.4 (CH₂), 37.8 (CH₂), 17.7 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for $C_{16}H_{19}NO_4Na^+ m/z$ 312.1206; found m/z 312.1209. Optical rotation: [α]25 D = -93.0 (c 0.30, CH_2CI_2), lit. [α] D = -76.3 (*c* 0.085, CHCI₃).⁸

Synthesis of (*R*,*E*)-3-hydroxyhex-4-enoic acid ((*R*)-S9).

Following the same procedure as for (2R,3R)-**S6**, (R,3R)-**S8** (145 mg, 0.50 mmol) was converted into (R,E)-3-hydroxyhex-4-enoic acid ((R)-**S9**) that was obtained as a colourless oil (50 mg, 0.38 mmol, 77%). ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 5.46 (dqd, ³J_{H,H} = 15.4 Hz, ³J_{H,H} = 6.5 Hz, ⁴J_{H,H} = 1.2 Hz, 1H), 5.26 (ddq, ³J_{H,H} = 15.3 Hz, ³J_{H,H} = 6.3 Hz, ⁴J_{H,H} = 1.7 Hz, 1H), 4.29 (m, 1H), 2.32 (dd, ²J_{H,H} = 16.0 Hz, ³J_{H,H} = 8.5 Hz, 1H),

2.23 (dd, ${}^{2}J_{H,H}$ = 16.0 Hz, ${}^{3}J_{H,H}$ = 4.1 Hz, 1H), 1.43 (ddd, ${}^{3}J_{H,H}$ = 6.5 Hz, ${}^{4}J_{H,H}$ = 1.4 Hz, ${}^{5}J_{H,H}$ = 1.4 Hz, 3H) ppm; 13 C NMR (125 MHz, C₆D₆): δ_{C} 177.1 (C_q), 132.5 (CH), 126.8 (CH), 68.9 (CH), 41.7 (CH₂), 17.6 (CH₃) ppm. Optical rotation: [α]25 D = +12.5 (c 0.40, CH₂Cl₂), lit. [α]25 D = +22.5 (c 0.4, EtOH).⁹

Synthesis of (*S*,*E*)-3-hydroxyhex-4-enoic acid ((*S*)-S9).

Following the same procedure as for (2R,3R)-**S6**, (R,3S)-**S8** (145 mg, 0.50 mmol) was converted into (S,E)-3-hydroxyhex-4-enoic acid ((S)-**S9**) that was obtained as a colourless oil (40 mg, 0.31 mmol, 61%). Spectroscopic data were identical to those of (R)-**S9**. Optical rotation: [α]25 D = -15.5 (c 0.30, CH₂Cl₂), lit. [α]25 D = -22.2 (c 0.4, EtOH).⁹

Synthesis of S-(2-acetamidoethyl) (*R*,*E*)-3-hydroxyhex-4-enethioate ((*R*)-4).

Following the same procedure as for (*R*)-1, (*R*)-**S9** (20 mg, 0.15 mmol) was converted into (*R*)-4 that was obtained as a colourless oil (12 mg, 0.05 mmol, 34%). ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 5.53 (dqd, ³*J*_{H,H} = 15.3 Hz, ³*J*_{H,H} = 6.5 Hz, ⁴*J*_{H,H} = 1.3 Hz, 1H), 5.33 (ddq, ³*J*_{H,H} = 15.3 Hz, ³*J*_{H,H} = 6.1 Hz, ⁴*J*_{H,H} = 1.6 Hz, 1H), 4.91 (br s, NH), 4.52 (m, 1H), 3.17 (m, 2H), 2.74 (m, 2H), 2.61 (dd, ²*J*_{H,H} = 14.8 Hz, ³*J*_{H,H} = 8.7 Hz, 1H), 2.47 (dd, ²*J*_{H,H} = 14.7 Hz, ³*J*_{H,H} = 3.9 Hz, 1H), 1.52 (s, 3H), 1.47 (ddd, ³*J*_{H,H} = 6.5 Hz, ⁴*J*_{H,H} = 1.7 Hz, ⁵*J*_{H,H} = 1.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 197.8 (C_q), 169.6 (C_q), 132.9 (CH), 126.4 (CH), 69.6 (CH), 51.8 (CH₂), 39.2 (CH₂), 29.1 (CH₂), 22.7 (CH₃), 17.6 (CH₃) ppm. Optical rotation: [*α*]25 D = +19.0 (*c* 0.10, CH₂Cl₂), lit. [*α*]25 D = +16.7 (*c* 0.42, CH₂Cl₂).¹⁰

Synthesis of S-(2-acetamidoethyl) (S,E)-3-hydroxyhex-4-enethioate ((S)-4).

Following the same procedure as for (*R*)-1, (*S*)-**S9** (20 mg, 0.15 mmol) was converted into (*S*,*E*)-3-hydroxyhex-4-enoic acid ((*S*)-4) that was obtained as a colourless oil (9 mg, 0.04 mmol, 25%). Spectroscopic data were identical to those of (*R*)-4. Optical rotation: [α]25 D = -18.0 (*c* 0.15, CH₂Cl₂), lit. [α]25 D = -18.6 (*c* 0.44, CH₂Cl₂).¹⁰

Scheme S5. Synthesis of both enantiomers of 5.

Synthesis of (*R*)-4-benzyl-3-((*R*)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((*R*,3*R*)-S12) and (*R*)-4-benzyl-3-((*S*)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((*R*,3*S*)-S12).

A mixture of **S10** (1.10 g, 15.7 mmol), silica gel and PCC (5.07 g, 23.5 mmol) in CH₂Cl₂ (60 mL) was stirred for 3 h with ice cooling. At the end of the reaction the solids were removed by filtration through a pad of silica gel. The solvents were evaporated to obtain the crude product **S11** that was used for the next step without purification. Following the same procedure as for (2*R*,3*R*)-**S5**, (*R*)-**S7** (300 mg, 1.37 mmol) was converted into the minor diastereomer (*R*,3*R*)-**S12** (99 mg, 0.34 mmol, 25%) and the major diastereomer (*R*,3*S*)-**S12** (169 mg, 0.59 mmol, 43%), *dr* = 37 : 63, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds

were obtained as colourless solids.

(*R*)-4-Benzyl-3-((*R*)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((*R*,3*R*)-S12). ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 7.02 (m, 3H), 6.83 (m, 2H), 4.95 (m, 1H), 3.99 (m, 1H), 3.67 (ddd, ²J_{H,H} = 16.9 Hz, ³J_{H,H} = 7.7 Hz, ⁴J_{H,H} = 1.8 Hz, 1H), 3.37 (m, 1H), 3.21 (ddd, ²J_{H,H} = 17.1 Hz, ³J_{H,H} = 4.3 Hz, ⁴J_{H,H} = 1.8 Hz, 1H), 3.07 (ddt, ²J_{H,H} = 11.1 Hz, ³J_{H,H} = 8.5 Hz, ⁴J_{H,H} = 2.2 Hz, 1H), 2.88 (dt, ³J_{H,H} = 6.7 Hz, ⁴J_{H,H} = 1.9 Hz, OH), 2.83 (dd, ²J_{H,H} = 13.4 Hz, ³J_{H,H} = 3.6 Hz, 1H), 2.22 (ddt, ²J_{H,H} = 13.9 Hz, ³J_{H,H} = 9.3 Hz, ⁴J_{H,H} = 2.3 Hz, 1H), 1.46 (m, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 171.1 (C_q), 153.1 (C_q), 135.7 (C_q), 129.6 (2xCH), 129.0 (2xCH), 127.4 (CH), 81.1 (C_q), 80.1 (C_q), 65.7 (CH₂), 59.4 (CH), 54.8 (CH), 44.0 (CH₂), 37.5 (CH₂), 3.3 (CH₃) ppm. HRMS (ESI): [M+H]⁺ calculated for C₁₆H₁₇NO₄H⁺ *m*/*z* 288.1230; found *m*/*z* 288.1229. Optical rotation: [*a*]25 D = -51.3 (*c* 0.55, CH₂Cl₂).

(*R*)-4-Benzyl-3-((*S*)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((*R*,3*S*)-S12). ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 7.02 (m, 3H), 6.83 (m, 2H), 4.98 (m, 1H), 4.01 (ddt, ³*J*_{H,H} = 9.3 Hz, ³*J*_{H,H} = 7.9 Hz, ³*J*_{H,H} = 3.1 Hz, 1H), 3.59 (dd, ²*J*_{H,H} = 17.3 Hz, ³*J*_{H,H} = 7.8 Hz, 1H), 3.37 (dd, ²*J*_{H,H} = 9.0 Hz, ³*J*_{H,H} = 2.8 Hz, 1H), 3.34 (dd, ²*J*_{H,H} = 17.3 Hz, ³*J*_{H,H} = 4.0 Hz, 1H), 3.05 (ddt, ²*J*_{H,H} = 8.8 Hz, ³*J*_{H,H} = 8.0 Hz, ⁴*J*_{H,H} = 0.8 Hz, 1H), 2.92 (d, ³*J*_{H,H} = 6.5 Hz, OH), 2.86 (dd, ²*J*_{H,H} = 13.4 Hz, ³*J*_{H,H} = 3.3 Hz, 1H), 2.21 (dd, ²*J*_{H,H} = 13.4 Hz, ³*J*_{H,H} = 9.5 Hz, 1H), 1.47 (d, ⁵*J*_{H,H} = 2.2 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 171.1 (C_q), 153.1 (C_q), 135.8 (C_q), 129.6 (2xCH), 129.0 (2xCH), 127.4 (CH), 81.1 (C_q), 80.1 (C_q), 65.7 (CH₂), 59.2 (CH), 54.8 (CH), 44.1 (CH₂), 37.6 (CH₂), 3.3 (CH₃) ppm. HRMS (ESI): [M+H]⁺ calculated for C₁₆H₁₇NO₄H⁺ *m*/*z* 288.1230; found *m*/*z* 288.1226. Optical rotation: [*α*]25 D = -93.5 (*c* 0.20, CH₂Cl₂).

Synthesis of (*R*)-3-hydroxyhex-4-ynoic acid ((*R*)-S13).

Following the same procedure as for (2R,3R)-**S6**, (R,3R)-**S12** (88 mg, 0.31 mmol) was converted into (*R*)-3-hydroxyhex-4-ynoic acid ((*R*)-**S13**) that was obtained as a colourless oil (34 mg, 0.27 mmol, 87%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 4.75 (tq, ³*J*_{H,H} = 6.1 Hz, ⁵*J*_{H,H} = 2.2 Hz, 1H), 2.78 (d, ³*J*_{H,H} = 6.0 Hz, 2H), 1.84 (d, ⁵*J*_{H,H} = 2.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 176.2 (C_q), 82.2 (C_q), 78.2 (C_q), 58.9 (CH), 42.1 (CH₂), 3.7 (CH₃) ppm. HRMS (ESI): [M-H]⁻ calculated for C₆H₇O₃⁻ *m/z* 127.0401; found *m/z* 127.0402. Optical rotation: [*α*]25 D = +14.7 (*c* 0.40, CH₂Cl₂).

Synthesis of (S)-3-hydroxyhex-4-ynoic acid ((S)-S13).

Following the same procedure as for (2R,3R)-**S6**, (R,3S)-**S12** (169 mg, 0.59 mmol) was converted into (*S*)-3-hydroxyhex-4-ynoic acid ((*S*)-**S13**) that was obtained as a colourless oil (60 mg, 0.47 mmol, 80%). Spectroscopic data were identical to those of (*R*)-**S13**. HRMS (ESI): [M-H]⁻ calculated for C₆H₇O₃⁻ *m/z* 127.0401; found *m/z* 127.0401. Optical rotation: [α]25 D = -16.6 (*c* 0.50, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (*R*,*Z*)-3-hydroxyhex-4-enethioate ((*R*)-5).

A mixture of (*R*)-3-hydroxyhex-4-ynoic acid ((*R*)-**S13**) (30 mg, 0.23 mmol), Lindlar's catalyst (5 mg) and quinoline (3 mg, 0.02 mmol) in Et₂O (10 mL) was stirred in a H₂ atmosphere (10 bar) for 1 h. At the end of the reaction the catalyst was removed by filtration and the solvents were evaporated to obtain the crude product (*R*)-**S14** that was used for the next step without purification. Then following the same procedure as for (*R*)-**1**, (*R*)-**S14** was converted into S-(2-acetamidoethyl) (*R*,*Z*)-3-hydroxyhex-4-enethioate ((*R*)-**5**) that was obtained as a colourless oil (10 mg, 0.04 mmol, 18% over two steps). ¹H NMR (500 MHz, C₆D₆): 5.39 (m, 1H), 5.32 (m, 1H), 4.94 (tdd, ³*J*_{H,H} = 8.5 Hz, ³*J*_{H,H} = 4.0 Hz, ⁴*J*_{H,H} = 1.0 Hz, 1H), 4.80 (br s, NH), 3.17 (m, 2H), 2.76 (m, 1H), 2.68 (m, 1H), 2.66 (dd, ²*J*_{H,H} = 14.8 Hz, ³*J*_{H,H} = 6.7 Hz, ⁴*J*_{H,H} = 1.5 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 197.7 (C_q), 169.5 (C_q), 132.5 (CH), 126.2 (CH), 65.0 (CH), 51.7 (CH₂), 39.1 (CH₂), 29.2 (CH₂), 22.8 (CH₃), 13.2 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₀H₁₇NO₃SNa⁺ *m*/*z* 254.0821; found *m*/*z* 254.0815. Optical rotation: [*q*]25 D = +15.7 (*c* 0.17, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (S,Z)-3-hydroxyhex-4-enethioate ((S)-5).

Following the same procedure as for (*R*)-**5**, (*S*)-**S13** (50 mg, 0.39 mmol) was converted into S-(2-acetamidoethyl) (*S*,*Z*)-3-hydroxyhex-4-enethioate ((*S*)-**5**) that was obtained as a colourless oil (21 mg, 0.09 mmol, 23% over two steps). Spectroscopic data were identical to those of (*R*)-**5**. HRMS (ESI): [M+Na]⁺ calculated for C₁₁H₁₉NO₃SNa⁺ *m*/*z* 254.0821; found *m*/*z* 254.0823. Optical rotation: [α]25 D = -14.3 (*c* 0.20, CH₂Cl₂).

Scheme S6. Synthesis of both enantiomers of 6.

Synthesis of (*R*)-4-benzyl-3-((*R*)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2one ((*R*,3*R*)-S15) and (*R*)-4-benzyl-3-((*S*)-3-hydroxy-5-methylhex-4enoyl)oxazolidin-2-one ((*R*,3*S*)-S15). Following the same procedure as for (2*R*,3*R*)-S5, (*R*)-S7 (1.50 g, 6.84 mmol) was converted into the minor diastereomer (*R*)-4benzyl-3-((*R*)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*R*)-S15, 272 mg, 0.90 mmol, 13%) and the major diastereomer (*R*)-4-benzyl-3-((*S*)-3-hydroxy-5methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*S*)-S15, 825 mg, 2.72 mmol, 40%), dr = 1 : 3, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as colourless solids.

(*R*)-4-Benzyl-3-((*R*)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*R*)-S15). ¹H NMR (700 MHz, CDCl₃): δ_{H} 7.34 (m, 2H), 7.28 (m, 1H), 7.21 (m, 2H), 5.29 (dhept, ${}^{3}J_{H,H}$ = 8.7 Hz, ${}^{4}J_{H,H}$ = 1.4 Hz, 1H), 4.89 (ddd, ${}^{3}J_{H,H}$ = 8.8 Hz, ${}^{3}J_{H,H}$ = 8.8 Hz, ${}^{3}J_{H,H}$ = 8.2 Hz, 1H), 4.71 (m, 1H), 4.22 (ddd, ${}^{2}J_{H,H}$ = 9.1 Hz, ${}^{3}J_{H,H}$ = 7.7 Hz, ${}^{4}J_{H,H}$ = 0.5 Hz, 1H), 4.19 (dd, ${}^{2}J_{H,H}$ = 9.1 Hz, ${}^{3}J_{H,H}$ = 9.1 Hz, ${}^{3}J_{H,H}$ = 13.5 Hz, ${}^{3}J_{H,H}$ = 3.2 Hz, 1H), 3.20 (dd, ${}^{2}J_{H,H}$ = 17.3 Hz, ${}^{3}J_{H,H}$ = 9.1 Hz, 1H), 3.08 (dd, ${}^{2}J_{H,H}$ = 17.3 Hz, ${}^{3}J_{H,H}$ = 3.2 Hz, 1H), 2.80 (dd, ${}^{2}J_{H,H}$ = 13.5 Hz, ${}^{3}J_{H,H}$ = 9.4 Hz, 1H), 1.74 (d, ${}^{4}J_{H,H}$ = 1.4 Hz, 3H), 1.72 (d, ${}^{4}J_{H,H}$ = 1.4 Hz, 3H) ppm; 13 C NMR (176 MHz, CDCl₃): δ_{C} 172.6 (C_q), 153.5 (C_q), 136.2 (C_q), 135.2 (C_q), 129.6 (2xCH), 129.2 (2xCH), 127.6 (CH), 125.9

(CH), 66.5 (CH₂), 65.2 (CH), 55.2 (CH), 43.1 (CH₂), 38.0 (CH₂), 25.9 (CH₃), 18.4 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for $C_{17}H_{21}NO_4Na^+ m/z$ 326.1363; found m/z 326.1357. Optical rotation: [α]25 D = -51.0 (c 0.20, CH₂Cl₂).

(*R*)-4-Benzyl-3-((*S*)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*S*)-S15). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 7.34 (m, 2H), 7.28 (m, 1H), 7.21 (m, 2H), 5.28 (dhept, ${}^{3}J_{\rm H,\rm H}$ = 8.7 Hz, ${}^{4}J_{\rm H,\rm H}$ = 1.4 Hz, 1H), 4.91 (ddd, ${}^{3}J_{\rm H,\rm H}$ = 8.7 Hz, ${}^{3}J_{\rm H,\rm H}$ = 7.5 Hz, ${}^{3}J_{\rm H,\rm H}$ = 4.6 Hz, 1H), 4.70 (m, 1H), 4.22 (ddd, ${}^{2}J_{\rm H,\rm H}$ = 9.3 Hz, ${}^{3}J_{\rm H,\rm H}$ = 7.6 Hz, ${}^{4}J_{\rm H,\rm H}$ = 0.5 Hz, 1H), 4.19 (dd, ${}^{2}J_{\rm H,\rm H}$ = 9.2 Hz, ${}^{3}J_{\rm H,\rm H}$ = 3.0 Hz, 1H), 3.31 (dd, ${}^{2}J_{\rm H,\rm H}$ = 13.4 Hz, ${}^{3}J_{\rm H,\rm H}$ = 3.4 Hz, 1H), 3.15 (dd, ${}^{2}J_{\rm H,\rm H}$ = 17.4 Hz, ${}^{3}J_{\rm H,\rm H}$ = 4.7 Hz, 1H), 3.11 (dd, ${}^{2}J_{\rm H,\rm H}$ = 17.4 Hz, ${}^{3}J_{\rm H,\rm H}$ = 7.7 Hz, 1H), 2.79 (dd, ${}^{2}J_{\rm H,\rm H}$ = 1.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 172.4 (C_q), 153.5 (C_q), 136.2 (C_q), 135.3 (C_q), 129.5 (2xCH), 129.1 (2xCH), 127.6 (CH), 125.8 (CH), 66.5 (CH₂), 65.1 (CH), 55.2 (CH), 43.0 (CH₂), 38.1 (CH₂), 25.9 (CH₃), 18.4 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₇H₂₁NO₄Na⁺ *m/z* 326.1363; found *m/z* 326.1358. Optical rotation: [*a*]25 D = -90.0 (*c* 0.10, CH₂Cl₂).

Synthesis of (*R*)-3-hydroxy-5-methylhex-4-enoic acid ((*R*)-S16).

Following the same procedure as for (2R,3R)-**S6**, (R,3R)-**S15** (122 mg, 0.40 mmol) was converted into (*R*)-3-hydroxy-5-methylhex-4-enoic acid ((*R*)-**S16**) that was obtained as a colourless oil (40 mg, 0.28 mmol, 69%). ¹H NMR (500 MHz, CDCl₃): 5.22 (dhept, ${}^{3}J_{H,H} = 8.6$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H), 4.80 (ddd, ${}^{3}J_{H,H} = 8.5$ Hz, ${}^{3}J_{H,H} = 8.6$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H), 4.80 (ddd, ${}^{3}J_{H,H} = 8.5$ Hz, ${}^{3}J_{H,H} = 8.6$ Hz, ${}^{4}J_{H,H} = 16.4$ Hz, ${}^{3}J_{H,H} = 8.4$ Hz, 1H), 2.54 (dd, ${}^{2}J_{H,H} = 16.4$ Hz, ${}^{3}J_{H,H} = 4.0$ Hz, 1H), 1.73 (d, ${}^{4}J_{H,H} = 1.4$ Hz, 3H), 1.71 (d, ${}^{4}J_{H,H} = 1.4$ Hz, 3H) ppm; 13 C NMR (126 MHz, CDCl₃): δ_{C} 176.8 (C_q), 137.1 (C_q), 125.4 (CH), 65.3 (CH), 41.5 (CH₂), 25.9 (CH₃), 18.4 (CH₃) ppm. HRMS (ESI): [M-H]⁻ calculated for C₇H₁₁O₃⁻ *m/z* 143.0714; found *m/z* 143.0714. Optical rotation: [*α*]25 D = +12.0 (*c* 0.15, CH₂Cl₂).

Synthesis of (S)-3-hydroxy-5-methylhex-4-enoic acid ((S)-S16).

Following the same procedure as for (2R,3R)-**S6**, (R,3S)-**S15** (350 mg, 1.15 mmol) was converted into (*S*)-3-hydroxy-5-methylhex-4-enoic acid ((*S*)-**S16**) that was obtained as a colourless oil (142 mg, 0.98 mmol, 85%). Spectroscopic data were identical to those of (*R*)-**S16**. HRMS (ESI): [M-H]⁻ calculated for C₇H₁₁O₃⁻ *m/z* 143.0714; found *m/z* 143.0714. Optical rotation: [α]25 D = -14.0 (*c* 0.10, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (*R*)-3-hydroxy-5-methylhex-4-enethioate ((*R*)-6).

Following the same procedure as for (*R*)-**1**, (*R*)-**S16** (35 mg, 0.24 mmol) was converted into S-(2-acetamidoethyl) (*R*)-3-hydroxy-5-methylhex-4-enethioate ((*R*)-**6**) that was obtained as a colourless oil (15 mg, 0.06 mmol, 25%). ¹H NMR (500 MHz, C₆D₆): 5.14 (dhept, ${}^{3}J_{H,H} = 8.5$ Hz, ${}^{4}J_{H,H} = 1.4$ Hz, 1H), 4.85 (m, 1H), 4.79 (br s, NH), 3.17 (m, 2H), 2.77 (m, 1H), 2.69 (m, 1H), 2.67 (dd, ${}^{2}J_{H,H} = 14.7$ Hz, ${}^{3}J_{H,H} = 8.5$ Hz, 1H), 2.48 (dd, ${}^{2}J_{H,H} = 14.7$ Hz, ${}^{3}J_{H,H} = 4.1$ Hz, 1H), 2.37 (d, ${}^{3}J_{H,H} = 3.3$ Hz, OH), 1.50 (d, ${}^{4}J_{H,H} = 1.6$ Hz, 3H),1.49 (s, 3H), 1.45 (d, ${}^{4}J_{H,H} = 1.4$ Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 197.8 (C_q), 169.4 (C_q), 134.9 (C_q), 127.2 (CH), 66.2 (CH), 52.0 (CH₂), 39.2 (CH₂), 29.1 (CH₂), 25.6 (CH₃), 22.8 (CH₃), 18.1 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₁H₁₉NO₃SNa⁺ *m*/*z* 268.0978; found *m*/*z* 268.0978. Optical rotation: [*α*]25 D = +16.5 (c 0.15, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxy-5-methylhex-4-enethioate ((S)-6).

Following the same procedure of (*R*)-1, (*S*)-S16 (65 mg, 0.45 mmol) was converted into S-(2-acetamidoethyl) (*S*)-3-hydroxy-5-methylhex-4-enethioate ((*S*)-6) that was obtained as a colourless oil (58 mg, 0.24 mmol, 52%). Spectroscopic data were identical to those of (*R*)-6. HRMS (ESI): [M+Na]⁺ calculated for C₁₁H₁₉NO₃SNa⁺ *m*/*z* 268.0978; found *m*/*z* 268.0976. Optical rotation: [α]25 D = -15.7 (*c* 0.12, CH₂Cl₂).

Scheme S7. Synthesis of both enantiomers of 7.

Synthesis of (*R*)-4-benzyl-3-((*R*,*E*)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2one ((*R*,3*R*)-S17) and (*R*)-4-benzyl-3-((*S*,*E*)-3-hydroxy-4-methylhex-4enoyl)oxazolidin-2-one ((*R*,3*S*)-S17).

Following the same procedure as for (2R,3R)-**S5**, (R)-**S7** (1.00 g, 4.56 mmol) was converted into the major diastereomer (R)-4-benzyl-3-((R,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((R,3R)-**S17**, 625 mg, 2.06 mmol, 45%) and the minor diastereomer (R)-4-benzyl-3-((S,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((R,3S)-**S17**, 147 mg, 0.48 mmol, 11%), dr = 4 : 1, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as colourless solids.

(*R*)-4-Benzyl-3-((*R*,*E*)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*R*)-S17). ¹H NMR (700 MHz, C₆D₆): $\delta_{\rm H}$ 7.04 (m, 2H), 6.99 (m, 1H), 6.86 (m, 2H), 5.61 (qquin, ${}^{3}J_{\rm H,\rm H}$ = 6.6 Hz, ${}^{4}J_{\rm H,\rm H}$ = 1.2 Hz, 1H), 4.67 (m, 1H), 4.08 (ddt, ${}^{3}J_{\rm H,\rm H}$ = 9.3 Hz, ${}^{3}J_{\rm H,\rm H}$ = 8.0 Hz, ${}^{3}J_{\rm H,\rm H}$ = 3.1 Hz, 1H), 3.46 (dd, ${}^{2}J_{\rm H,\rm H}$ = 16.3 Hz, ${}^{3}J_{\rm H,\rm H}$ = 9.6 Hz, 1H), 3.41 (dd, ${}^{2}J_{\rm H,\rm H}$ = 9.0 Hz, ${}^{3}J_{\rm H,\rm H}$ = 2.8 Hz, 1H), 3.13 (dd, ${}^{2}J_{\rm H,\rm H}$ = 9.0 Hz, ${}^{3}J_{\rm H,\rm H}$ = 8.0 Hz, 1H), 3.08 (dd, ${}^{2}J_{\rm H,\rm H}$ = 16.3 Hz, ${}^{3}J_{\rm H,\rm H}$ = 3.4 Hz, 1H), 2.79 (d, ${}^{3}J_{\rm H,\rm H}$ = 4.3 Hz, OH), 2.25 (dd, ${}^{2}J_{\rm H,\rm H}$ = 13.5 Hz, ${}^{3}J_{\rm H,\rm H}$ = 9.4 Hz, 1H), 1.65 (s, 3H),

1.49 (d, ${}^{3}J_{H,H} = 6.8$, Hz, 3H) ppm; ${}^{13}C$ NMR (176 MHz, $C_{6}D_{6}$): δ_{C} 172.4 (C_{q}), 153.4 (C_{q}), 137.2 (C_{q}), 135.8 (C_{q}), 129.7 (2xCH), 129.0 (2xCH), 127.4 (CH), 120.4 (CH), 73.7 (CH), 65.7 (CH₂), 55.0 (CH), 41.9 (CH₂), 37.6 (CH₂), 13.1 (CH₃), 11.9 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for $C_{17}H_{21}NO_4Na^+$ *m*/*z* 326.1363; found *m*/*z* 326.1359. Optical rotation: [α]25 D = -48.9 (*c* 0.10, CH₂Cl₂).

(*R*)-4-Benzyl-3-((*S*,*E*)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((*R*,3*S*)-S17). ¹H NMR (700 MHz, C₆D₆): δ_{H} 7.04 (m, 2H), 6.99 (m, 1H), 6.85 (m, 2H), 5.61 (qquin, ${}^{3}J_{H,H} = 6.7$ Hz, ${}^{4}J_{H,H} = 1.3$ Hz, 1H), 4.69 (m, 1H), 4.07 (ddt, ${}^{3}J_{H,H} = 9.5$ Hz, ${}^{3}J_{H,H} = 8.0$ Hz, ${}^{3}J_{H,H} = 3.1$ Hz, 1H), 3.41 (dd, ${}^{2}J_{H,H} = 8.9$ Hz, ${}^{3}J_{H,H} = 2.8$ Hz, 1H), 3.34 (dd, ${}^{2}J_{H,H} = 16.5$ Hz, ${}^{3}J_{H,H} = 3.1$ Hz, 1H), 3.10 (dd, ${}^{2}J_{H,H} = 8.9$ Hz, ${}^{3}J_{H,H} = 8.1$ Hz, 1H), 2.94 (dd, ${}^{2}J_{H,H} = 13.4$ Hz, ${}^{3}J_{H,H} = 3.4$ Hz, 1H), 2.63 (d, ${}^{3}J_{H,H} = 3.9$ Hz, 0H), 2.27 (dd, ${}^{2}J_{H,H} = 13.4$ Hz, ${}^{3}J_{H,H} = 9.5$ Hz, 1H), 1.65 (s, 3H), 1.49 (d, ${}^{3}J_{H,H} = 6.8$, Hz, 3H) ppm; 13 C NMR (176 MHz, C₆D₆): δ_{C} 172.4 (C_q), 153.3 (C_q), 137.2 (C_q), 135.8 (C_q), 129.6 (2xCH), 129.0 (2xCH), 127.4 (CH), 120.4 (CH), 73.5 (CH), 65.7 (CH₂), 55.0 (CH), 41.9 (CH₂), 37.8 (CH₂), 13.1 (CH₃), 11.9 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₇H₂₁NO₄Na⁺ *m/z* 326.1363; found *m/z* 326.1359. Optical rotation: [*a*]25 D = -100.0 (*c* 0.16, CH₂Cl₂).

Synthesis of (*R*,*E*)-3-hydroxy-4-methylhex-4-enoic acid ((*R*)-S18).

Following the same procedure as for (2R,3R)-**S6**, (R)-**S17** (300 mg, 0.99 mmol) was converted into (R,E)-3-hydroxy-4-methylhex-4-enoic acid ((R)-**S18**) that was obtained as a colourless oil (118 mg, 0.82 mmol, 83%). ¹H NMR (500 MHz, CDCl₃): 5.58 (qquin, ³J_{H,H} = 6.7 Hz, ⁴J_{H,H} = 1.1 Hz, 1H), 4.47 (dd, ³J_{H,H} = 9.4 Hz, ³J_{H,H} = 3.5 Hz, 1H), 2.64 (dd, ²J_{H,H} = 16.1 Hz, ³J_{H,H} = 9.4 Hz, 1H), 2.55 (dd, ²J_{H,H} = 16.1 Hz, ³J_{H,H} = 3.5 Hz, 1H), 1.64 (m, 3H), 1.62 (d, ³J_{H,H} = 6.8 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 177.6 (C_q), 135.8 (C_q), 121.8 (CH), 73.5 (CH), 40.0 (CH₂), 13.2 (CH₃), 11.6 (CH₃) ppm. HRMS (ESI): [M-H]⁻ calculated for C₇H₁₁O₃⁻ *m*/*z* 143.0714; found *m*/*z* 143.0714. Optical rotation: [*a*]25 D = +18.5 (*c* 0.40, CH₂Cl₂).

Synthesis of (*S*,*E*)-3-hydroxy-4-methylhex-4-enoic acid ((*S*)-S18).

Following the same procedure as for (2R,3R)-**S6**, (S)-**S17** (147 mg, 0.48 mmol) was converted into (S,E)-3-hydroxy-4-methylhex-4-enoic acid ((S)-**S18**) that was obtained as a colourless oil (63 mg, 0.44 mmol, 90%). Spectroscopic data were identical to those of (*R*)-**S18**. HRMS (ESI): [M-H]⁻ calculated for C₇H₁₁O₃⁻ *m*/*z* 143.0714; found *m*/*z*

143.0714. Optical rotation: $[\alpha]$ 25 D = -18.9 (*c* 0.50, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (R,E)-3-hydroxy-4-methylhex-4-enethioate ((R)-7).

Following the same procedure as for (*R*)-1, (*R*)-**S18** (118 mg, 0.82 mmol) was converted into S-(2-acetamidoethyl) (*R*,*E*)-3-hydroxy-4-methylhex-4-enethioate ((*R*)-**7**) that was obtained as a colourless oil (48 mg, 0.20 mmol, 24%). ¹H NMR (500 MHz, CDCl₃): 6.06 (br s, NH), 5.56 (qquin, ${}^{3}J_{H,H} = 6.7$ Hz, ${}^{4}J_{H,H} = 1.1$ Hz, 1H), 4.49 (dd, ${}^{3}J_{H,H} = 9.2$ Hz, ${}^{3}J_{H,H} = 3.5$ Hz, 1H), 3.45 (m, 2H), 3.06 (m, 2H), 2.83 (dd, ${}^{2}J_{H,H} = 15.0$ Hz, ${}^{3}J_{H,H} = 9.2$ Hz, 1H), 2.73 (dd, ${}^{2}J_{H,H} = 15.1$ Hz, ${}^{3}J_{H,H} = 3.2$ Hz, 1H), 2.35 (br s, OH), 1.98 (s, 3H), 1.63 (s, 3H), 1.61 (d, ${}^{3}J_{H,H} = 6.7$ Hz, 3H) ppm; 13 C NMR (126 MHz, CDCl₃): δ_{C} 199.2 (C_q), 170.8 (C_q), 136.1 (C_q), 121.7 (CH), 74.2 (CH), 49.7 (CH₂), 39.6 (CH₂), 28.9 (CH₂), 23.2 (CH₃), 13.2 (CH₃), 11.7 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₁H₁₉NO₃SNa⁺ *m*/*z* 268.0978; found *m*/*z* 268.0971. Optical rotation: [*α*]25 D = +16.0 (*c* 0.10, CH₂Cl₂).

Synthesis of S-(2-acetamidoethyl) (S,E)-3-hydroxy-4-methylhex-4-enethioate ((S)-7).

Following the same procedure as for (*R*)-1, (*S*)-**S18** (50 mg, 0.35 mmol) was converted into S-(2-acetamidoethyl) (*S*,*E*)-3-hydroxy-4-methylhex-4-enethioate ((*S*)-7) that was obtained as a colourless oil (13 mg, 0.05 mmol, 15%). Spectroscopic data were identical to those of (*R*)-7. HRMS (ESI): [M+Na]⁺ calculated for C₁₁H₁₉NO₃SNa⁺ *m*/*z* 268.0978; found *m*/*z* 268.0979. Optical rotation: [α]25 D = -15.7 (*c* 0.10, CH₂Cl₂).

Scheme S8. Synthesis of (*rac*)-8.

Synthesis of ethyl (2E,4E)-4-methylhexa-2,4-dienoate (S20).

To a solution of triethyl phosphonoacetate (3.46 g, 15.4 mmol) in THF (18 mL) was added ⁿBuLi (6.2 mL, 2.5 M in hexane, 15.4 mmol) dropwise at 0 °C under Ar. After 0.5 h, (*E*)-2-methylbut-2-enal (1.30 g, 15.4 mmol) was added dropwise. Stirring was continued at 0 °C for 1.5 h. The mixture was quenched by the addition of sat.NH₄Cl solution (20 mL). The aqueous layer was extracted with Et₂O (4 x 20 mL). The combined organic layers were dried with MgSO₄ and concentrated to dryness. The residue was purified through silica gel column chromatography (petroleum ether/EtOAc, 20:1 – 5:1) to afford ethyl (2*E*,4*E*)-4-methylhexa-2,4-dienoate (**S20**) as a colourless solid (2.10 g, 13.6 mmol, 88%). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 7.31 (d, ³*J*_{H,H} = 15.7 Hz, 1H), 5.98 (q, ³*J*_{H,H} = 7.2 Hz, 1H), 5.78 (d, ³*J*_{H,H} = 15.7 Hz, 1H), 4.20 (q, ³*J*_{H,H} = 7.1 Hz, 2H), 1.81 (d, ³*J*_{H,H} = 7.1 Hz, 3H), 1.76 (m, 3H), 1.29 (t, ³*J*_{H,H} = 7.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 167.8 (C_q), 149.6 (CH), 136.4 (CH), 133.9 (C_q), 115.4 (CH), 60.3 (CH₂), 14.7 (CH₃), 14.5 (CH₃), 11.9 (CH₃) ppm.¹¹

Synthesis of (2E,4E)-4-methylhexa-2,4-dien-1-ol (S21).

To a solution of ethyl (2*E*,4*E*)-4-methylhexa-2,4-dienoate (**S20**) (2.10 g, 13.6 mmol) in Et_2O (30 mL) was added LiAlH₄ (517 mg, 13.6 mmol) in small portions at 0 °C under Ar. The reaction mixture was stirred for 30 min, then saturated NH₄Cl solution (30 mL) was added and stirring was continued for 10 min. The aqueous layer was extracted with Et_2O (4 x 50 mL). The combined organic layers were dried with MgSO₄ and concentrated to dryness. Purification of the crude product by column chromatography

on silica gel (petroleum ether/Et₂O, 10:1) gave (2*E*,4*E*)-4-methylhexa-2,4-dien-1-ol (**S21**) as a colourless oil (1.10 g, 9.81 mmol, 72%). ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.25 (d, ³*J*_{H,H} = 15.6 Hz, 1H), 5.71 (dt, ³*J*_{H,H} = 15.6 Hz, ³*J*_{H,H} = 6.1 Hz, 1H), 5.57 (q, ³*J*_{H,H} = 6.8 Hz, 1H), 4.19 (d, ³*J*_{H,H} = 6.2 Hz, 2H), 1.74 (m, 3H), 1.72 (d, ³*J*_{H,H} = 7.4 Hz) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta_{\rm C}$ 136.9 (CH), 134.0 (C_q), 127.7 (CH), 124.9 (CH), 64.1 (CH₂), 14.0 (CH₃), 12.2 (CH₃) ppm.¹²

Synthesis of (2*E*,4*E*)-4-methylhexa-2,4-dienal (S22).

A mixture of **S21** (1.10 g, 9.81 mmol), silica gel and PCC (3.17 g, 14.7 mmol) in CH₂Cl₂ (40 mL) was stirred for 3 h with ice cooling. At the end of the reaction the silica gel was removed by silica gel column and the solvents were evaporated to obtain the crude product. Purification by column chromatography on silica gel (pentane/ Et₂O, 20:1) yielded **S22** (705 mg, 6.40 mmol, 65%) as a colourless oil. The NMR spectra indicated the presence of two conformers. ¹H NMR (500 MHz, C₆D₆): δ_{H} 9.47 (d, ³*J*_{H,H} = 7.6 Hz, 1H), 6.52 and 6.53 (d, ³*J*_{H,H} = 15.7 Hz, 1H), 6.00 (ddquin, ³*J*_{H,H} = 15.7 Hz, ³*J*_{H,H} = 7.6 Hz, ⁵*J*_{H,H} = 0.5 Hz, 1H), 5.47 (m, 1H), 1.34 (br d, ³*J*_{H,H} = 7.0 Hz, 1H), 1.31 (m, 1H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 192.80 and 192.76 (CH), 156.14 and 156.07 (CH), 137.34 and 137.26 (CH), 134.46 (C_q), 127.15 and 127.13 (CH), 14.34 (CH₃), 11.56 (CH₃) ppm.¹³

Synthesis of ethyl (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6-dienoate (S23).

To a solution of ${}^{P}P_{2}NH$ (0.9 mL, 6.42 mmol) in THF (12 mL) was added ⁿBuLi (3.5 mL, 1.6 M in hexane, 5.60 mmol) dropwise at –78 °C under N₂. EtOAc (0.5 mL, 5.50 mmol) was then added dropwise. The resulting mixture was allowed to stir at –78 °C for 30 min, and then (2*E*,4*E*)-4-methylhexa-2,4-dienal (**S22**) (500 mg, 4.54 mmol) was added dropwise. After 2 h at –78 °C, the solution was poured onto an ice-cold solution of NH₄Cl. Ether was added and the resulting mixture was stirred vigorously for a few minutes. The layers were separated and the aqueous layer was extracted with Et₂O (3 x 30 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated to dryness. Pure ethyl (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6-dienoate (**S23**, 730 mg, 3.68 mmol, 81%) was obtained by column chromatography on silica gel (petroleum ether/EtOAc, 5:1 – 3:1). ¹H NMR (700 MHz, C₆D₆): δ_{H} 6.33 (d, ³*J*_{H,H} = 15.7 Hz, 1H), 5.53 (ddquin, ³*J*_{H,H} = 15.7 Hz, ³*J*_{H,H} = 6.2 Hz, ⁵*J*_{H,H} = 0.5 Hz, 1H), 5.45 (q, ³*J*_{H,H} = 6.8 Hz, 1H), 4.58 (m, 1H), 3.89 (q, ³*J*_{H,H} = 7.1 Hz, 2H), 2.66 (br s, OH), 2.44 (dd, ²*J*_{H,H}

= 15.8 Hz, ${}^{3}J_{H,H}$ = 8.4 Hz, 1H), 2.35 (dd, ${}^{2}J_{H,H}$ = 15.8 Hz, ${}^{3}J_{H,H}$ = 4.2 Hz, 1H), 1.60 (m, 3H), 1.53 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 3H), 0.90 (t, ${}^{3}J_{H,H}$ = 7.1 Hz, 3H) ppm; 13 C NMR (176 MHz, C₆D₆): δ_{C} 172.0 (C_q), 135.6 (CH), 134.1 (C_q), 127.7 (CH), 127.3 (CH), 69.3 (CH₂), 60.4 (CH), 42.3 (CH₂), 14.2 (CH₃), 13.8 (CH₃), 12.1 (CH₃) ppm.

Synthesis of (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6-dienoic acid (S24).

To a solution of **S23** (200 mg, 1.01 mmol) in EtOH/H₂O (4/1 mL), NaOH (100 mg, 2.50 mmol) was added and the mixture was stirred for 0.5 h. The mixture was acidified by adding HCl (1 N, 3 mL), followed by extraction with Et₂O (3 x 20 mL). The combined extracts were dried with MgSO₄ and concentrated to yield the product (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6-dienoic acid (**S24**) (124 mg, 0.73 mmol, 72%). ¹H NMR (700 MHz, C₆D₆): δ_{H} 6.24 (d, ³*J*_{H,H} = 15.8 Hz, 1H), 5.45 (q, ³*J*_{H,H} = 6.8 Hz, 1H), 5.41 (dd, ³*J*_{H,H} = 15.7 Hz, ³*J*_{H,H} = 6.4 Hz, 1H), 4.45 (m, 1H), 2.39 (dd, ²*J*_{H,H} = 16.0 Hz, ³*J*_{H,H} = 8.7 Hz, 1H), 2.28 (dd, ²*J*_{H,H} = 16.0 Hz, ³*J*_{H,H} = 4.0 Hz, 1H), 1.57 (m, 3H), 1.53 (d, ³*J*_{H,H} = 6.8 Hz, 3H) ppm; ¹³C NMR (176 MHz, C₆D₆): δ_{C} 177.2 (C_q), 136.0 (CH), 134.0 (C_q), 127.7 (CH), 127.0 (CH), 69.2 (CH), 42.0 (CH₂), 13.8 (CH₃), 12.1 (CH₃) ppm.

Synthesis of S-(2-acetamidoethyl) (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6dienethioate ((*rac*)-8).

Following the same procedure as for (*R*)-1, **S24** (100 mg, 0.59 mmol) was converted into S-(2-acetamidoethyl) (4*E*,6*E*)-3-hydroxy-6-methylocta-4,6-dienethioate ((*rac*)-8) that was obtained as a colourless oil (65 mg, 0.24 mmol, 41%). ¹H NMR (700 MHz, C_6D_6): δ_H 6.29 (d, ³*J*_{H,H} = 15.8 Hz, 1H), 5.44 (m, 2H), 4.71 (br s, NH), 4.63 (m, 1H), 3.16 (m, 2H), 2.72 (m, 2H), 2.64 (dd, ²*J*_{H,H} = 14.7 Hz, ³*J*_{H,H} = 8.6 Hz, 1H), 2.50 (dd, ²*J*_{H,H} = 14.7 Hz, ³*J*_{H,H} = 3.9 Hz, 1H), 1.60 (m, 3H), 1.53 (d, ³*J*_{H,H} = 6.7 Hz, 3H), 1.49 (s, 3H) ppm; ¹³C NMR (176 MHz, C_6D_6): δ_C 197.7 (C_q), 169.4 (C_q), 135.6 (CH), 134.1 (C_q), 127.6 (CH), 127.5 (CH), 69.9 (CH), 52.0 (CH₂), 39.2 (CH₂), 29.2 (CH₂), 22.8 (CH₃), 13.9 (CH₃), 12.1 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₃H₂₁NO₃SNa⁺ *m*/*z* 294.1134; found *m*/*z* 294.1133.

Scheme S9. Synthesis of both enantiomers of 9.

Synthesis of S-(2-acetamidoethyl) (*R***)-3-hydroxy-3-phenylpropanethioate ((***R***)-9). Following the same procedure as for (***R***)-1, (***R***)-S25** (50 mg, 0.30 mmol) was converted into S-(2-acetamidoethyl) (*R*)-3-hydroxy-3-phenylpropanethioate ((*R*)-9) that was obtained as a colourless oil (34 mg, 0.13 mmol, 42%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 7.20 (m, 2H), 7.11 (m, 2H), 7.05 (m, 1H), 5.12 (ddd, ³*J*_{H,H} = 9.4 Hz, ⁴*J*_{H,H} = 3.6 Hz, ⁴*J*_{H,H} = 3.6 Hz, 1H), 4.61 (br s, NH), 3.18 (m, 1H), 3.08 (m, 2H), 2.81 (dd, ²*J*_{H,H} = 15.0 Hz, ³*J*_{H,H} = 9.5 Hz, 1H), 2.75 (dt, ²*J*_{H,H} = 13.7 Hz, ³*J*_{H,H} = 6.3 Hz, 1H), 2.64 (m, 1H), 2.60 (dd, ²*J*_{H,H} = 15.1 Hz, ³*J*_{H,H} = 3.4 Hz, 1H), 1.46 (s, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 197.9 (C_q), 169.4 (C_q), 143.5 (C_q), 128.6 (2xCH), 127.8 (CH), 126.0 (2xCH), 71.1 (CH), 53.6 (CH₂), 39.0 (CH₂), 29.2 (CH₃), 22.7 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₃H₁₇NO₃SNa⁺ *m/z* 290.0821; found *m/z* 290.0825. Optical rotation: [*α*]25 D = +21.2 (*c* 0.20, CHCl₃).

Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxy-3-phenylpropanethioate ((S)-9).

Following the same procedure as for (*R*)-1, (*S*)-**S25** (50 mg, 0.30 mmol) was converted into S-(2-acetamidoethyl) (*S*)-3-hydroxy-3-phenylpropanethioate ((*S*)-9) that was obtained as a colourless oil (64 mg, 0.24 mmol, 80%). Spectroscopic data were identical to those of (*R*)-9. HRMS (ESI): [M+Na]⁺ calculated for C₁₃H₁₇NO₃SNa⁺ *m*/*z* 290.0821; found *m*/*z* 290.0825. Optical rotation: [α]25 D = -18.2 (*c* 0.50, CHCl₃).

Gene cloning

Cloning of the coding genes for BorDH2, BorDH3, BorDH5, FosDH2, FosDH2, RifDH10, ShawDH1, ShawDH2, Cpz and FabZ into the pYE-Express¹⁷ or pET28 expression vectors was reported previously.¹⁵

Amplification of *cpz2* from cosmid cpzLK09 was performed using primer pair Cpz2pET28_FW (AAAAAAGAATTCATGAGCATCACCGTCAACGGC) and Cpz2pET28_RV (AAAAAAAGCTTTCAGGCGTAGAACCGCGACAG).¹⁸ The resulting PCR product was cloned into the EcoRI and HindIII sites of expression vector pET28 and the obtained plasmid was verified by PCR and sequencing.

Gene expression and protein purification

E. coli BL21(DE3) cells harboring the corresponding pYE-Express or pET28 derived plasmids were used to inoculate a preculture in LB medium (10 mL) supplied with kanamycin (50 µg/mL final concentration), which was grown with shaking at 37 °C overnight. The precultures were used to inoculate main cultures (1/100) in LB medium with kanamycin (50 µg/mL final concentration) and the cells were grown with shaking at 37 °C until $OD_{600} = 0.4 - 0.6$ was reached. The cultures were cooled down to 18 °C, before IPTG (0.4 mm final concentration) was added to induce expression. The cultures were shaken at the same temperature overnight and then centrifuged (3500 x g, 40 min, 4 °C). The medium was discarded and the cell pellet was resuspended in binding buffer (10 mL/L culture; 40 mM Tris-HCl, 100 mM NaCl, pH 7.8, 4 °C). The cells were lysied by ultrasonication (10 x 1 min). The cell debris was spun down (14600 x g, 10 min, 4 °C) and the soluble protein fraction was filtrated and loaded onto a Ni²⁺-NTA affinity chromatography column (Ni-NTA superflow, Qiagen, Venlo, Netherlands). The bound target protein was washed with wash buffer (2 x 10 mL/L culture; 40 mM Tris-HCl, 100 mM NaCl, 50 mM imidazole, pH 7.8, 4 °C) and desorbed from the stationary phase with elution buffer (1 x 10 mL/L culture; 40 mM Tris-HCl, 100 mM NaCl, 500 mM imidazole, pH 7.8, 4 °C) with fractionation. The fractions were analysed by SDS-PAGE and fractions containing pure protein were pooled and used for incubation experiments (Figure S1). Finally, the eluate was concentrated, the buffer was replaced by incubation buffer (25 mM HEPES, 100 mM NaCl, pH 7.5). For ShawDH1 expression, the strain was E. coli BL21(DE3) transformed with plasmid pGro7, additionally supplemented with arabinose (500 mg/L) to induce expression of the GroEL/ES chaperone.¹⁵

Figure S1. SDS-PAGE analysis of all recombinant enzymes used in this study. The theoretical molecular weights of target proteins are 34.6 kDa (BorDH2), 34.0 kDa (BorDH3), 34.2 kDa (BorDH5), 34.1 kDa (RifDH10), 33.3 kDa (FosDH1), 33.1 kDa (FosDH2), 19.8 kDa (FabZ), 20.3 kDa (Cpz2), 15.2 kDa (ShawDH1) and 16.5 kDa (ShawDH2).

Activity assays

Activity assays were carried out for all combinations of substrate and enzyme listed in Table S1. The reactions were performed in HEPES buffer (25 mM HEPES, 100 mm NaCl, pH 7.5). A solution of enzyme in HEPES buffer (100 μ L, enzyme concentration adjusted to 6 mg/mL) was added into SNAC thioesters (1 mg dissolved in 5 μ L DMSO). The reaction mixtures were incubated at 30 °C for 16 h and then extracted with C₆D₆ (0.6 mL). After extraction the samples were directly analysed by ¹H NMR spectroscopy (Figures S2–S9). For the most active enzyme BorDH2 the reactions were repeated in triplicates and conversions (in %) were quantified by ¹H NMR peak integrations (Table S2).

Scheme S10. Synthesis of reference standards for DH products.

Synthesis of S-(2-acetamidoethyl) (*E*)-but-2-enethioate (S27).

Following the same procedure as for (*R*)-1, **S26** (100 mg, 1.16 mmol) was converted into S-(2-acetamidoethyl) (*E*)-but-2-enethioate (**S27**) that was obtained as a colourless oil (170 mg, 0.91 mmol, 78%). ¹H NMR (700 MHz, C₆D₆): $\delta_{\rm H}$ 6.73 (dq, ³*J*_{H,H} = 15.4 Hz, ³*J*_{H,H} = 6.9 Hz, 1H), 5.91 (dq, ³*J*_{H,H} = 15.4 Hz, ⁴*J*_{H,H} = 1.7 Hz, 1H), 3.24 (dt, ³*J*_{H,H} = 5.8 Hz, ³*J*_{H,H} = 6.8 Hz, 2H), 2.88 (t, ³*J*_{H,H} = 6.8 Hz, 2H), 1.48 (s, 3H), 1.22 (dd, ³*J*_{H,H} = 6.9 Hz, ⁴*J*_{H,H} = 1.7 Hz, 3H) ppm; ¹³C NMR (176 MHz, C₆D₆): $\delta_{\rm C}$ 189.3 (C_q), 168.9 (C_q), 141.1 (CH), 130.2 (CH), 39.8 (CH₂), 28.5 (CH₂), 22.7 (CH₃), 17.4 (CH₃) ppm. HRMS (ESI): [M+H]⁺ calculated for C₈H₁₃NO₂SH⁺ *m*/*z* 188.0740; found *m*/*z* 188.0737.¹⁵

Synthesis of S-(2-acetamidoethyl) (Z)-but-2-enethioate (S30).

A mixture of but-2-ynoic acid (100 mg, 1.19 mmol), quinoline (5 mg, 0.04 mmol) and Lindlar's catalyst (23 mg) in Et₂O (10 mL) was stirred in a H₂ atmosphere (10 bar) for 1 h at room temperature. The catalyst was removed by filtration and the solvents were evaporated. The product (*Z*)-but-2-enoic acid (40 mg, 0.46 mmol, 39%) was obtained by column chromatography on silica gel (pentane / Et₂O, 2:1). ¹H NMR (700 MHz, CDCl₃): $\delta_{\rm H}$ 6.47 (dq, ³*J*_{H,H} = 11.5 Hz, ³*J*_{H,H} = 7.3 Hz, 1H), 5.83 (dq, ³*J*_{H,H} = 11.6 Hz, ⁴*J*_{H,H} = 1.8 Hz, 1H), 2.16 (dd, ³*J*_{H,H} = 7.3 Hz, ³*J*_{H,H} = 1.8 Hz, 3H) ppm; ¹³C NMR (176 MHz, CDCl₃): $\delta_{\rm C}$ 172.0 (C_q), 148.0 (CH), 120.2 (CH), 15.8 (CH₃) ppm.

A mixture of (*Z*)-but-2-enoic acid (20 mg, 0.23 mmol) and triethylamine (47 mg, 0.46 mmol) in CH₂Cl₂ (2 mL) was stirred for 10 mins with ice cooling. CICO₂Et (50 mg, 0.46 mmol) was added to this solution. After 2 h, N-acetylcysteamine (29 mg, 0.23 mmol) was added. The mixture was stirred for 3 h at room temperature and then concentrated under reduced pressure. The residue was purified by HPLC to yield **S30** (6 mg, 0.03 mmol, 14%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 5.86 (dq, ³*J*_{H,H} = 11.2 Hz, ⁴*J*_{H,H} = 1.7 Hz, 1H), 5.51 (dq, ³*J*_{H,H} = 11.3 Hz, ³*J*_{H,H} = 7.3 Hz, 1H), 3.21 (dt, ³*J*_{H,H} = 5.8 Hz, ³*J*_{H,H} = 6.8 Hz, 2H), 2.84 (t, ³*J*_{H,H} = 6.7 Hz, 2H), 1.92 (dd, ³*J*_{H,H} = 7.3 Hz, ⁴*J*_{H,H} = 1.8 Hz, 3H), 1.47 (s, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 189.4 (C_q), 168.9 (C_q), 141.8 (CH), 127.2 (CH), 39.7 (CH₂), 28.8 (CH₂), 22.7 (CH₃), 16.2 (CH₃) ppm. HRMS (ESI): [M+H]⁺ calculated for C₈H₁₃NO₂SH⁺ *m*/*z* 188.0740; found *m*/*z* 188.0738.¹⁵

Synthesis of S-(2-acetamidoethyl) (*E*)-2-methylbut-2-enethioate (S32).

Following the same procedure as for (*R*)-1, **S31** (50 mg, 0.50 mmol) was converted into S-(2-acetamidoethyl) (*E*)-2-methylbut-2-enethioate (**S32**) that was obtained as a

colourless oil (77 mg, 0.38 mmol, 77%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 6.87 (qq, ³ $J_{H,H}$ = 6.9 Hz, ⁴ $J_{H,H}$ = 1.3 Hz, 1H), 6.04 (br s, NH), 3.44 (q, ³ $J_{H,H}$ = 6.1 Hz, 2H), 3.07 (t, ³ $J_{H,H}$ = 6.6 Hz, 2H), 1.98 (s, 3H), 1.87 (quin, ⁴ $J_{H,H}$ = 1.1 Hz, 3H), 1.84 (dq, ³ $J_{H,H}$ = 6.9 Hz, ⁴ $J_{H,H}$ = 1.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 194.0 (C_q), 170.6 (C_q), 137.0 (CH), 137.0 (C_q), 40.1 (CH₂), 28.4 (CH₂), 23.3 (CH₃), 14.6 (CH₃), 12.3 (CH₃) ppm.² HRMS (APCI): [M+H]⁺ calculated for C₉H₁₅NO₂SH⁺ *m*/*z* 202.0896; found *m*/*z* 202.0895.

Synthesis of S-(2-acetamidoethyl) (2*E*,4*E*)-hexa-2,4-dienethioate (16).

Following the same procedure as for (*R*)-1, **S33** (50 mg, 0.45 mmol) was converted into S-(2-acetamidoethyl) (2*E*,4*E*)-hexa-2,4-dienethioate (**16**) that was obtained as a pale yellow oil (63 mg, 0.30 mmol, 66%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 7.27 (dd, ³*J*_{H,H} = 15.2 Hz, ³*J*_{H,H} = 10.8 Hz, 1H), 5.98 (dd, ³*J*_{H,H} = 15.2 Hz, ⁴*J*_{H,H} = 0.7 Hz, 1H), 5.68 (dddq, ³*J*_{H,H} = 15.1 Hz, ³*J*_{H,H} = 10.8 Hz, ⁴*J*_{H,H} = 1.5 Hz, ⁴*J*_{H,H} = 0.6 Hz, 1H), 5.59 (dq, ³*J*_{H,H} = 15.1 Hz, ³*J*_{H,H} = 6.7 Hz, 1H), 4.90 (br s, NH), 3.27 (dt, ³*J*_{H,H} = 5.9 Hz, ³*J*_{H,H} = 6.7 Hz, 2H), 2.93 (t, ³*J*_{H,H} = 6.7 Hz, 2H), 1.49 (s, 3H), 1.34 (d, ³*J*_{H,H} = 6.8, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 189.5 (C_q), 168.9 (C_q), 141.4 (CH), 141.1 (CH), 129.8 (CH), 126.4 (CH), 39.9 (CH₂), 28.7 (CH₂), 22.8 (CH₃), 18.5 (CH₃) ppm.¹⁶

Synthesis of S-(2-acetamidoethyl) (2E,4Z)-hexa-2,4-dienethioate (15).

Following the same procedure as for (*R*)-1, **S34** (52 mg, 0.46 mmol) was converted into **15** that was obtained as a pale yellow oil (47 mg, 0.22 mmol, 48%). ¹H NMR (500 MHz, C₆D₆): $\delta_{\rm H}$ 7.69 (ddd, ³*J*_{H,H} = 15.0 Hz, ³*J*_{H,H} = 11.6 Hz, ⁴*J*_{H,H} = 1.1 Hz, 1H), 6.04 (d, ³*J*_{H,H} = 15.0 Hz, 1H), 5.75 (dddq, ³*J*_{H,H} = 11.9 Hz, ³*J*_{H,H} = 10.7 Hz, ⁴*J*_{H,H} = 1.7 Hz, ⁴*J*_{H,H} = 0.6 Hz, 1H), 5.53 (dq, ³*J*_{H,H} = 10.7 Hz, ³*J*_{H,H} = 7.3 Hz, 1H), 4.96 (br s, NH), 3.26 (q, ³*J*_{H,H} = 6.4 Hz, 2H), 2.93 (t, ³*J*_{H,H} = 6.7 Hz, 2H), 1.50 (br s, 3H), 1.35 (dd, ³*J*_{H,H} = 7.3 Hz, ⁴*J*_{H,H} = 1.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): $\delta_{\rm C}$ 189.8 (C_q), 169.1 (C_q), 137.7 (CH), 135.4 (CH), 128.2 (CH), 127.5 (CH), 39.9 (CH₂), 28.8 (CH₂), 22.9 (CH₃), 13.8 (CH₃) ppm. HRMS (APCI): [M+H]⁺ calculated for C₁₀H₁₅NO₂SH⁺ *m*/*z* 214.0896; found *m*/*z* 214.0895.

Synthesis of S-(2-acetamidoethyl) (E)-5-methylhexa-2,4-dienethioate (S36).

Following the same procedure as for (*R*)-1, **S35** (100 mg, 0.79 mmol) was converted into S-(2-acetamidoethyl) (*E*)-5-methylhexa-2,4-dienethioate (**S36**) that was obtained

as a pale yellow oil (62 mg, 0.27 mmol, 34%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 7.66 (dd, ³J_{H,H} = 14.9 Hz, ³J_{H,H} = 11.6 Hz, 1H), 6.06 (d, ³J_{H,H} = 14.9 Hz, 1H), 5.81 (br s, NH), 5.63 (doct, ³J_{H,H} = 11.6 Hz, ⁴J_{H,H} = 0.7 Hz, 1H), 3.37 (dt, ³J_{H,H} = 5.9 Hz, ³J_{H,H} = 6.8 Hz, 2H), 3.03 (t, ³J_{H,H} = 6.7 Hz, 2H), 1.64 (s, 3H), 1.44 (br s, 3H), 1.39 (br s, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 189.6 (C_q), 169.5 (C_q), 148.4 (C_q), 137.3 (CH), 126.1 (CH), 124.0 (CH), 40.0 (CH₂), 28.7 (CH₂), 26.4 (CH₃), 22.8 (CH₃), 18.6 (CH₃) ppm. HRMS (APCI): [M+H]⁺ calculated for C₁₁H₁₇NO₂SH⁺ *m/z* 228.1053; found *m/z* 228.1048.

Synthesis of (2E,4E)-4-methylhexa-2,4-dienoic acid (S38).

Following the same procedure as for **S24**, **S37** (1.40 g, 9.08 mmol) was converted into (2*E*,4*E*)-4-methylhexa-2,4-dienoic acid (**S38**) that was obtained as a pale yellow oil (800 mg, 6.34 mmol, 70%). ¹H NMR (500 MHz, CDCl₃): δ_{H} 10.26 (br s, 1H), 7.40 (d, ${}^{3}J_{H,H}$ = 15.6 Hz, 1H), 6.04 (q, ${}^{3}J_{H,H}$ = 7.0 Hz, 1H), 5.78 (d, ${}^{3}J_{H,H}$ = 15.6 Hz, 1H), 1.83 (d, ${}^{3}J_{H,H}$ = 7.2 Hz, 3H), 1.79 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ_{C} 173.4 (C_q), 152.0 (CH), 138.0 (CH), 134.0 (C_q), 114.6 (CH), 14.8 (CH₃), 11.9 (CH₃) ppm.

Synthesis of S-(2-acetamidoethyl) (2*E*,4*E*)-4-methylhexa-2,4-dienethioate (S39).

Following the same procedure as for (*R*)-1, **S38** (50 mg, 0.40 mmol) was converted into S-(2-acetamidoethyl) (2*E*,4*E*)-4-methylhexa-2,4-dienethioate (**S39**) that was obtained as a pale yellow oil (25 mg, 0.11 mmol, 28%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 7.41 (dd, ³*J*_{H,H} = 15.5 Hz, ⁴*J*_{H,H} = 0.8 Hz, 1H), 6.13 (d, ³*J*_{H,H} = 15.5 Hz, 1H), 5.55 (q, ³*J*_{H,H} = 6.9 Hz, 1H), 5.27 (br s, NH), 3.34 (dt, ³*J*_{H,H} = 5.7 Hz, ³*J*_{H,H} = 6.7 Hz, 2H), 2.99 (t, ³*J*_{H,H} = 6.7 Hz, 2H), 1.56 (s, 3H), 1.33 (m, 3H), 1.32 (d, ³*J*_{H,H} = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 189.7 (C_q), 169.2 (C_q), 146.0 (CH), 138.5 (CH), 133.8 (C_q), 122.8 (CH), 40.0 (CH₂), 28.7 (CH₂), 22.8 (CH₃), 14.5 (CH₃), 11.4 (CH₃) ppm. HRMS (APCI): [M+H]⁺ calculated for C₁₁H₁₇NO₂SH⁺ *m/z* 228.1053; found *m/z* 228.1051.

Synthesis of (2E,4E,6E)-6-methylocta-2,4,6-trienoic acid (S42).

Following the same procedure as for **S20**, **S40** (900 mg, 8.17 mmol) was converted into ethyl (2*E*,4*E*,6*E*)-6-methylocta-2,4,6-trienoate (**S41**) that was obtained as a pale yellow oil (856 mg, 4.75 mmol). Following the same procedure as for **S24**, **S41** (200 mg, 1.11 mmol) was further converted into (2*E*,4*E*,6*E*)-6-methylocta-2,4,6-trienoic acid (**S42**) that was obtained as a pale yellow oil (260 mg, 1.69 mmol, 21% over two steps). ¹H NMR (700 MHz, C₆D₆): $\delta_{\rm H}$ 7.54 (dd, ³*J*_{H,H} = 15.2 Hz, ³*J*_{H,H} = 11.2 Hz, 1H), 6.22 (d, ${}^{3}J_{H,H}$ = 15.2 Hz, 1H), 5.95 (dd, ${}^{3}J_{H,H}$ = 15.2 Hz, ${}^{3}J_{H,H}$ = 11.2 Hz, 1H), 5.86 (d, ${}^{3}J_{H,H}$ = 15.2 Hz, 1H), 5.41 (q, ${}^{3}J_{H,H}$ = 6.8 Hz, 1H), 1.44 (d, ${}^{3}J_{H,H}$ = 6.8 Hz, 3H), 1.43 (br s, 3H) ppm; 13 C NMR (176 MHz, C₆D₆): δ_{C} 173.5 (C_q), 148.1 (CH), 146.9 (CH), 134.9 (C_q), 133.0 (CH), 123.7 (CH), 119.5 (CH), 14.2 (CH₃), 11.7 (CH₃) ppm. HRMS (ESI): [M-H]⁻ calculated for C₉H₁₁O₂⁻ *m/z* 151.0765; found *m/z* 151.0763.

Synthesis of S-(2-acetamidoethyl) (2*E*,4*E*,6*E*)-6-methylocta-2,4,6-trienethioate (S43).

Following the same procedure as for (*R*)-1, **S42** (47 mg, 0.31 mmol) was converted into S-(2-acetamidoethyl) (2*E*,4*E*,6*E*)-6-methylocta-2,4,6-trienethioate (**S43**) that was obtained as a pale yellow solid (51 mg, 0.20 mmol, 65%). ¹H NMR (700 MHz, C₆D₆): $\delta_{\rm H}$ 7.43 (ddd, ${}^{3}J_{\rm H,\rm H}$ = 15.1 Hz, ${}^{3}J_{\rm H,\rm H}$ = 11.1 Hz, ${}^{4}J_{\rm H,\rm H}$ = 0.8 Hz, 1H), 6.27 (d, ${}^{3}J_{\rm H,\rm H}$ = 15.2 Hz, 1H), 6.08 (d, ${}^{3}J_{\rm H,\rm H}$ = 15.0 Hz, 1H), 5.92 (dd, ${}^{3}J_{\rm H,\rm H}$ = 15.1 Hz, ${}^{3}J_{\rm H,\rm H}$ = 11.1 Hz, 1H), 5.43 (q, ${}^{3}J_{\rm H,\rm H}$ = 7.0 Hz, 1H), 4.99 (br s, NH), 3.31 (dt, ${}^{3}J_{\rm H,\rm H}$ = 6.0 Hz, ${}^{3}J_{\rm H,\rm H}$ = 6.7 Hz, 2H), 2.97 (t, ${}^{3}J_{\rm H,\rm H}$ = 6.7 Hz, 2H), 1.52 (br s, 3H), 1.47 (m, 3H), 1.45 (d, ${}^{3}J_{\rm H,\rm H}$ = 7.2 Hz, 1H) ppm; 13 C NMR (176 MHz, C₆D₆): $\delta_{\rm C}$ 189.2 (C_q), 169.0 (C_q), 147.7 (CH), 142.0 (CH), 135.1 (C_q), 133.3 (CH), 127.1 (CH), 123.6 (CH), 40.0 (CH₂), 28.7 (CH₂), 22.8 (CH₃), 14.2 (CH₃), 11.7 (CH₃) ppm. HRMS (ESI): [M+Na]⁺ calculated for C₁₃H₁₉NO₂SNa⁺ *m/z* 276.1029; found *m/z* 276.1034.

Synthesis of S-(2-acetamidoethyl) (*E*)-3-phenylprop-2-enethioate (S45).

Following the same procedure as for (*R*)-1, S44 (62 mg, 0.42 mmol) was converted into S-(2-acetamidoethyl) (*E*)-3-phenylprop-2-enethioate (S45) that was obtained as a pale yellow oil (80 mg, 0.32 mmol, 77%). ¹H NMR (700 MHz, CDCl₃): δ_{H} 7.62 (d, ³*J*_{H,H} = 15.8 Hz, 1H), 7.53 (m, 2H), 7.39 (m, 3H), 6.72 (d, ³*J*_{H,H} = 15.8 Hz, 1H), 6.20 (br s, NH), 3.50 (q, ³*J*_{H,H} = 6.1 Hz, 2H), 3.16 (t, ³*J*_{H,H} = 6.7 Hz, 2H), 1.99 (s, 3H) ppm; ¹³C NMR (176 MHz, CDCl₃): δ_{C} 190.3 (C_q), 170.6 (C_q), 141.4 (CH), 134.0 (C_q), 130.9 (CH), 129.1 (2xCH), 128.6 (2xCH), 124.7 (CH), 39.9 (CH₂), 28.6 (CH₂), 23.3 (CH₃) ppm. HRMS (APCI): [M+H]⁺ calculated for C₁₃H₁₅NO₂SH⁺ *m*/*z* 250.0896; found *m*/*z* 250.0892.

Table S1. Activity screening of dehydratases.

substrate	no.	BorDH2 ^[a]	BorDH3	BorDH5	FosDH1	FosDH2	RifDH10	ShawDH1	ShawDH2	Cpz2	FabZ
short chain compounds											
OH O SNAc	(<i>R</i>)-1	89%		11%	57%	53%			14%		36%
OH O T SNAc	(S)-1										
OH O SNAc	2										
compounds with α-methyl branch											
	(2R,3R)- 3	100%		47%	81%	40%					22%
OH O SNAc	(2S,3R)- 3										
	(2R,3S)- 3										
OH O SNAc	(2S,3S)- 3										

structure	no.	BorDH2	BorDH3	BorDH5	FosDH1	FosDH2	RifDH10	ShawDH1	ShawDH2	Cpz2	FabZ
γ,δ-unsaturated compounds											
OH O SNAc	(S)- 4	100%	41%	36%	100%	100%	68%	28%	24%	69%	100%
OH O SNAc	(R)- 4										
OH O SNAc	(S)- 5	100%	46%	54%	100%	100%	58%	40%	6%	43%	42%
	(R)- 5										
OH O SNAc	(S)- 6	100%	76%	83%	100%	100%	98%	8%	42%	16%	97%
OH O 	(R)- 6										
OH O SNAc	(S)- 7	100%	47%	16%	100%	100%	99%	3%	4%	18%	75%
OH O 	(R)- 7										
OH O SNAc	(rac)- 8	45%	33%	32%	15%	13%	29%			47%	15%

structure	no.	BorDH2	BorDH3	BorDH5	FosDH1	FosDH2	RifDH10	ShawDH1	ShawDH2	Cpz2	FabZ
aromatic compounds											
OH O SNAc	(S)- 9	100%	42%	25%	29%	100%	13%			23%	39%
OH O SNAc	(<i>R</i>)- 9										

[a] The efficiency of enzymatic conversions is indicated by colour code (dark green = full conversion (100%), green = partial conversion (99 – 50%), light green = partial conversion (49 – 1%), grey = no conversion (0%), based on peak integrations for the peaks highlighted in Figures S2 – S9).

Figure S2. Enzymatic conversions of (*R*)-1.

Figure S3. Enzymatic conversions of (2*R*,3*R*)-**3**.

Figure S4. Enzymatic conversions of (S)-4.

Figure S6. Enzymatic conversions of (S)-6.

-H₂O

Figure S8. Enzymatic conversions of (*rac*)-8.

Figure S9. Enzymatic conversions of (*S*)-9.

compound	conversion ^[a]			
	experiment 1	experiment 2	experiment 3	mean ± SD
OH O SNAc	88%	93%	95%	92 ± 4%
OH O SNAc (2 <i>R</i> ,3 <i>R</i>)- 3	100%	97%	100%	99 ± 1%
OH O SNAc (S)-4	100%	100%	100%	100 ± 0%
OH O SNAc	100%	100%	100%	100 ± 0%
OH O SNAc	100%	100%	100%	100 ± 0%
OH O SNAc (S)-7	100%	100%	100%	100 ± 0%
OH O SNAc	31%	35%	32%	33 ± 5%
OH O SNAc	100%	100%	100%	100 ± 0%

Table S2. Conversion efficiencies of BorDH2 enzyme reactions.

[a] Determined by peak integration in the ¹H NMR spectra of crude extracts from enzyme reactions.

Scheme S11. Synthesis of (rac)-17 and (rac)-18.

Synthesis of 3-hydroxyhexanoic acid (S48).

Following the same procedure as for **S23**, **S46** (720 mg, 10.0 mmol) was converted into ethyl 3-hydroxyhexanoate (**S47**) that was obtained as a pale yellow oil (1.42 g, 8.86 mmol). Following the same procedure as for **S24**, **S47** (300 mg, 1.87 mmol) was further converted into 3-hydroxyhexanoic acid (**S48**) that was obtained as a pale yellow oil (200 mg, 1.51 mmol, 71% over two steps). ¹H NMR (500 MHz, C₆D₆): δ_{H} 6.11 (br s, COOH), 3.92 (m, 1H), 2.30 (dd, ${}^{3}J_{H,H} = 16.1$ Hz, ${}^{3}J_{H,H} = 9.1$ Hz, 1H), 2.22 (dd, ${}^{3}J_{H,H} = 16.1$ Hz, ${}^{3}J_{H,H} = 3.3$ Hz, 1H), 1.36 (m, 2H), 1.22 (m, 1H), 1.14 (m, 1H), 0.82 (t, ${}^{3}J_{H,H} = 7.2$ Hz, 3H) ppm; 13 C NMR (126 MHz, C₆D₆): δ_{C} 177.5 (C_q), 68.1 (CH), 41.7 (CH₂), 38.9 (CH₂), 19.0 (CH₂), 14.1 (CH₃) ppm.

Synthesis of S-(2-acetamidoethyl) 3-hydroxyhexanethioate ((rac)-17).

Following the same procedure as for (*R*)-1, **S48** (100 mg, 0.76 mmol) was converted into S-(2-acetamidoethyl) 3-hydroxyhexanethioate ((*rac*)-17) that was obtained as a colourless oil (108 mg, 0.46 mmol, 61%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 5.35 (br s, NH), 4.03 (m, 1H), 3.23 (m, 2H), 2.82 (m, 1H), 2.76 (m, 1H), 2.52 (m, 1H), 2.41 (m, 1H), 1.60 (s, 3H), 1.37 (m, 2H), 1.26 (m, 1H), 1.17 (m, 1H), 0.83 (t, ³J_{H,H} = 7.2 Hz, 3H) ppm;

¹³C NMR (126 MHz, C_6D_6): δ_C 198.6 (C_q), 170.0 (C_q), 68.7 (CH), 52.0 (CH₂), 39.4 (CH₂), 39.2 (CH₂), 29.2 (CH₂), 22.8 (CH₃), 19.0 (CH₂), 14.1 (CH₃) ppm.

Synthesis of 3-hydroxydecanoic acid (S51).

Following the same procedure as for **S23**, **S49** (1.28 g, 10.0 mmol) was converted into ethyl 3-hydroxydecanoate (**S50**) that was obtained as a pale yellow solid (1.92 g, 8.88 mmol). Following the same procedure as for **S24**, **S50** (500 mg, 2.31 mmol) was further converted into 3-hydroxydecanoic acid (**S51**) that was obtained as a colourless solid (372 mg, 1.98 mmol, 76% over two steps). ¹H NMR (500 MHz, C₆D₆): δ_{H} 3.89 (m, 1H), 2.29 (dd, ${}^{3}J_{H,H}$ = 16.2 Hz, ${}^{3}J_{H,H}$ = 8.7 Hz, 1H), 2.22 (dd, ${}^{3}J_{H,H}$ = 16.2 Hz, ${}^{3}J_{H,H}$ = 3.5 Hz, 1H), 1.24 (m, 12H), 0.92 (t, ${}^{3}J_{H,H}$ = 7.0 Hz, 3H) ppm; 13 C NMR (126 MHz, C₆D₆): δ_{C} 177.6 (C_q), 68.2 (CH), 41.7 (CH₂), 36.9 (CH₂), 32.2 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 25.8 (CH₂), 23.1 (CH₂), 14.4 (CH₃) ppm.

Synthesis of S-(2-acetamidoethyl) 3-hydroxydecanethioate ((rac)-18).

Following the same procedure as for (*R*)-1, **S51** (100 mg, 0.53 mmol) was converted into S-(2-acetamidoethyl) 3-hydroxydecanethioate ((*rac*)-18) that was obtained as a colourless solid (61 mg, 0.21 mmol, 40%). ¹H NMR (500 MHz, C₆D₆): δ_{H} 4.77 (br s, NH), 4.02 (m, 1H), 3.18 (m, 2H), 2.74 (m, 2H), 2.50 (dd, ²J_{H,H} = 14.8 Hz, ³J_{H,H} = 8.8 Hz, 1H), 2.42 (dd, ²J_{H,H} = 14.8 Hz, ³J_{H,H} = 3.3 Hz, 1H), 1.50 (s, 3H), 1.38 (m, 2H), 1.25 (m, 10H), 0.91 (t, ³J_{H,H} = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, C₆D₆): δ_{C} 198.7 (C_q), 169.6 (C_q), 69.0 (CH), 52.0 (CH₂), 39.1 (CH₂), 37.3 (CH₂), 32.2 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 29.3 (CH₂), 25.9 (CH₂), 23.1 (CH₂), 22.8 (CH₃), 14.4 (CH₃) ppm.

Compounds (*rac*)-4, (*rac*)-6, (*rac*)-7 and (*rac*)-9 were synthesised analogously through aldol addition of the ester enolate of ethyl acetate to the corresponding aldehyde, saponification and esterification with N-acetylcysteamine. Spectroscopic data matched those reported above for the enantiomerically pure compounds.

Kinetic resolutions with BorDH2

S-(2-Acetamidoethyl) (*E*)-3-hydroxyhex-4-enethioate ((*rac*)-**4**, 35 mg, 0.15 mmol) was dissolved in DMSO (50 µL) and BorDH2 dissolved in incubation buffer (6.9 mg/mL, 3.5 mL) was added. The reaction was incubated at 30 °C for 16 h and then extracted with C₆H₆ (3 x 5 mL). After evaporation of the solvents the product was isolated through silica gel chromatography to obtain S-(2-acetamidoethyl) (*R*,*E*)-3-hydroxyhex-4-enethioate ((*R*)-**4**) as a colourless oil (12 mg, 34%, 96% *ee* determined by HPLC analysis on a chiral stationary phase, Figure S10). Optical rotation: [α]25 D = +17.4 (*c* 0.10, CH₂Cl₂).

The same procedure was applied for the following transformations:

Compound (*rac*)-6 (25 mg, 0.10 mmol) was converted into S-(2-acetamidoethyl) (*R*)-3-hydroxy-5-methylhex-4-enethioate ((*R*)-6) that was obtained as a colourless oil (9 mg, 0.04 mmol, 36%, 89% *ee* determined by HPLC analysis on a chiral stationary phase, Figure S11). Optical rotation: [α]25 D = +16.3 (*c* 0.13, CH₂Cl₂).

Compound (*rac*)-**7** (38 mg, 0.15 mmol) was converted into S-(2-acetamidoethyl) (*R*,*E*)-3-hydroxy-4-methylhex-4-enethioate ((*R*)-**7**) that was obtained as a colourless oil (13 mg, 0.05 mmol, 34%, >99% *ee* determined by HPLC analysis on a chiral stationary phase, Figure S12). Optical rotation: [α]25 D = +15.6 (*c* 0.20, CH₂Cl₂).

Compound (*rac*)-**9** (50 mg, 0.19 mmol) was converted into S-(2-acetamidoethyl) (*R*)-3-hydroxy-3-phenylpropanethioate ((*R*)-**9**) that was obtained as a colourless oil (22 mg, 0.08 mmol, 44%, 99% *ee*). Optical rotation: [α]25 D = +19.5 (*c* 0.30, CH₂Cl₂). For determination of the enantiomeric excess the enzyme product and a racemic sample were converted into 2,2-dimethyl-4-phenyl-1,3-dioxane through reduction with LiAlH₄ and subsequent treatment with *p*-TsOH (10 mol-%) in 2,2-dimethoxypropane for 20 h at room temperature (Scheme S12).¹⁹ The enantiomeric excess of the enzyme product was then determined to be 99% *ee* by GC analysis on a chiral stationary phase (Figure S13).

Compound (*rac*)-**17** (22 mg, 0.09 mmol) was converted into S-(2-acetamidoethyl) (*S*)-3-hydroxyhexanethioate ((*S*)-**17**) that was obtained as a colourless oil (13 mg, 0.06 mmol, 59%, 19% *ee* determined by HPLC analysis on a chiral stationary phase, Figure S14).

Compound (*rac*)-**18** (20 mg, 0.07 mmol) was converted into S-(2-acetamidoethyl) (*S*)-3-hydroxydecanethioate ((*S*)-**18**) that was obtained as a white solid (14 mg, 0.05 mmol, 70%, 3% *ee* determined by HPLC analysis on a chiral stationary phase, Figure S15).

obtained by kinetic resolution with BorDH2.

Figure S11. HPLC chromatograms of synthetic (*rac*)-6 (top) and (*R*)-6 (bottom) obtained by kinetic resolution with BorDH2.

Figure S12. HPLC chromatograms of synthetic (rac)-7 (top) and (R)-7 (bottom) obtained by kinetic resolution with BorDH2.

Scheme S12. Kinetic resolution of (*rac*)-**9** and synthesis of (rac)- and (*R*)-**S53** for GC analysis.

Figure S13. Gas chromatograms of synthetic (*rac*)-**S53** (top) and (*R*)-**S53** (bottom) obtained by kinetic resolution with BorDH2.

Figure S14. HPLC chromatograms of synthetic (*rac*)-17 (top) and (*S*)-17 (bottom) obtained by kinetic resolution with BorDH2.

Figure S15. HPLC chromatograms of synthetic (*rac*)-18 (top) and (*S*)-18 (bottom) obtained by kinetic resolution with BorDH2.

Figure S17. ¹³C NMR (126 MHz, C_6D_6) of (*R*)-1.

44c5a001.20.10.ftd Instrument Bruker Avance I 500 MHz AK Prof. Dickschat Name Yin Title BDB-10-SNAc 001_H_N CDCl3 E:\\dickschat 1

f1 (ppm) C Figure S19. ¹³C NMR (126 MHz, CDCl₃) of (S)-1.

²⁶⁰ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S23.** ¹³C NMR (126 MHz, CDCl₃) of (S)-**S4**.

²⁶⁰ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S25.** ¹³C NMR (126 MHz, CDCl₃) of (*R*)-**S4**.

49p5b044.21.11.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin Bor-2-Ti-2 013_C_dept135 CD Cl3 E:\\ Dickschat 44 2

Figure S33. ¹³C NMR (126 MHz, CDCl₃) of (*R*,2S,3*R*)-S5.

19p5a018.21.10.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin BOR-3-TI-I 001_H_N CDCI3 E:\\Dickschat 18

19p5a018.21.12.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin BOR-3-Tr-I 013_C_dept135 CD Cl3 E:\\ Dickschat 18 2

Figure S35. ¹³C NMR (126 MHz, CDCl₃) of (2*R*,3*R*)-S6.

19p5a021.21.12.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin BOR-3-Tr-2 013_C_dept135 CD Cl3 E:\\ Dickschat 21 2

Figure S37. ¹³C NMR (126 MHz, CDCl₃) of (2*R*,3*S*)-**S6**.

25p5a023.22.12.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin R80r-3 013_C_dept135 CD Cl3 E:\\ Dickschat 23 2

Figure S39. ¹³C NMR (126 MHz, CDCl₃) of (2S,3S)-S6.

18c5a050.21.10.fid Instrument Bruker Ag I 500 MHz AK Prof.Dickschat Name Yin Title Bor-3 01_H_N CDCI3 E:\\dickschat 50

18c5a050.21.12.fid Instrument Bruker AV I 500 MHz AK Prof.Dickschat Name Yin Title Bor-3 013_C_dept135 CDCl3 E:\\ dickschat 50 2

Figure S41. ¹³C NMR (126 MHz, CDCl₃) of (2S,3R)-S6.

19p5a039.21.10.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin Bor-4-Ti-2 001_H_N CDCl3 E:\\Dickschat 39

²⁶⁰ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S45.** ¹³C NMR (126 MHz, CDCl₃) of (2*R*,3*S*)-**3**. 25p5a049.21.10.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin R-Bor-4 001_H_N CDCI3 E:\\Dickschat 49

25p5a049.21.12.fid Pollux Bruker AV III 500 MHz Prodigy AK Prof. Dickschat Name Yin R-Bor-4 013_C_dept135 CDCI3 E:\\ Dickschat 49 2

120 110 f1 (ppm) 230 220 210 200 190 180 170 160 150 140 130 ò -1 100 90 80 70 60 50 40 30 20 10 Figure S47. ¹³C NMR (126 MHz, CDCl₃) of (2S,3S)-3.

18c5a052.21.10.fid Instrument Bruker AV I 500 MHz AK Prof.Dickschat Name Yin Title Bor-4 001_H_N CDCI3 E:\\dickschat 52

-6.04

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S49. ¹³C NMR (126 MHz, CDCl₃) of (2*S*,3*R*)-**3**.

Figure S53. ¹³C NMR (126 MHz, C₆D₆) of (*R*,3*R*)-S8.

18p5a044.22.10.fid Foliux Bruker AV III 500 MHz Prodigy AK \$600 GRUKer Michael State (1990) Name Vince (1990) Name Vince (1990) AM-2.2 001_H_N C6D6 E:\\ Dickschat 44

Figure S55. ¹³C NMR (126 MHz, C₆D₆) of (*R*,3S)-S8.

Figure S57. ¹³C NMR (126 MHz, C_6D_6) of (*R*)-S9.

SHT-3-1 001_H_N C6D6 E:\\ Dickschat 46

Figure S59. ¹³C NMR (126 MHz, C₆D₆) of (S)-S9.

20 210 200 190 110 100 f1 (ppm) ò Figure S61. ¹³C NMR (126 MHz, C₆D₆) of (*R*)-4.

Figure S63. ¹³C NMR (126 MHz, C₆D₆) of (S)-4.

Figure S65. ¹³C NMR (126 MHz, C₆D₆) of (*R*,3*R*)-S12.

f1 (ppm) C Figure S67. ¹³C NMR (126 MHz, C₆D₆) of (*R*,3S)-S12.

22c5b041.22.12.fid Instrument Bruker AV I 500 MHz AK Prof. Dickschat Name Yin Title R-Kr3-5-1 013_C_dept135 CDCI3 E:\\ dickschat 41 2

Figure S71. ¹³C NMR (126 MHz, C₆D₆) of (S)-S13.

Figure S73. ¹³C NMR (126 MHz, C₆D₆) of (*R*)-5.

Figure S75. ¹³C NMR (176 MHz, C₆D₆) of (S)-5.

Figure S77. ¹³C NMR (176 MHz, CDCl₃) of (*R*,3*R*)-S15.

Figure S79. ¹³C NMR (176 MHz, CDCl₃) of (*R*,3S)-S15.

Figure S81. ¹³C NMR (126 MHz, CDCl₃) of (*R*,3*R*)-S16.

Figure S83. ¹³C NMR (126 MHz, CDCl₃) of (*R*,3S)-S16.

Figure S85. ¹³C NMR (126 MHz, C₆D₆) of (*R*)-6.

Figure S87. ¹³C NMR (176 MHz, C₆D₆) of (S)-6.

Figure S89. ¹³C NMR (176 MHz, C₆D₆) of (*R*,3*R*)-S17.

Figure S91. ¹³C NMR (176 MHz, C₆D₆) of (*R*,3S)-S17.

Figure S93. ¹³C NMR (126 MHz, CDCl₃) of (*R*)-S18.

34c5a044.21.10.fid Instrument Brukej AV I 500 MHz AK Prof. Dickschat Name Yin Title BorDH5-4-2 001_H_N CDCI3 E:\\dickschat 44

5.51 5.50 5.50 5.50 5.50 5.50 5.50 5.55 5

Figure S95. ¹³C NMR (126 MHz, CDCl₃) of (S)-S18.

33c5a020.21.10.fid Instrument Bruker AV I 500 MHz AK Prof. Dickschat Name Yin Title BorDH5-5-1 001_H_N CDCI3 E:\\dickschat 20

33c5a020.21.12.fid Instrument Bruker AV I 500 MHz AK Prof. Dickschat Name Yin Title BorDH5-5-1 013_C_dept135 CDCI3 E:\\ dickschat 20 2

f1 (ppm) C Figure S99. ¹³C NMR (126 MHz, C₆D₆) of (S)-7.

#1629622.405fd ទួន ខេត្ត ខេត ខេត្ត ខេត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត ខេត្ត ខេ ខេត្ត ខេត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត ខេត្ត 4.195

1.817 1.815 1.815 1.1813 1.1813 1.1813 1.1813 1.763 1.763 1.763 1.763 1.763 1.763 1.763 1.763 1.763 1.763

Figure S101. ¹³C NMR (126 MHz, CDCl₃) of S20.

36c5a045.21.12.fid Instrument Bruker AV I 500 MHz AK Prof. Dickschat Name Yin Title LKC1-2 013_C_dept135 CDCl3 E:\\ dickschat 45 2

Figure S103. ¹³C NMR (126 MHz, CDCl₃) of S21.

f1 (ppm) C Figure S105. ¹³C NMR (126 MHz, C₆D₆) of S22.

Figure S107. ¹³C NMR (176 MHz, C₆D₆) of S23.

Figure S109. ¹³C NMR (176 MHz, C₆D₆) of S24.

Figure S111. ¹³C NMR (176 MHz, C₆D₆) of (*rac*)-8.

Figure S113. ¹³C NMR (126 MHz, C₆D₆) of (*R*)-9.

f1 (ppm) 200 190 180 170 C Figure S115. ¹³C NMR (176 MHz, C₆D₆) of (S)-9.

Figure S119. ¹³C NMR (176 MHz, C₆D₆) of S30.

Figure S121. ¹³C NMR (126 MHz, CDCl₃) of S32.

Figure S123. ¹³C NMR (126 MHz, C₆D₆) of **11**.

33p5b037.22.10.fide Pollux Bruker AV III:500 MHz Prodigy ACPR 은 현영 양대 은 Name 2010 - 500 - 500 SHT-7-2 001_H_N C6D6 E:\\Dickschat 37

Figure S125. ¹³C NMR (126 MHz, C_6D_6) of **10**.

Figure S127. ¹³C NMR (126 MHz, C_6D_6) of S36.

f1 (ppm) C Figure S129. ¹³C NMR (126 MHz, CDCl₃) of S38.

Figure S131. ¹³C NMR (126 MHz, C₆D₆) of S39.

f1 (ppm) 200 190 180 170 C Figure S133. ¹³C NMR (176 MHz, C₆D₆) of S41.

f1 (ppm) 180 170 C Figure S135. ¹³C NMR (176 MHz, C₆D₆) of S42.

 $\begin{pmatrix} 1.453 \\ 1.442 \\ 1.439 \end{pmatrix}$

Figure S137. ¹³C NMR (176 MHz, C₆D₆) of S43.

Figure S139. ¹³C NMR (176 MHz, CDCl₃) of S45.

37/Ga012.22.10.fid Instrument Bruker AV I 500 MHz AK <u>Profil Galacediatian and a second a constraint of the second and a second a constraint of the second and a second a second a constraint of the second and a second a second a constraint of the second a </u>

Figure S141. ¹³C NMR (126 MHz, C₆D₆) of **12**.

001_H_N C6D6 E:\\ Dickschat 41

Figure S143. ¹³C NMR (176 MHz, C₆D₆) of **13**.

References

- 1 T. Lin, L. S. Borketey, G. Prasad, S. A. Waters and N. A. Schnarr, *ACS Synth. Biol.*, 2013, **2**, 635-642.
- 2 E. Liddle, A. Scott, L. C. Han, D. Ivison, T. S. Simpson, C. L. Willis and R. J. Cox, *Chem. Commun.*, 2017, **53**, 1727-1730.
- 3 A. May, P. Willoughby and T. Hoye, *J. Org. Chem.*, 2008, **73**, 3292-3294.
- 4 N. Claudia and J. M. J. Williams, *Adv. Synth. Catal.*, 2003, **345**, 835-848.
- 5 S. K. Piasecki, C. A. Taylor, J. F. Detelich, J. Liu, J. Zheng, A. Komsoukaniants, D. R. Siegel and A. T. Keatinge-Clay, *Chem. Biol.*, 2011, **18**, 1331-1340.
- 6 J. A. Davies, F. M. Bull, P. D. Walker, A. N. Weir, R. Lavigne, J. Masschelein, T. J. Simpson, P. R. Race, M. P. Crump and V. L. Willis, *Org. Lett.*, 2020, **22**, 6349-6353.
- 7 B. C. Raimundo and C. H. Heathcock, *Synlett*, 1995, **12**, 1213-1214.
- 8 C. Bauder, *Eur. J. Org. Chem.*, 2010, 16207-16216.
- 9 T. Yan, A. Hung, H. Lee, C. Chang and W. Liu, *J. Org. Chem.*, 1995, **60**, 3301-3306.
- 10 H. M. Ge, T. Huang, J. D. Rudolf, J. R. Lohman, S. X. Huang, X. Guo and B. Shen, *Org. Lett.*, 2014, **16**, 3958-3961.
- 11 M. M. Ahmed, M. S. Mortensen and G. A. O'Doherty, *J. Org. Chem.*, 2006, **71**, 7741-7746.
- 12 B. DeBoef, W. R. Counts and S. R. Gilbertson, J. Org. Chem., 2007, 72, 799-804.
- 13 Z. J. Jia, Q. Zhou, Q. Q. Zhou, P. Q. Chen and Y. C. Chen, *Angew. Chem. Int. Ed.*, 2011, **123**, 8797-8800.
- 14 C. Le Sann, D. M. Muñoz, N. Saunders, T. J. Simpson, D. I. Smith, F. Soulas, P. Watts and C. L. Willis, *Org. Biomol. Chem.*, 2005, **3**, 1719-1728.
- 15 Z. Yin, E. Liebhart, E. Stegmann, H. Brötz-Oesterhelt and J. S. Dickschat, *Org. Chem. Front.*, 2022, **9**, 2714-2720.
- 16 B. D. Ames, C. Nguyen, J. Bruegger, P. Smith, W. Xu, S. Ma, E. Wong, S. Wong, X. Xie, J. W. H. Li and J. C. Vederas, *Proc. Natl. Acad. Sci.*, 2012, **109**, 11144-11149.
- 17 J. S. Dickschat, K. A. K. Pahirulzaman, P. Rabe and T. A. Klapschinski, *ChemBioChem*, 2014, **15**, 810-814.
- 18 L. Kaysser, L. Lutsch, S. Siebenberg, E. Wemakor, B. Kammerer and B. Gust, *J. Biol. Chem.*, 2009, **284**, 14987-14996.
- 19 K. J. Berger, J. L. Driscoll, M. Yuan, B. D. Dherange, O. Gutierrez and M. D. Levin, *J. Am. Chem. Soc.*, 2021, **143**, 17366-17373.