Synthetic procedures

Scheme S1. Synthesis of both enantiomers of 1.

Synthesis of S-(2-acetamidoethyl) (R)-3-hydroxybutanethioate ((R)-1). ${ }^{1}$

The alcohol $(R)-\mathbf{S 1}(100 \mathrm{mg}, 0.96 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. DMAP (23 $\mathrm{mg}, 0.19 \mathrm{mmol})$, EDC $\cdot \mathrm{HCl}(203 \mathrm{mg}, 1.06 \mathrm{mmol})$ and N -acetylcysteamine ($114 \mathrm{mg}, 0.96$ mmol) were added to this solution. The mixture was stirred overnight at room temperature and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc) to yield (R)-1 as a colourless oil (105 $\mathrm{mg}, 0.51 \mathrm{mmol}, 53 \%) .{ }^{2}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 4.52$ (br s, NH), 4.07 (dqt, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=9.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{br} \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.4 \mathrm{~Hz}, \mathrm{OH}\right), 2.39\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.26\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.9\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 198.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $169.3\left(\mathrm{C}_{\mathrm{q}}\right), 65.1(\mathrm{CH}), 53.1\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right)$, $22.9\left(\mathrm{CH}_{3}\right)$, $22.7\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=-28.3\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. [$\left.\alpha\right] 25$ $\mathrm{D}=-23.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{2}$

Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxybutanethioate ((S)-1).

Following the same procedure as for (R)-1, (S)-S1 (100 $\mathrm{mg}, 0.96 \mathrm{mmol})$ was converted into (S)-1 that was obtained as a colourless oil (112 mg, $0.55 \mathrm{mmol}, 57 \%) .{ }^{2}$ Spectroscopic data were identical to those of (R)-1. Optical rotation: $[\alpha] 25 \mathrm{D}=+26.1$ (c 0.50, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), lit. [$\left.\alpha\right] 25 \mathrm{D}=+27.9$ (c 1.0, CHCl_{3}). ${ }^{2}$

Scheme S2. Synthesis of 2.

Synthesis of S-(2-acetamidoethyl) 3-hydroxy-3-methylbutanethioate (2).

Following the same procedure as for (R)-1, $\mathbf{S 2}(50 \mathrm{mg}, 0.42 \mathrm{mmol}$) was converted into 2 that was obtained as a colourless oil ($89 \mathrm{mg}, 0.41 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 4.69(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.13\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.09(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.69\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.42(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$), $1.15(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 199.3\left(\mathrm{C}_{\mathrm{q}}\right), 169.2\left(\mathrm{C}_{\mathrm{q}}\right), 69.8\left(\mathrm{C}_{\mathrm{q}}\right), 56.1\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z} 242.0821$; found $m / z 242.0820$.

Scheme S3. Synthesis of all four stereoisomers of 3.

Synthesis of (S)-4-benzyl-3-propionyloxazolidin-2-one ((S)-S4).

To a solution of (S)-4-benzyl-2-oxazolidinone ((S)-S3, $6.50 \mathrm{~g}, 36.7 \mathrm{mmol}$) in THF (60 mL) was added ${ }^{\mathrm{n}} \mathrm{BuLi}\left(23.4 \mathrm{~mL}, 1.6 \mathrm{~m}\right.$ in hexane, 37.4 mmol) dropwise at $-78^{\circ} \mathrm{C}$ under

Ar. After 20 min , propionyl chloride ($3.90 \mathrm{~g}, 42.2 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 2.5 h . The mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. After removal of THF under reduced pressure, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layers were washed with $10 \% \mathrm{NaOH}$ solution and dried with MgSO_{4}, filtered and concentrated to dryness. The residue was puridied through silica gel column chromatography (cyclohexane/EtOAc, 5:1) to afford (S)-4-benzyl-3-propionyloxazolidin-2-one ((S)-S4) as a white solid ($8.00 \mathrm{~g}, 34.3 \mathrm{mmol}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.28(\mathrm{~m}, 5 \mathrm{H}), 4.68\left(\mathrm{ddt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~m}, 2 \mathrm{H}), 2.77$ $\left(d d,{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.21\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 174.2\left(\mathrm{C}_{\mathrm{q}}\right), 153.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(2 x \mathrm{CH}), 129.1(2 \mathrm{xCH})$, $127.5(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2}\right), 55.3(\mathrm{CH}), 38.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 8.4\left(\mathrm{CH}_{3}\right)$ ppm.

Synthesis of (R)-4-benzyl-3-propionyloxazolidin-2-one ((R)-S4).

Following the same procedure as for (S)-S4, (R)-4-benzyloxazolidin-2-one ((R)-S3, $2.00 \mathrm{~g}, 11.3 \mathrm{mmol}$) was converted into (R)-S4 that was obtained as a white solid (2.25 $\mathrm{g}, 9.60 \mathrm{mmol}, 85 \%)$. Spectroscopic data were identical to those of (S)-S4.

Synthesis of (S)-4-benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2one ((S,2R,3R)-S5) and (S)-4-benzyl-3-((2R,3S)-3-hydroxy-2-methylbutanoyl)-oxazolidin-2-one ((S,2R,3S)-S5). ${ }^{3}$
(S)-3-Acetyl-4-benzyloxazolidin-2-one ((S)-S4) ($2.10 \mathrm{~g}, 9.00 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~mL},-78{ }^{\circ} \mathrm{C}\right)$ under $\mathrm{Ar} . \mathrm{TiCl}_{4}(3.46 \mathrm{~g}, 18.2 \mathrm{mmol})$ was added dropwise, followed by the addition of diisopropylethylamine ($2.35 \mathrm{~g}, 18.2 \mathrm{mmol}$). The resulting mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 h , and then a solution of crotonaldehyde $(1.28 \mathrm{~g}, 18.2 \mathrm{mmol})$ was added dropwise. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 5 h , and then the reaction mixture was allowed to warm to room temperature with continued stirring overnight. The mixture was poured onto a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (50 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated to dryness. Purification of the crude product by column chromatography on silica gel (cyclohexane/EtOAc, 3:1) gave ($S, 2 R, 3 R$)-S5 ($1.18 \mathrm{~g}, 4.24 \mathrm{mmol}, 47 \%$) and (S,2R,3S)-S5 (1.01 g, $3.60 \mathrm{mmol}, 40 \%$) as white solids. ${ }^{4}$
(S)-4-Benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one ((S,2R,3R)-S5). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.28(\mathrm{~m}, 5 \mathrm{H}), 4.69$ (dddd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82$ (qd, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.33\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $2.79\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 176.8\left(\mathrm{C}_{\mathrm{q}}\right), 153.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.6(2 x \mathrm{CH}), 129.1(2 x \mathrm{CH}), 127.5(\mathrm{CH}), 70.9(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 45.2(\mathrm{CH})$, $38.0\left(\mathrm{CH}_{2}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$, $14.7\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=+32.2(c$ 0.37, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{5}$
(S)-4-Benzyl-3-((2R,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one ((S,2R,3S)-S5). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.28(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}$, $3 \mathrm{H}), 3.85\left(\mathrm{qd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.21$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 176.9\left(\mathrm{C}_{\mathrm{q}}\right), 153.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(2 \mathrm{xCH})$, $129.1(2 x \mathrm{CH})$, $127.6(\mathrm{CH}), 68.3(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 55.6(\mathrm{CH})$, $43.1(\mathrm{CH})$, $38.2\left(\mathrm{CH}_{2}\right)$, $19.6\left(\mathrm{CH}_{3}\right)$, $10.7\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=+61.5$ (c $0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), lit. $[\alpha] 30 \mathrm{D}=+42.0\left(c 0.50, \mathrm{CHCl}_{3}\right) .{ }^{4}$

Synthesis of (R)-4-benzyl-3-((2S,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2one ((R,2S,3S)-S5) and (R)-4-benzyl-3-((2S,3R)-3-hydroxy-2-methylbutanoyl)-oxazolidin-2-one ($(R, 2 S, 3 R)$-S5). ${ }^{4}$
Following the same procedure as for $(S, 2 R, 3 R)$-S5 and $(S, 2 R, 3 S)$-S5, (R)-S4 (2.10 g , 9.00 mmol) was converted into ($R, 2 S, 3 S$)-S5 ($1.14 \mathrm{~g}, 4.11 \mathrm{mmol}, 46 \%$) and ($R, 2 S, 3 R$)$\mathbf{S 5}(0.85 \mathrm{~g}, 3.08 \mathrm{mmol}, 34 \%)$ that were obtained as white solids.
(R)-4-Benzyl-3-((2S,3S)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one
((R,2S,3S)-S5). Spectroscopic data were identical to those of $(S, 2 R, 3 R)$-S5. Optical rotation: $[\alpha] 25 \mathrm{D}=-31.5\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 30 \mathrm{D}=-19.8\left(c 0.50, \mathrm{CHCl}_{3}\right) .4$
(R)-4-Benzyl-3-((2S,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one
((R,2S,3R)-S5). Spectroscopic data were identical to those of (S,2R,3S)-S5. Optical rotation: $[\alpha] 25 \mathrm{D}=-55.0\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (2R,3R)-3-hydroxy-2-methylbutanoic acid ((2R,3R)-S6). ${ }^{4}$
(S)-4-Benzyl-3-((2R,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one (($S, 2 R, 3 R$)-S5, $86 \mathrm{mg}, 0.31 \mathrm{mmol})$ was dissolved in THF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The solution was
cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 0.2 \mathrm{~mL}, 18.2 \mathrm{mmol})$ was added dropwise. LiOH ($36 \mathrm{mg}, 1.50 \mathrm{mmol}$) was added and the resulting mixture was allowed to stir for 2 h and then quenched by the addition of an aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(270 \mathrm{mg}$ in $1.6 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). After removal of THF under reduced pressure the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, then acidified by the addition of 2 N HCl solution to pH 1 , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated to yield ($2 R, 3 R$)-3-hydroxy-2-methylbutanoic acid ($(2 R, 3 R)$-S6) as a colourless oil ($17 \mathrm{mg}, 0.14 \mathrm{mmol}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta_{\mathrm{H}} 3.92\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.49\left(\mathrm{qd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 180.7\left(\mathrm{C}_{\mathrm{q}}\right), 69.6(\mathrm{CH}), 47.0(\mathrm{CH}), 20.9\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Optical rotation: $[\alpha] 25 \mathrm{D}=-23.2\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 24 \mathrm{D}=-29.0\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{6}$

Synthesis of (2R,3S)-3-hydroxy-2-methylbutanoic acid ((2R,3S)-S6).

Following the same procedure as for ($2 R, 3 R$)-S6, ($S, 2 R, 3 S$)-S5 ($86 \mathrm{mg}, 0.31 \mathrm{mmol}$) was converted into $(2 R, 3 S)$-S6 that was obtained as a colourless oil ($28 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 4.14$ (qd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59\left(\mathrm{qd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $)_{3}$: $\delta_{\mathrm{C}} 180.6\left(\mathrm{C}_{\mathrm{q}}\right), 68.1(\mathrm{CH}), 45.3$ $(\mathrm{CH}), 19.8\left(\mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=+4.9\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 30 \mathrm{D}=+6.9\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{4}$

Synthesis of (2S,3S)-3-hydroxy-2-methylbutanoic acid ((2S,3S)-S6).

Following the same procedure as for ($2 R, 3 R$)-S6, ($R, 2 S, 3 S$)-S5 ($90 \mathrm{mg}, 0.32 \mathrm{mmol}$) was converted into ($2 S, 3 S$)-S6 that was obtained as a colourless oil ($20 \mathrm{mg}, 0.17$ mmol, 52%). Spectroscopic data were identical to those of $(2 R, 3 R)$-S6. Optical rotation: $[\alpha] 25 \mathrm{D}=+16.9\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{7}$

Synthesis of (2S,3R)-3-hydroxy-2-methylbutanoic acid ((2S,3R)-S6).

Following the same procedure as for ($2 R, 3 R$)-S6, $(2 S, 3 R)$-S5 ($120 \mathrm{mg}, 0.43 \mathrm{mmol}$) was converted into $(2 S, 3 R)$-S6 that was obtained as a colourless oil ($40 \mathrm{mg}, 0.34$ mmol, 78\%). Spectroscopic data were identical to those of $(2 R, 3 S)$-S6. Optical rotation: $[\alpha] 25 \mathrm{D}=-3.8\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 30 \mathrm{D}=-6.8\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{4}$

Synthesis of S-(2-acetamidoethyl) (2R,3R)-3-hydroxy-2-methylbutanethioate ($(2 R, 3 R)-3)$.

Following the same procedure as for $(R)-\mathbf{1},(2 R, 3 R)$-S6 ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) was converted into $(2 R, 3 R)-3$ that was obtained as a colourless oil $(15 \mathrm{mg}, 0.07 \mathrm{mmol}$, 48%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 5.88$ (br s, NH), $3.94\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4\right.$ $\mathrm{Hz}, 3 \mathrm{H}), 1.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 204.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $170.7\left(\mathrm{C}_{\mathrm{q}}\right), 70.2(\mathrm{CH}), 56.0(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 15.1$ $\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=-18.7\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] \mathrm{D}=-32.8(c 0.33$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{2}$

Synthesis of S-(2-acetamidoethyl) (2R,3S)-3-hydroxy-2-methylbutanethioate ($(2 R, 3 S)-3)$.
Following the same procedure as for $(R)-1,(2 R, 3 S)-\mathbf{S 6}(28 \mathrm{mg}, 0.24 \mathrm{mmol})$ was converted into $(2 R, 3 S)-3$ that was obtained as a colourless oil $(20 \mathrm{mg}, 0.09 \mathrm{mmol}$, 38%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 5.88$ (br s, NH), 4.11 (qd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 2.70\left(\mathrm{qd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 204.2\left(\mathrm{C}_{\mathrm{q}}\right), 170.7\left(\mathrm{C}_{\mathrm{q}}\right), 68.5(\mathrm{CH}), 54.6(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=-3.7(c 0.07$, $\left.\mathrm{CHCl}_{3}\right)$, lit. $[\alpha] 30 \mathrm{D}=-4.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{2}$

Synthesis of S-(2-acetamidoethyl) (2S,3S)-3-hydroxy-2-methylbutanethioate ((2S,3S)-3).

Following the same procedure as for (R)-1, $(2 S, 3 S)$-S6 ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) was converted into $(2 S, 3 S)-3$ that was obtained as a colourless oil ($14 \mathrm{mg}, 0.06 \mathrm{mmol}$, $44 \%)$. Spectroscopic data were identical to those of $(2 R, 3 R)-3$. Optical rotation: [α] 25 $\mathrm{D}=+17.3\left(c 0.20, \mathrm{CHCl}_{3}\right)$, lit. [α] $\mathrm{D}=+36.8\left(c \quad 0.64, \mathrm{CHCl}_{3}\right) .{ }^{2}$

Synthesis of S-(2-acetamidoethyl) (2S,3R)-3-hydroxy-2-methylbutanethioate ($(2 S, 3 R)-3)$.

Following the same procedure as for (R)-1, ($2 S, 3 R$)-S6 ($40 \mathrm{mg}, 0.34 \mathrm{mmol}$) was converted into $(2 S, 3 R)-3$ that was obtained as a colourless oil $(24 \mathrm{mg}, 0.11 \mathrm{mmol}$, $32 \%)$. Spectroscopic data were identical to those of $(2 R, 3 S)-3$. Optical rotation: [α] 25
$\mathrm{D}=+2.7\left(c 0.10, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha] 30 \mathrm{D}=+3.0\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{2}$

Scheme S4. Preparation of both enantiomers of 4.

Synthesis of (R)-3-acetyl-4-benzyloxazolidin-2-one ((R)-S7).

Following the same procedure as for (S)-S4, (R)-S3 (3.30 g, 18.5 mmol) was converted into (R)-S7 that was obtained as a white solid ($2.80 \mathrm{~g}, 12.8 \mathrm{mmol}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 7.03(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}), 4.08\left(\mathrm{ddt},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.45\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.17\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (dd, $\left.{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 169.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $153.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.6(2 \mathrm{xCH}), 129.0(2 \mathrm{xCH}), 127.3(\mathrm{CH}), 65.6\left(\mathrm{CH}_{2}\right), 54.9$ $\left(\mathrm{CH}_{3}\right)$, $37.7\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{H}^{+}$ $m / z 220.0968$; found $m / z 220.0971$. Optical rotation: $[\alpha] 25 \mathrm{D}=-77.2\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (R)-4-benzyl-3-((R,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one $((R, 3 R)-S 8)$ and (R)-4-benzyl-3-((S,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ($(\boldsymbol{R}, \mathbf{3 S})$-S8). Following the same procedure as for $(2 R, 3 R)$-S5, $(R)-\mathbf{S 7}(2.50 \mathrm{~g}, 11.4$ mmol) was converted into the minor diastereomer (R)-4-benzyl-3-(($R, E)$-3-hydroxyhex-4-enoyl)oxazolidin-2-one (($R, 3 R$)-S8, $450 \mathrm{mg}, 1.56 \mathrm{mmol}, 14 \%$) and the major diastereomer (R)-4-benzyl-3-((S,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one
((R,3S)-S8) ($1.40 \mathrm{~g}, 4.84 \mathrm{mmol}, 42 \%), d r=1: 3$, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as white solids.
(R)-4-Benzyl-3-(($R, E)$-3-hydroxyhex-4-enoyl)oxazolidin-2-one $\quad\left((R, 3 R)\right.$-S8). $\quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.04(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.72\left(\mathrm{dqd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55\left(\mathrm{ddq},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=5.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.41\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.13\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.07$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.87\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.83(\mathrm{~m}, \mathrm{OH}), 2.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.53\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 172.1\left(\mathrm{C}_{\mathrm{q}}\right), 153.3$ $\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.2(\mathrm{CH}), 129.7(2 x \mathrm{CH}), 129.0(2 x \mathrm{CH}), 127.4(\mathrm{CH}), 126.3(\mathrm{CH})$, $69.0(\mathrm{CH}), 65.7\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 43.3\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 312.1206$; found $\mathrm{m} / \mathrm{z} 312.1206$. Optical rotation: $[\alpha] 25 \mathrm{D}=-51.7\left(c \quad 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 25 \mathrm{D}=-35.0\left(c \quad 1.35, \mathrm{CHCl}_{3}\right) .{ }^{8}$ (R)-4-Benzyl-3-((S,E)-3-hydroxyhex-4-enoyl)oxazolidin-2-one ((R,3S)-S8). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.04(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.71$ (dqd, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.54\left(\mathrm{ddq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz},{ }^{4}{ }_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.40\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.23(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.92\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.73(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.26\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.53\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 172.0\left(\mathrm{C}_{\mathrm{q}}\right), 153.3\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.1(\mathrm{CH})$, $129.6(2 x \mathrm{CH}), 129.0(2 x \mathrm{CH}), 127.4(\mathrm{CH}), 126.4(\mathrm{CH}), 68.9(\mathrm{CH}), 65.7\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH})$, $43.4\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 312.1206$; found $\mathrm{m} / \mathrm{z} 312.1209$. Optical rotation: $[\alpha] 25 \mathrm{D}=-93.0$ (c $0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), lit. $[\alpha] \mathrm{D}=-76.3\left(c 0.085, \mathrm{CHCl}_{3}\right) .{ }^{8}$

Synthesis of (R, E)-3-hydroxyhex-4-enoic acid ((R)-S9).

Following the same procedure as for ($2 R, 3 R$)-S6, ($R, 3 R$)-S8 ($145 \mathrm{mg}, 0.50 \mathrm{mmol}$) was converted into (R, E)-3-hydroxyhex-4-enoic acid ((R)-S9) that was obtained as a colourless oil ($50 \mathrm{mg}, 0.38 \mathrm{mmol}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 5.46$ (dqd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=15.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26\left(\mathrm{ddq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.3\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29(\mathrm{~m}, 1 \mathrm{H}), 2.32\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
$2.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.43\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}\right.$, $\left.{ }^{5} J_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 177.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.5(\mathrm{CH}), 126.8$ (CH), $68.9(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right)$, $17.6\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: $[\alpha] 25 \mathrm{D}=+12.5(c 0.40$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 25 \mathrm{D}=+22.5(c 0.4, \mathrm{EtOH}) .{ }^{9}$

Synthesis of (S,E)-3-hydroxyhex-4-enoic acid ((S)-S9).

Following the same procedure as for ($2 R, 3 R$)-S6, ($R, 3 S$)-S8 ($145 \mathrm{mg}, 0.50 \mathrm{mmol}$) was converted into (S, E)-3-hydroxyhex-4-enoic acid ((S)-S9) that was obtained as a colourless oil ($40 \mathrm{mg}, 0.31 \mathrm{mmol}, 61 \%$). Spectroscopic data were identical to those of (R)-S9. Optical rotation: $[\alpha] 25 \mathrm{D}=-15.5\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$), lit. [α]25 $\mathrm{D}=-22.2$ (c 0.4, $\mathrm{EtOH}) .{ }^{9}$

Synthesis of S-(2-acetamidoethyl) (R, E)-3-hydroxyhex-4-enethioate ((R)-4).

Following the same procedure as for $(R)-\mathbf{1},(R)-\mathbf{S 9}(20 \mathrm{mg}, 0.15 \mathrm{mmol})$ was converted into $(R)-4$ that was obtained as a colourless oil ($12 \mathrm{mg}, 0.05 \mathrm{mmol}, 34 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 5.53$ (dqd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (ddq, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91(\mathrm{br} \mathrm{s}, \mathrm{NH}), 4.52(\mathrm{~m}, 1 \mathrm{H})$, $3.17(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.61\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.47(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.47\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7\right.$ $\left.\mathrm{Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 197.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $169.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.9(\mathrm{CH}), 126.4(\mathrm{CH}), 69.6(\mathrm{CH}), 51.8\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right)$, $17.6\left(\mathrm{CH}_{3}\right)$ ppm. Optical rotation: [α] $25 \mathrm{D}=+19.0\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. [α]25 D = +16.7 (c $0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{10}$

Synthesis of S-(2-acetamidoethyl) (S,E)-3-hydroxyhex-4-enethioate ((S)-4).

Following the same procedure as for (R)-1, (S)-S9 (20 mg, 0.15 mmol) was converted into (S, E)-3-hydroxyhex-4-enoic acid ((S)-4) that was obtained as a colourless oil (9 $\mathrm{mg}, 0.04 \mathrm{mmol}, 25 \%)$. Spectroscopic data were identical to those of $(R)-4$. Optical rotation: $[\alpha] 25 \mathrm{D}=-18.0\left(c 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. $[\alpha] 25 \mathrm{D}=-18.6\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{10}$

($R, 3 R$)-S12 (25\%, two steps) (R,3S)-S12 (43\%, two steps) $d r=37: 63$

SNAC

(R)-5

(S)-S13

(S)-S14
SNAC

(S)-5

Scheme S5. Synthesis of both enantiomers of 5 .

Synthesis of (R)-4-benzyl-3-((R)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one (($R, 3 R$)$S 12$) and (R)-4-benzyl-3-((S)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((R,3S)S12).
A mixture of $\mathbf{S 1 0}(1.10 \mathrm{~g}, 15.7 \mathrm{mmol})$, silica gel and $\mathrm{PCC}(5.07 \mathrm{~g}, 23.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 mL) was stirred for 3 h with ice cooling. At the end of the reaction the solids were removed by filtration through a pad of silica gel. The solvents were evaporated to obtain the crude product $\mathbf{S 1 1}$ that was used for the next step without purification. Following the same procedure as for $(2 R, 3 R)-\mathbf{S 5},(R)-\mathbf{S 7}(300 \mathrm{mg}, 1.37 \mathrm{mmol})$ was converted into the minor diastereomer ($R, 3 R$)-S12 ($99 \mathrm{mg}, 0.34 \mathrm{mmol}, 25 \%$) and the major diastereomer ($R, 3 S$)-S12 ($169 \mathrm{mg}, 0.59 \mathrm{mmol}, 43 \%$), $d r=37: 63$, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds
were obtained as colourless solids.
$(R)-4-B e n z y l-3-\left((R)\right.$-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((R,3R)-S12). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.02(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (ddd, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.21\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.1\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.07\left(\mathrm{ddt},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=11.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}, \mathrm{OH}\right), 2.83\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22\left(\mathrm{ddt},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46$ (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 171.1\left(\mathrm{C}_{\mathrm{q}}\right), 153.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.6$ $(2 x C H), 129.0(2 x C H), 127.4(\mathrm{CH}), 81.1\left(\mathrm{C}_{\mathrm{q}}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}\right), 65.7\left(\mathrm{CH}_{2}\right), 59.4(\mathrm{CH}), 54.8$ (CH), $44.0\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 3.3\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{H}^{+} \mathrm{m} / \mathrm{z}$ 288.1230; found m / z 288.1229. Optical rotation: [α]25 D $=-51.3$ (c $0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(R)-4-Benzyl-3-((S)-3-hydroxyhex-4-ynoyl)oxazolidin-2-one ((R,3S)-S12). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.02(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.01\left(\mathrm{ddt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.3\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.37\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.05\left(\mathrm{ddt},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5\right.$ $\mathrm{Hz}, \mathrm{OH}), 2.86\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.2 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 171.1$ $\left(\mathrm{C}_{\mathrm{q}}\right), 153.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(2 \mathrm{xCH}), 129.0(2 \mathrm{xCH}), 127.4(\mathrm{CH}), 81.1\left(\mathrm{C}_{\mathrm{q}}\right), 80.1$ $\left(\mathrm{C}_{\mathrm{q}}\right), 65.7\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{CH}), 54.8(\mathrm{CH}), 44.1\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 3.3\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{H}^{+} \mathrm{m} / \mathrm{z} 288.1230$; found m / z 288.1226. Optical rotation: $[\alpha] 25 \mathrm{D}=-93.5\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (R)-3-hydroxyhex-4-ynoic acid ((R)-S13).

Following the same procedure as for $(2 R, 3 R)$-S6, $(R, 3 R)$-S12 ($88 \mathrm{mg}, 0.31 \mathrm{mmol}$) was converted into (R)-3-hydroxyhex-4-ynoic acid $((R)-S 13)$ that was obtained as a colourless oil ($34 \mathrm{mg}, 0.27 \mathrm{mmol}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 4.75$ (tq, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=6.1 \mathrm{~Hz},{ }^{5} J_{\mathrm{H}, \mathrm{H}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.84\left(\mathrm{~d},{ }^{5} J_{\mathrm{H}, \mathrm{H}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 176.2\left(\mathrm{C}_{\mathrm{q}}\right), 82.2\left(\mathrm{C}_{\mathrm{q}}\right), 78.2\left(\mathrm{C}_{\mathrm{q}}\right), 58.9(\mathrm{CH}), 42.1$ $\left(\mathrm{CH}_{2}\right)$, $3.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): [M-H]- calculated for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-} \mathrm{m} / \mathrm{z} 127.0401$; found m / z 127.0402. Optical rotation: $[\alpha] 25 \mathrm{D}=+14.7\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (S)-3-hydroxyhex-4-ynoic acid ((S)-S13).

Following the same procedure as for ($2 R, 3 R$)-S6, ($R, 3 S$)-S12 (169 mg, 0.59 mmol) was converted into (S)-3-hydroxyhex-4-ynoic acid ((S)-S13) that was obtained as a colourless oil ($60 \mathrm{mg}, 0.47 \mathrm{mmol}, 80 \%$). Spectroscopic data were identical to those of $(R)-S 13$. HRMS (ESI): $[M-H]^{-}$calculated for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3}-\mathrm{m} / \mathrm{z}$ 127.0401; found m / z 127.0401. Optical rotation: $[\alpha] 25 \mathrm{D}=-16.6\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of S-(2-acetamidoethyl) (R,Z)-3-hydroxyhex-4-enethioate ((R)-5).

A mixture of (R)-3-hydroxyhex-4-ynoic acid ((R)-S13) (30 mg, 0.23 mmol), Lindlar's catalyst (5 mg) and quinoline ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred in a H_{2} atmosphere (10 bar) for 1 h . At the end of the reaction the catalyst was removed by filtration and the solvents were evaporated to obtain the crude product (R)-S14 that was used for the next step without purification. Then following the same procedure as for (R)-1, (R)-S14 was converted into S-(2-acetamidoethyl) (R,Z)-3-hydroxyhex-4enethioate $((R)-5)$ that was obtained as a colourless oil ($10 \mathrm{mg}, 0.04 \mathrm{mmol}, 18 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 5.39 (m, 1H), 5.32 (m, 1H), 4.94 (tdd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.80(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.66\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 197.7\left(\mathrm{C}_{\mathrm{q}}\right), 169.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.5(\mathrm{CH}), 126.2(\mathrm{CH}), 65.0(\mathrm{CH}), 51.7$ $\left(\mathrm{CH}_{2}\right)$, $39.1\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): [M+Na] ${ }^{+}$ calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z} 254.0821$; found $\mathrm{m} / \mathrm{z} 254.0815$. Optical rotation: $[\alpha] 25 \mathrm{D}=+15.7\left(c 0.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of S-(2-acetamidoethyl) (S,Z)-3-hydroxyhex-4-enethioate ((S)-5).

Following the same procedure as for $(R)-5,(S)-\mathbf{S 1 3}(50 \mathrm{mg}, 0.39 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (S,Z)-3-hydroxyhex-4-enethioate ((S)-5) that was obtained as a colourless oil ($21 \mathrm{mg}, 0.09 \mathrm{mmol}, 23 \%$ over two steps). Spectroscopic data were identical to those of (R)-5. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 254.0821; found $m / z 254.0823$. Optical rotation: [α] $25 \mathrm{D}=-14.3\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Scheme S6. Synthesis of both enantiomers of 6 .

Synthesis of (R)-4-benzyl-3-((R)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2one $\quad((R, 3 R)$-S15) and $\quad(R)$-4-benzyl-3-((S)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one (($R, 3 S$)-S15). Following the same procedure as for $(2 R, 3 R)$ $\mathbf{S 5},(R)$-S7 ($1.50 \mathrm{~g}, 6.84 \mathrm{mmol}$) was converted into the minor diastereomer (R)-4-benzyl-3-((R)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one ((R,3R)-S15, 272 mg , $0.90 \mathrm{mmol}, 13 \%)$ and the major diastereomer (R)-4-benzyl-3-((S)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one (($R, 3 S$)-S15, $825 \mathrm{mg}, 2.72 \mathrm{mmol}, 40 \%), d r=1$: 3 , that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as colourless solids.
(R)-4-Benzyl-3-((R)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one ($R, 3 R$)S15). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 5.29$ (dhept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.89\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.22\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=0.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.74\left(\mathrm{~d},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.4\right.$ $\mathrm{Hz}, 3 \mathrm{H}), 1.72\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 172.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $153.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(2 \mathrm{xCH}), 129.2(2 \mathrm{xCH}), 127.6(\mathrm{CH}), 125.9$
$(\mathrm{CH}), 66.5\left(\mathrm{CH}_{2}\right), 65.2(\mathrm{CH}), 55.2(\mathrm{CH}), 43.1\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 326.1363$; found m / z 326.1357. Optical rotation: $[\alpha] 25 \mathrm{D}=-51.0\left(c \quad 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-4-Benzyl-3-((S)-3-hydroxy-5-methylhex-4-enoyl)oxazolidin-2-one
($(R, 3 S)-$
S15). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 5.28$ (dhept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.22\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=0.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.31\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=17.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.11\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.79\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.74(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.74$ (d, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.74\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 172.4\left(\mathrm{C}_{\mathrm{q}}\right), 153.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(2 \mathrm{xCH}), 129.1(2 \mathrm{xCH}), 127.6$ $(\mathrm{CH}), 125.8(\mathrm{CH}), 66.5\left(\mathrm{CH}_{2}\right), 65.1(\mathrm{CH}), 55.2(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right)$, $18.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI): [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 326.1363$; found $\mathrm{m} / \mathrm{z} 326.1358$. Optical rotation: $[\alpha] 25 \mathrm{D}=-90.0\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (R)-3-hydroxy-5-methylhex-4-enoic acid ((R)-S16).

Following the same procedure as for ($2 R, 3 R$)-S6, $(R, 3 R)$-S15 ($122 \mathrm{mg}, 0.40 \mathrm{mmol}$) was converted into (R)-3-hydroxy-5-methylhex-4-enoic acid ((R)-S16) that was obtained as a colourless oil ($40 \mathrm{mg}, 0.28 \mathrm{mmol}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.22 (dhept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.80\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.60\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.54\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.4\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.73\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.71\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 176.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 125.4(\mathrm{CH}), 65.3(\mathrm{CH}), 41.5$ $\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{3}\right)$, $18.4\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}-\mathrm{H}]-$ calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-} \mathrm{m} / \mathrm{z}$ 143.0714; found m / z 143.0714. Optical rotation: [α] $25 \mathrm{D}=+12.0\left(c 0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (S)-3-hydroxy-5-methylhex-4-enoic acid ((S)-S16).

Following the same procedure as for ($2 R, 3 R$)-S6, (R,3S)-S15 (350 mg, 1.15 mmol) was converted into (S)-3-hydroxy-5-methylhex-4-enoic acid ((S)-S16) that was obtained as a colourless oil ($142 \mathrm{mg}, 0.98 \mathrm{mmol}, 85 \%$). Spectroscopic data were identical to those of (R)-S16. HRMS (ESI): $[M-H]$ calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-} \mathrm{m} / \mathrm{z}$ 143.0714; found m / z 143.0714. Optical rotation: $[\alpha] 25 \mathrm{D}=-14.0\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of S-(2-acetamidoethyl) (R)-3-hydroxy-5-methylhex-4-enethioate ((R)-

 6).Following the same procedure as for (R)-1, (R)-S16 ($35 \mathrm{mg}, 0.24 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) (R)-3-hydroxy-5-methylhex-4-enethioate $((R)-6)$ that was obtained as a colourless oil ($15 \mathrm{mg}, 0.06 \mathrm{mmol}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 5.14 (dhept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.17(\mathrm{~m}, 2 \mathrm{H})$, $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.67\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.48(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, \mathrm{OH}\right), 1.50\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.6\right.$ $\mathrm{Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.45\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ_{C} $197.8\left(\mathrm{C}_{\mathrm{q}}\right), 169.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{C}_{\mathrm{q}}\right), 127.2(\mathrm{CH}), 66.2(\mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$, $18.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{HRMS}(\mathrm{ESI})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z} 268.0978$; found $\mathrm{m} / \mathrm{z} 268.0978$. Optical rotation: [α]25 $\mathrm{D}=+16.5$ (c $0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxy-5-methylhex-4-enethioate ((S)-

 6).Following the same procedure of $(R) \mathbf{- 1},(S)-\mathbf{S 1 6}(65 \mathrm{mg}, 0.45 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (S)-3-hydroxy-5-methylhex-4-enethioate ((S)-6) that was obtained as a colourless oil ($58 \mathrm{mg}, 0.24 \mathrm{mmol}, 52 \%$). Spectroscopic data were identical to those of (R)-6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 268.0978; found m / z 268.0976. Optical rotation: $[\alpha] 25 \mathrm{D}=-15.7\left(c \quad 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Scheme S7. Synthesis of both enantiomers of 7.

Synthesis of (R)-4-benzyl-3-((R, E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2one ((R,3R)-S17) and (R)-4-benzyl-3-((S,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one (($R, 3 S$)-S17).
Following the same procedure as for $(2 R, 3 R)$-S5, (R)-S7 ($1.00 \mathrm{~g}, 4.56 \mathrm{mmol}$) was converted into the major diastereomer (R)-4-benzyl-3-((R,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ($(R, 3 R)$-S17, $625 \mathrm{mg}, 2.06 \mathrm{mmol}, 45 \%$) and the minor diastereomer (R)-4-benzyl-3-((S,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((R,3S)-S17, $147 \mathrm{mg}, 0.48 \mathrm{mmol}, 11 \%), d r=4: 1$, that were separable by column chromatography on silica gel (petroleum ether/EtOAc, 3:1). The compounds were obtained as colourless solids.
(R)-4-Benzyl-3-(($R, E)$-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one (($R, 3 R$)S17). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 5.61$ (qquin, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.08\left(\mathrm{ddt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.41(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=9.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.13\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08$ $\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.3 \mathrm{~Hz}, \mathrm{OH}\right), 2.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.65(\mathrm{~s}, 3 \mathrm{H})$,
$1.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8, \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 172.4\left(\mathrm{C}_{\mathrm{q}}\right), 153.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.7(2 x C H), 129.0(2 x C H), 127.4(\mathrm{CH}), 120.4(\mathrm{CH}), 73.7(\mathrm{CH})$, $65.7\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 13.1\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 326.1363$; found $\mathrm{m} / \mathrm{z} 326.1359$. Optical rotation: $[\alpha] 25 \mathrm{D}=-48.9\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-4-Benzyl-3-((S,E)-3-hydroxy-4-methylhex-4-enoyl)oxazolidin-2-one ((R,3S)S17). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.61$ (qquin, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.69(\mathrm{~m}, 1 \mathrm{H}), 4.07\left(\mathrm{ddt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.41\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.24\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}, \mathrm{OH}\right), 2.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.65(\mathrm{~s}, 3 \mathrm{H})$, $1.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8, \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 172.4\left(\mathrm{C}_{\mathrm{q}}\right), 153.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.6(2 x \mathrm{CH}), 129.0(2 x \mathrm{CH}), 127.4(\mathrm{CH}), 120.4(\mathrm{CH}), 73.5(\mathrm{CH})$, $65.7\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 13.1\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+} \mathrm{m} / \mathrm{z} 326.1363$; found $\mathrm{m} / \mathrm{z} 326.1359$. Optical rotation: $[\alpha] 25 \mathrm{D}=-100.0\left(c \quad 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (R, E)-3-hydroxy-4-methylhex-4-enoic acid ((R)-S18).

Following the same procedure as for ($2 R, 3 R$)-S6, (R)-S17 ($300 \mathrm{mg}, 0.99 \mathrm{mmol}$) was converted into (R, E)-3-hydroxy-4-methylhex-4-enoic acid ((R)-S18) that was obtained as a colourless oil ($118 \mathrm{mg}, 0.82 \mathrm{mmol}, 83 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.58 (qquin, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.47\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.64$ $\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.55\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=16.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $\left.1.64(\mathrm{~m}, 3 \mathrm{H}), 1.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126MHz,CDCl}_{3}\right): \delta_{\mathrm{C}} 177.6$ $\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 121.8(\mathrm{CH}), 73.5(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 13.2\left(\mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): [M-H]- calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-} \mathrm{m} / \mathrm{z}$ 143.0714; found m / z 143.0714. Optical rotation: $[\alpha] 25 \mathrm{D}=+18.5\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of (S,E)-3-hydroxy-4-methylhex-4-enoic acid ((S)-S18).

Following the same procedure as for ($2 R, 3 R$)-S6, (S)-S17 ($147 \mathrm{mg}, 0.48 \mathrm{mmol}$) was converted into (S, E)-3-hydroxy-4-methylhex-4-enoic acid ((S)-S18) that was obtained as a colourless oil ($63 \mathrm{mg}, 0.44 \mathrm{mmol}, 90 \%$). Spectroscopic data were identical to those of (R)-S18. HRMS (ESI): $[\mathrm{M}-\mathrm{H}]-$ calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-} \mathrm{m} / \mathrm{z}$ 143.0714; found m / z
143.0714. Optical rotation: $[\alpha] 25 \mathrm{D}=-18.9\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of S-(2-acetamidoethyl) (R,E)-3-hydroxy-4-methylhex-4-enethioate ((R)-

 7).Following the same procedure as for (R)-1, (R)-S18 (118 $\mathrm{mg}, 0.82 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) (R, E)-3-hydroxy-4-methylhex-4-enethioate ((R)-7) that was obtained as a colourless oil ($48 \mathrm{mg}, 0.20 \mathrm{mmol}, 24 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): 6.06 (br s, NH), 5.56 (qquin, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=9.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.83\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.73\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.98$ (s, 3H), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}$ $199.2\left(\mathrm{C}_{\mathrm{q}}\right), 170.8\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 121.7(\mathrm{CH}), 74.2(\mathrm{CH}), 49.7\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right)$, $23.2\left(\mathrm{CH}_{3}\right)$, $13.2\left(\mathrm{CH}_{3}\right)$, $11.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 268.0978; found m / z 268.0971. Optical rotation: [α]25 D = +16.0 (c $0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Synthesis of S-(2-acetamidoethyl) (S,E)-3-hydroxy-4-methylhex-4-enethioate ((S)-7).

Following the same procedure as for (R)-1, (S)-S18 (50 mg, 0.35 mmol$)$ was converted into S-(2-acetamidoethyl) (S,E)-3-hydroxy-4-methylhex-4-enethioate ((S)-7) that was obtained as a colourless oil ($13 \mathrm{mg}, 0.05 \mathrm{mmol}, 15 \%$). Spectroscopic data were identical to those of $(R)-7$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 268.0978; found m / z 268.0979. Optical rotation: [α] $25 \mathrm{D}=-15.7\left(c 0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Scheme S8. Synthesis of (rac)-8.

Synthesis of ethyl (2E,4E)-4-methylhexa-2,4-dienoate (S20).

To a solution of triethyl phosphonoacetate ($3.46 \mathrm{~g}, 15.4 \mathrm{mmol}$) in THF (18 mL) was added ${ }^{\mathrm{n}} \mathrm{BuLi}\left(6.2 \mathrm{~mL}, 2.5 \mathrm{~m}\right.$ in hexane, 15.4 mmol) dropwise at $0^{\circ} \mathrm{C}$ under Ar. After 0.5 h, (E)-2-methylbut-2-enal ($1.30 \mathrm{~g}, 15.4 \mathrm{mmol}$) was added dropwise. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4} and concentrated to dryness. The residue was purified through silica gel column chromatography (petroleum ether/EtOAc, 20:1-5:1) to afford ethyl (2E,4E)-4-methylhexa-2,4-dienoate (S20) as a colourless solid ($2.10 \mathrm{~g}, 13.6 \mathrm{mmol}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.31$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 167.8\left(\mathrm{C}_{\mathrm{q}}\right), 149.6(\mathrm{CH}), 136.4(\mathrm{CH}), 133.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $115.4(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{11}$

Synthesis of (2E,4E)-4-methylhexa-2,4-dien-1-ol (S21).

To a solution of ethyl (2E,4E)-4-methylhexa-2,4-dienoate (S20) (2.10 g, 13.6 mmol$)$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(517 \mathrm{mg}, 13.6 \mathrm{mmol})$ in small portions at $0^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred for 30 min , then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{~mL})$ was added and stirring was continued for 10 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4} and concentrated to dryness. Purification of the crude product by column chromatography
on silica gel (petroleum ether/Et ${ }_{2} \mathrm{O}, 10: 1$) gave ($2 E, 4 E$)-4-methylhexa-2,4-dien-1-ol (S21) as a colourless oil ($1.10 \mathrm{~g}, 9.81 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.25$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.57\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 136.9(\mathrm{CH}), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 127.7(\mathrm{CH}), 124.9(\mathrm{CH}), 64.1$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{12}$

Synthesis of (2E,4E)-4-methylhexa-2,4-dienal (S22).

A mixture of $\mathbf{S 2 1}(1.10 \mathrm{~g}, 9.81 \mathrm{mmol})$, silica gel and $\mathrm{PCC}(3.17 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL) was stirred for 3 h with ice cooling. At the end of the reaction the silica gel was removed by silica gel column and the solvents were evaporated to obtain the crude product. Purification by column chromatography on silica gel (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 20: 1$) yielded $\mathbf{S 2 2}$ ($705 \mathrm{mg}, 6.40 \mathrm{mmol}, 65 \%$) as a colourless oil. The NMR spectra indicated the presence of two conformers. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 9.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}\right.$, 1 H), 6.52 and $6.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.00$ (ddquin, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6$ $\left.\mathrm{Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.47(\mathrm{~m}, 1 \mathrm{H}), 1.34\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.31(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 192.80$ and $192.76(\mathrm{CH}), 156.14$ and $156.07(\mathrm{CH})$, 137.34 and $137.26(\mathrm{CH}), 134.46\left(\mathrm{C}_{\mathrm{q}}\right), 127.15$ and $127.13(\mathrm{CH}), 14.34\left(\mathrm{CH}_{3}\right), 11.56$ $\left(\mathrm{CH}_{3}\right)$ ppm. ${ }^{13}$

Synthesis of ethyl (4E,6E)-3-hydroxy-6-methylocta-4,6-dienoate (S23).

To a solution of ${ }^{\prime} \mathrm{Pr}_{2} \mathrm{NH}(0.9 \mathrm{~mL}, 6.42 \mathrm{mmol})$ in THF (12 mL) was added ${ }^{\mathrm{n}} \mathrm{BuLi}(3.5 \mathrm{~mL}$, 1.6 m in hexane, 5.60 mmol) dropwise at $-78^{\circ} \mathrm{C}$ under N_{2}. EtOAc ($0.5 \mathrm{~mL}, 5.50 \mathrm{mmol}$) was then added dropwise. The resulting mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 30 min, and then ($2 E, 4 E$)-4-methylhexa-2,4-dienal (S22) ($500 \mathrm{mg}, 4.54 \mathrm{mmol}$) was added dropwise. After 2 h at $-78{ }^{\circ} \mathrm{C}$, the solution was poured onto an ice-cold solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Ether was added and the resulting mixture was stirred vigorously for a few minutes. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $x 30 \mathrm{~mL}$). The combined organic layers were dried with MgSO_{4}, filtered and concentrated to dryness. Pure ethyl (4E,6E)-3-hydroxy-6-methylocta-4,6-dienoate (S23, $730 \mathrm{mg}, 3.68 \mathrm{mmol}, 81 \%$) was obtained by column chromatography on silica gel (petroleum ether/EtOAc, 5:1-3:1). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 6.33$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.53 (ddquin, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.45\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 3.89\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.66(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.44\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$
$\left.=15.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{~m}$, 3 H), $1.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 172.0\left(\mathrm{C}_{\mathrm{q}}\right), 135.6(\mathrm{CH}), 134.1\left(\mathrm{C}_{\mathrm{q}}\right), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 69.3\left(\mathrm{CH}_{2}\right), 60.4$ $(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$, $12.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of (4E,6E)-3-hydroxy-6-methylocta-4,6-dienoic acid (S24).

To a solution of $\mathbf{S} 23(200 \mathrm{mg}, 1.01 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1 \mathrm{~mL}), \mathrm{NaOH}(100 \mathrm{mg}, 2.50$ mmol) was added and the mixture was stirred for 0.5 h . The mixture was acidified by adding $\mathrm{HCl}(1 \mathrm{~N}, 3 \mathrm{~mL})$, followed by extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were dried with MgSO_{4} and concentrated to yield the product ($4 E, 6 E$)-3-hydroxy-6-methylocta-4,6-dienoic acid (S24) ($124 \mathrm{mg}, 0.73 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (700 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 6.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.45\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.41(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.45(\mathrm{~m}, 1 \mathrm{H}), 2.39\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.57(\mathrm{~m}, 3 \mathrm{H}), 1.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 177.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.0(\mathrm{CH}), 134.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 69.2(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right), 12.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of S -(2-acetamidoethyl) (4E,6E)-3-hydroxy-6-methylocta-4,6dienethioate ((rac)-8).
Following the same procedure as for $(R)-\mathbf{1}, \mathbf{S 2 4}(100 \mathrm{mg}, 0.59 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (4E,6E)-3-hydroxy-6-methylocta-4,6-dienethioate ((rac)-8) that was obtained as a colourless oil ($65 \mathrm{mg}, 0.24 \mathrm{mmol}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 6.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.44(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, \mathrm{NH}), 4.63(\mathrm{~m}, 1 \mathrm{H})$, $3.16(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.64\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.50(\mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.49(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 197.7\left(\mathrm{C}_{\mathrm{q}}\right), 169.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.6(\mathrm{CH}), 134.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 69.9(\mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right)$, $13.9\left(\mathrm{CH}_{3}\right)$, $12.1\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 294.1134; found $m / z 294.1133$.

(R)-S25
(S)-S25

(R)-9 (42\%)
(S)-9 (80\%)

Scheme S9. Synthesis of both enantiomers of 9.

Synthesis of S-(2-acetamidoethyl) (R)-3-hydroxy-3-phenylpropanethioate ((R)-9).

 Following the same procedure as for $(R)-\mathbf{1},(R)-\mathbf{S 2 5}(50 \mathrm{mg}, 0.30 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (R)-3-hydroxy-3-phenylpropanethioate ((R)-9) that was obtained as a colourless oil ($34 \mathrm{mg}, 0.13 \mathrm{mmol}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 5.12\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.81\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.75\left(\mathrm{dt},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.60$ (dd, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{C}} 197.9\left(\mathrm{C}_{\mathrm{q}}\right), 169.4\left(\mathrm{C}_{\mathrm{q}}\right), 143.5\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 126.0(2 \times \mathrm{CH}), 71.1$ (CH), $53.6\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z} 290.0821$; found $\mathrm{m} / \mathrm{z} 290.0825$. Optical rotation: $[\alpha] 25 \mathrm{D}=+21.2\left(c 0.20, \mathrm{CHCl}_{3}\right)$.
Synthesis of S-(2-acetamidoethyl) (S)-3-hydroxy-3-phenylpropanethioate ((S)-9).

 Following the same procedure as for (R)-1, (S)-S25 (50 mg, 0.30 mmol$)$ was converted into S-(2-acetamidoethyl) (S)-3-hydroxy-3-phenylpropanethioate ((S)-9) that was obtained as a colourless oil ($64 \mathrm{mg}, 0.24 \mathrm{mmol}, 80 \%$). Spectroscopic data were identical to those of (R)-9. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z}$ 290.0821; found m / z 290.0825. Optical rotation: $[\alpha] 25 \mathrm{D}=-18.2$ (c 0.50, CHCl_{3}).
Gene cloning

Cloning of the coding genes for BorDH2, BorDH3, BorDH5, FosDH2, FosDH2, RifDH10, ShawDH1, ShawDH2, Cpz and FabZ into the pYE-Express ${ }^{17}$ or pET28 expression vectors was reported previously. ${ }^{15}$
Amplification of cpz2 from cosmid cpzLK09 was performed using primer pair Cpz2pET28_FW (AAAAAAGAATTCATGAGCATCACCGTCAACGGC) and Cpz2pET28_RV (AAAAAAAAGCTTTCAGGCGTAGAACCGCGACAG). ${ }^{18}$ The resulting PCR product was cloned into the EcoRI and HindIII sites of expression vector pET28 and the obtained plasmid was verified by PCR and sequencing.

Gene expression and protein purification

E. coli BL21(DE3) cells harboring the corresponding pYE-Express or pET28 derived plasmids were used to inoculate a preculture in LB medium (10 mL) supplied with kanamycin ($50 \mu \mathrm{~g} / \mathrm{mL}$ final concentration), which was grown with shaking at $37{ }^{\circ} \mathrm{C}$ overnight. The precultures were used to inoculate main cultures (1/100) in LB medium with kanamycin ($50 \mu \mathrm{~g} / \mathrm{mL}$ final concentration) and the cells were grown with shaking at $37^{\circ} \mathrm{C}$ until $\mathrm{OD}_{600}=0.4-0.6$ was reached. The cultures were cooled down to $18{ }^{\circ} \mathrm{C}$, before IPTG (0.4 mm final concentration) was added to induce expression. The cultures were shaken at the same temperature overnight and then centrifuged ($3500 \times \mathrm{g}, 40$ min, $4{ }^{\circ} \mathrm{C}$). The medium was discarded and the cell pellet was resuspended in binding buffer ($10 \mathrm{~mL} / \mathrm{L}$ culture; 40 mm Tris- $\mathrm{HCl}, 100 \mathrm{~mm} \mathrm{NaCl}, \mathrm{pH} 7.8,4^{\circ} \mathrm{C}$). The cells were lysied by ultrasonication ($10 \times 1 \mathrm{~min}$). The cell debris was spun down ($14600 \times \mathrm{g}, 10$ $\min , 4{ }^{\circ} \mathrm{C}$) and the soluble protein fraction was filtrated and loaded onto a Ni^{2+}-NTA affinity chromatography column (Ni-NTA superflow, Qiagen, Venlo, Netherlands). The bound target protein was washed with wash buffer ($2 \times 10 \mathrm{~mL} / \mathrm{L}$ culture; 40 mm Tris$\mathrm{HCl}, 100 \mathrm{~mm} \mathrm{NaCl}, 50 \mathrm{~mm}$ imidazole, $\mathrm{pH} 7.8,4^{\circ} \mathrm{C}$) and desorbed from the stationary phase with elution buffer ($1 \times 10 \mathrm{~mL} / \mathrm{L}$ culture; 40 mm Tris- $\mathrm{HCl}, 100 \mathrm{~mm} \mathrm{NaCl}, 500 \mathrm{~mm}$ imidazole, $\mathrm{pH} 7.8,4^{\circ} \mathrm{C}$) with fractionation. The fractions were analysed by SDS-PAGE and fractions containing pure protein were pooled and used for incubation experiments (Figure S1). Finally, the eluate was concentrated, the buffer was replaced by incubation buffer (25 mm HEPES, $100 \mathrm{~mm} \mathrm{NaCl}, \mathrm{pH} 7.5$). For ShawDH1 expression, the strain was E. coli BL21(DE3) transformed with plasmid pGro7, additionally supplemented with arabinose $(500 \mathrm{mg} / \mathrm{L})$ to induce expression of the GroEL/ES chaperone. ${ }^{15}$

Figure S1. SDS-PAGE analysis of all recombinant enzymes used in this study. The theoretical molecular weights of target proteins are 34.6 kDa (BorDH2), 34.0 kDa (BorDH3), 34.2 kDa (BorDH5), 34.1 kDa (RifDH10), 33.3 kDa (FosDH1), 33.1 kDa (FosDH2), 19.8 kDa (FabZ), 20.3 kDa (Cpz2), 15.2 kDa (ShawDH1) and 16.5 kDa (ShawDH2).

Activity assays

Activity assays were carried out for all combinations of substrate and enzyme listed in Table S1. The reactions were performed in HEPES buffer (25 mm HEPES, 100 mm $\mathrm{NaCl}, \mathrm{pH} 7.5)$. A solution of enzyme in HEPES buffer ($100 \mu \mathrm{~L}$, enzyme concentration adjusted to $6 \mathrm{mg} / \mathrm{mL}$) was added into SNAC thioesters (1 mg dissolved in $5 \mu \mathrm{~L}$ DMSO). The reaction mixtures were incubated at $30^{\circ} \mathrm{C}$ for 16 h and then extracted with $\mathrm{C}_{6} \mathrm{D}_{6}$ $(0.6 \mathrm{~mL})$. After extraction the samples were directly analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figures S2-S9). For the most active enzyme BorDH2 the reactions were repeated in triplicates and conversions (in \%) were quantified by ${ }^{1} \mathrm{H}$ NMR peak integrations (Table S2).

SNAC

SNAC

SNAC

S39

SNAC

SNAC

Scheme S10. Synthesis of reference standards for DH products.

Synthesis of S-(2-acetamidoethyl) (E)-but-2-enethioate (S27).

Following the same procedure as for (R)-1, $\mathbf{S 2 6}(100 \mathrm{mg}, 1.16 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (E)-but-2-enethioate (S27) that was obtained as a colourless oil ($170 \mathrm{mg}, 0.91 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 6.73$ (dq, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.4 \mathrm{~Hz}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.24\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8\right.$ $\mathrm{Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.88\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.22\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 189.3\left(\mathrm{C}_{\mathrm{q}}\right), 168.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.1(\mathrm{CH}), 130.2(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z}$ 188.0740; found m / z 188.0737. ${ }^{15}$

Synthesis of S-(2-acetamidoethyl) (Z)-but-2-enethioate (S30).

A mixture of but-2-ynoic acid ($100 \mathrm{mg}, 1.19 \mathrm{mmol}$), quinoline ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and Lindlar's catalyst $(23 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred in a H_{2} atmosphere (10 bar) for 1 h at room temperature. The catalyst was removed by filtration and the solvents were evaporated. The product (Z)-but-2-enoic acid ($40 \mathrm{mg}, 0.46 \mathrm{mmol}, 39 \%$) was obtained by column chromatography on silica gel (pentane / Et $2 \mathrm{O}, 2: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(700 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{H}} 6.47\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(176 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 172.0\left(\mathrm{C}_{\mathrm{q}}\right), 148.0(\mathrm{CH}), 120.2(\mathrm{CH}), 15.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.
A mixture of (Z)-but-2-enoic acid $(20 \mathrm{mg}, 0.23 \mathrm{mmol})$ and triethylamine $(47 \mathrm{mg}, 0.46$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred for 10 mins with ice cooling. $\mathrm{CICO}_{2} \mathrm{Et}(50 \mathrm{mg}, 0.46$ mmol) was added to this solution. After $2 \mathrm{~h}, \mathrm{~N}$-acetylcysteamine ($29 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added. The mixture was stirred for 3 h at room temperature and then concentrated under reduced pressure. The residue was purified by HPLC to yield $\mathbf{S 3 0}(6 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 14 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 5.86$ (dq, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.21\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.84 (t, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.47$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 189.4\left(\mathrm{C}_{\mathrm{q}}\right), 168.9\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 127.2$ $(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z}$ 188.0740; found m / z 188.0738. ${ }^{15}$

Synthesis of S-(2-acetamidoethyl) (E)-2-methylbut-2-enethioate (S32).

Following the same procedure as for $(R)-1, \mathbf{S 3 1}(50 \mathrm{mg}, 0.50 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (E)-2-methylbut-2-enethioate (S32) that was obtained as a
colourless oil ($77 \mathrm{mg}, 0.38 \mathrm{mmol}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.87$ (qq, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.44\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.07\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.87$ (quin, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.84\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 194.0\left(\mathrm{C}_{\mathrm{q}}\right), 170.6\left(\mathrm{C}_{\mathrm{q}}\right), 137.0$ $(\mathrm{CH}), 137.0\left(\mathrm{C}_{\mathrm{q}}\right), 40.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right)$ ppm. ${ }^{2}$ HRMS (APCI): $[M+H]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z}$ 202.0896; found m / z 202.0895.

Synthesis of S-(2-acetamidoethyl) (2E,4E)-hexa-2,4-dienethioate (16).

Following the same procedure as for (R)-1, S33 ($50 \mathrm{mg}, 0.45 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) $(2 E, 4 E)$-hexa-2,4-dienethioate (16) that was obtained as a pale yellow oil ($63 \mathrm{mg}, 0.30 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.27$ (dd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $\left.=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.98\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.68$ (dddq, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=10.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.59 (dq, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.90(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.27\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 2.93\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8,3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 189.5\left(\mathrm{C}_{\mathrm{q}}\right), 168.9\left(\mathrm{C}_{q}\right), 141.4(\mathrm{CH}), 141.1(\mathrm{CH}), 129.8(\mathrm{CH})$, $126.4(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$, $18.5\left(\mathrm{CH}_{3}\right)$ ppm. ${ }^{16}$

Synthesis of S-(2-acetamidoethyl) (2E,4Z)-hexa-2,4-dienethioate (15).

Following the same procedure as for (R)-1, $\mathbf{S 3 4}(52 \mathrm{mg}, 0.46 \mathrm{mmol}$) was converted into 15 that was obtained as a pale yellow oil ($47 \mathrm{mg}, 0.22 \mathrm{mmol}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 7.69\left(\mathrm{ddd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{~d}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (dddq, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}$ $=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.26(\mathrm{q}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.93\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.50(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.35\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.7 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 189.8\left(\mathrm{C}_{\mathrm{q}}\right), 169.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.7(\mathrm{CH}), 135.4(\mathrm{CH}), 128.2(\mathrm{CH}), 127.5(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right)$, $13.8\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (APCI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z} 214.0896$; found $m / z 214.0895$.

Synthesis of S-(2-acetamidoethyl) (E)-5-methylhexa-2,4-dienethioate (S36).

Following the same procedure as for $(R)-\mathbf{1}, \mathbf{S 3 5}(100 \mathrm{mg}, 0.79 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (E)-5-methylhexa-2,4-dienethioate (S36) that was obtained
as a pale yellow oil ($62 \mathrm{mg}, 0.27 \mathrm{mmol}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.66$ (dd, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=14.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.81(\mathrm{br} \mathrm{s}, \mathrm{NH}), 5.63$ (doct, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=11.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=5.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $3.03\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.39(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 189.6\left(\mathrm{C}_{\mathrm{q}}\right), 169.5\left(\mathrm{C}_{\mathrm{q}}\right), 148.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.3(\mathrm{CH}), 126.1(\mathrm{CH}), 124.0$ $(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (APCI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z} 228.1053$; found $\mathrm{m} / \mathrm{z} 228.1048$.

Synthesis of (2E,4E)-4-methylhexa-2,4-dienoic acid (S38).

Following the same procedure as for $\mathbf{S 2 4}, \mathbf{S 3 7}(1.40 \mathrm{~g}, 9.08 \mathrm{mmol})$ was converted into $(2 E, 4 E)$-4-methylhexa-2,4-dienoic acid (S38) that was obtained as a pale yellow oil ($800 \mathrm{mg}, 6.34 \mathrm{mmol}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 10.26$ (br s, 1H), $7.40(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.83(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.79(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 173.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $152.0(\mathrm{CH}), 138.0(\mathrm{CH}), 134.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $114.6(\mathrm{CH}), 14.8\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of S-(2-acetamidoethyl) (2E,4E)-4-methylhexa-2,4-dienethioate (S39).

Following the same procedure as for $(R)-\mathbf{1}, \mathbf{S 3 8}(50 \mathrm{mg}, 0.40 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) (2E,4E)-4-methylhexa-2,4-dienethioate (S39) that was obtained as a pale yellow oil ($25 \mathrm{mg}, 0.11 \mathrm{mmol}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ_{H} $7.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55(\mathrm{q}$, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.27(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.34\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.99$ $\left(\mathrm{t},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 3 \mathrm{H}), 1.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 189.7\left(\mathrm{C}_{\mathrm{q}}\right), 169.2\left(\mathrm{C}_{\mathrm{q}}\right), 146.0(\mathrm{CH}), 138.5(\mathrm{CH}), 133.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $122.8(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$, $14.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (APCI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z} 228.1053$; found m / z 228.1051.

Synthesis of (2E,4E,6E)-6-methylocta-2,4,6-trienoic acid (S42).

Following the same procedure as for $\mathbf{S 2 0}, \mathbf{S 4 0}(900 \mathrm{mg}, 8.17 \mathrm{mmol})$ was converted into ethyl ($2 E, 4 E, 6 E$)-6-methylocta-2,4,6-trienoate (S41) that was obtained as a pale yellow oil ($856 \mathrm{mg}, 4.75 \mathrm{mmol}$). Following the same procedure as for S24, S41 (200 $\mathrm{mg}, 1.11 \mathrm{mmol}$) was further converted into ($2 E, 4 E, 6 E$)-6-methylocta-2,4,6-trienoic acid (S42) that was obtained as a pale yellow oil ($260 \mathrm{mg}, 1.69 \mathrm{mmol}, 21 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.22(\mathrm{~d}$,
$\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.41\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.43(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 173.5\left(\mathrm{C}_{\mathrm{q}}\right), 148.1(\mathrm{CH}), 146.9(\mathrm{CH}), 134.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.0(\mathrm{CH}), 123.7(\mathrm{CH}), 119.5(\mathrm{CH}), 14.2\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): [M-H] calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{-} \mathrm{m} / \mathrm{z}$ 151.0765; found m / z 151.0763.

Synthesis of S-(2-acetamidoethyl) (2E,4E,6E)-6-methylocta-2,4,6-trienethioate (S43).

Following the same procedure as for (R)-1, S42 ($47 \mathrm{mg}, 0.31 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) (2E,4E,6E)-6-methylocta-2,4,6-trienethioate (S43) that was obtained as a pale yellow solid ($51 \mathrm{mg}, 0.20 \mathrm{mmol}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 7.43\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.43\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.99(\mathrm{br} \mathrm{s}, \mathrm{NH}), 3.31\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}\right.$, 2 H), $2.97\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.52(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 3 \mathrm{H}), 1.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}\right.$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 189.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.0\left(\mathrm{C}_{\mathrm{q}}\right), 147.7(\mathrm{CH}), 142.0$ $(\mathrm{CH}), 135.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.3(\mathrm{CH}), 127.1(\mathrm{CH}), 123.6(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}^{+} \mathrm{m} / \mathrm{z} 276.1029$; found $\mathrm{m} / \mathrm{z} 276.1034$.

Synthesis of S-(2-acetamidoethyl) (E)-3-phenylprop-2-enethioate (S45).

Following the same procedure as for (R)-1, S44 ($62 \mathrm{mg}, 0.42 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) (E)-3-phenylprop-2-enethioate (S45) that was obtained as a pale yellow oil ($80 \mathrm{mg}, 0.32 \mathrm{mmol}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}), 6.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.20(\mathrm{br} \mathrm{s}$, NH), $3.50\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.16\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 190.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $170.6\left(\mathrm{C}_{\mathrm{q}}\right), 141.4(\mathrm{CH}), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH})$, $129.1(2 x C H), 128.6(2 x C H), 124.7(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (APCI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SH}^{+} \mathrm{m} / \mathrm{z} 250.0896$; found m / z 250.0892.

Table S1. Activity screening of dehydratases.

substrate	no.	BorDH2 ${ }^{[a]}$	BorDH3	BorDH5	FosDH1	FosDH2	RifDH10	ShawDH1	ShawDH2	Cpz2	FabZ
short chain compounds											
	(R)-1	89\%		11\%	57\%	53\%			14\%		36\%
	(S)-1										
	2										
compounds with α-methyl branch											
	$(2 R, 3 R)$-3	100\%		47\%	81\%	40\%					22\%
	$(2 S, 3 R)-3$										
	$(2 R, 3 S)$-3										
	$(2 S, 3 S)-3$										

structure	no.	BorDH2	BorDH3	BorDH5	FosDH1	FosDH2	RifDH10	ShawDH1	ShawDH2	Cpz2	FabZ
aromatic compounds											
	(S)-9	100\%	42\%	25\%	29\%	100\%	13\%			23\%	39\%
	(R)-9										

[a] The efficiency of enzymatic conversions is indicated by colour code (dark green = full conversion (100\%), green = partial conversion ($99-50 \%$), light green = partial conversion ($49-1 \%$), grey = no conversion (0%), based on peak integrations for the peaks highlighted in Figures S2 - S9).

Figure S2. Enzymatic conversions of (R)-1.

Figure S3. Enzymatic conversions of $(2 R, 3 R)$-3.

Figure S4. Enzymatic conversions of (S)-4.

(S) -5

15

16

Figure S5. Enzymatic conversions of (S)-5.

(S)-6

S36

Figure S6. Enzymatic conversions of (S)-6.

Figure S7. Enzymatic conversions of (S)-7.

Figure S8. Enzymatic conversions of (rac)-8.

Figure S9. Enzymatic conversions of (S)-9.

Table S2. Conversion efficiencies of BorDH2 enzyme reactions.

compound	conversion ${ }^{[a]}$			
	experiment 1	experiment 2	experiment 3	mean \pm SD
 (R)-1	88\%	93\%	95\%	$92 \pm 4 \%$
	100\%	97\%	100\%	$99 \pm 1 \%$
 (S)-4	100\%	100\%	100\%	$100 \pm 0 \%$
 (S)-5	100\%	100\%	100\%	$100 \pm 0 \%$
 (S)-6	100\%	100\%	100\%	$100 \pm 0 \%$
$(S)-7$	100\%	100\%	100\%	$100 \pm 0 \%$
	31\%	35\%	32\%	$33 \pm 5 \%$
 (S)-9	100\%	100\%	100\%	$100 \pm 0 \%$

[a] Determined by peak integration in the ${ }^{1} \mathrm{H}$ NMR spectra of crude extracts from enzyme reactions.

17

Scheme S11. Synthesis of (rac)-17 and (rac)-18.

Synthesis of 3-hydroxyhexanoic acid (S48).

Following the same procedure as for S23, S46 (720 mg, 10.0 mmol) was converted into ethyl 3-hydroxyhexanoate (S47) that was obtained as a pale yellow oil (1.42 g, $8.86 \mathrm{mmol})$. Following the same procedure as for $\mathbf{S} 24, \mathbf{S} 47(300 \mathrm{mg}, 1.87 \mathrm{mmol})$ was further converted into 3-hydroxyhexanoic acid (S48) that was obtained as a pale yellow oil ($200 \mathrm{mg}, 1.51 \mathrm{mmol}, 71 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 6.11$ (br s, COOH), $3.92(\mathrm{~m}, 1 \mathrm{H}), 2.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.16.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 0.82\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 177.5\left(\mathrm{C}_{\mathrm{q}}\right), 68.1(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right)$, $38.9\left(\mathrm{CH}_{2}\right)$, $19.0\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of S-(2-acetamidoethyl) 3-hydroxyhexanethioate ((rac)-17).
Following the same procedure as for $(R)-\mathbf{1}, \mathbf{S 4 8}(100 \mathrm{mg}, 0.76 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) 3-hydroxyhexanethioate ((rac)-17) that was obtained as a colourless oil ($108 \mathrm{mg}, 0.46 \mathrm{mmol}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 5.35$ (br s, NH), $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 0.83\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 198.6\left(\mathrm{C}_{\mathrm{q}}\right), 170.0\left(\mathrm{C}_{\mathrm{q}}\right), 68.7(\mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 39.4$ $\left(\mathrm{CH}_{2}\right)$, $39.2\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$, $19.0\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of 3-hydroxydecanoic acid (S51).

Following the same procedure as for $\mathbf{S 2 3}, \mathbf{S} 49(1.28 \mathrm{~g}, 10.0 \mathrm{mmol})$ was converted into ethyl 3-hydroxydecanoate ($\mathbf{S 5 0}$) that was obtained as a pale yellow solid ($1.92 \mathrm{~g}, 8.88$ mmol). Following the same procedure as for S24, $\mathbf{S 5 0}$ ($500 \mathrm{mg}, 2.31 \mathrm{mmol}$) was further converted into 3-hydroxydecanoic acid (S51) that was obtained as a colourless solid ($372 \mathrm{mg}, 1.98 \mathrm{mmol}, 76 \%$ over two steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$): $\delta_{\mathrm{H}} 3.89(\mathrm{~m}, 1 \mathrm{H})$, $2.29\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.24(\mathrm{~m}, 12 \mathrm{H}), 0.92\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ_{C} $177.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $68.2(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right)$, $36.9\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right)$, 25.8 $\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of S-(2-acetamidoethyl) 3-hydroxydecanethioate ((rac)-18).

Following the same procedure as for $(R)-\mathbf{1}, \mathbf{S 5 1}(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ was converted into S-(2-acetamidoethyl) 3-hydroxydecanethioate ((rac)-18) that was obtained as a colourless solid ($61 \mathrm{mg}, 0.21 \mathrm{mmol}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 4.77$ (br s , $\mathrm{NH}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.50\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.42\left(\mathrm{dd},{ }^{2}{ }_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}$, $10 \mathrm{H}), 0.91\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 198.7\left(\mathrm{C}_{\mathrm{q}}\right), 169.6$ $\left(\mathrm{C}_{q}\right)$, $69.0(\mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{2}\right)$, $23.1\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3}\right)$, $14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Compounds (rac)-4, (rac)-6, (rac)-7 and (rac)-9 were synthesised analogously through aldol addition of the ester enolate of ethyl acetate to the corresponding aldehyde, saponification and esterification with N -acetylcysteamine. Spectroscopic data matched those reported above for the enantiomerically pure compounds.

Kinetic resolutions with BorDH2

S-(2-Acetamidoethyl) (E)-3-hydroxyhex-4-enethioate ((rac)-4, $35 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in DMSO $(50 \mu \mathrm{~L})$ and BorDH2 dissolved in incubation buffer ($6.9 \mathrm{mg} / \mathrm{mL}, 3.5$ mL) was added. The reaction was incubated at $30^{\circ} \mathrm{C}$ for 16 h and then extracted with $\mathrm{C}_{6} \mathrm{H}_{6}(3 \times 5 \mathrm{~mL})$. After evaporation of the solvents the product was isolated through silica gel chromatography to obtain S-(2-acetamidoethyl) (R, E)-3-hydroxyhex-4enethioate ($(R)-4$) as a colourless oil ($12 \mathrm{mg}, 34 \%, 96 \%$ ee determined by HPLC analysis on a chiral stationary phase, Figure S10). Optical rotation: $[\alpha] 25 \mathrm{D}=+17.4$ (c $0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
The same procedure was applied for the following transformations:
Compound (rac)-6 ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) was converted into S-(2-acetamidoethyl) (R)-3-hydroxy-5-methylhex-4-enethioate $((R)-6)$ that was obtained as a colourless oil (9 $\mathrm{mg}, 0.04 \mathrm{mmol}, 36 \%$, 89% ee determined by HPLC analysis on a chiral stationary phase, Figure S11). Optical rotation: $[\alpha] 25 \mathrm{D}=+16.3\left(c 0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compound (rac)-7 (38 mg, 0.15 mmol) was converted into S-(2-acetamidoethyl) (R, E)-3-hydroxy-4-methylhex-4-enethioate $((R)-7)$ that was obtained as a colourless oil (13 $\mathrm{mg}, 0.05 \mathrm{mmol}, 34 \%$, >99\% ee determined by HPLC analysis on a chiral stationary phase, Figure S12). Optical rotation: $[\alpha] 25 \mathrm{D}=+15.6\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Compound (rac)-9 (50 mg, 0.19 mmol$)$ was converted into S-(2-acetamidoethyl) (R)-3-hydroxy-3-phenylpropanethioate $((R)-9)$ that was obtained as a colourless oil (22 mg , $0.08 \mathrm{mmol}, 44 \%, 99 \%$ ee $)$. Optical rotation: $[\alpha] 25 \mathrm{D}=+19.5$ (c 0.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). For determination of the enantiomeric excess the enzyme product and a racemic sample were converted into 2,2-dimethyl-4-phenyl-1,3-dioxane through reduction with LiAlH_{4} and subsequent treatment with $p-\mathrm{TsOH}$ ($10 \mathrm{~mol}-\%$) in 2,2-dimethoxypropane for 20 h at room temperature (Scheme S12). ${ }^{19}$ The enantiomeric excess of the enzyme product was then determined to be 99% ee by GC analysis on a chiral stationary phase (Figure S13).

Compound (rac)-17 (22 mg, 0.09 mmol) was converted into S-(2-acetamidoethyl) (S)-3-hydroxyhexanethioate ((S)-17) that was obtained as a colourless oil ($13 \mathrm{mg}, 0.06$ $\mathrm{mmol}, 59 \%, 19 \%$ ee determined by HPLC analysis on a chiral stationary phase, Figure S14).
Compound (rac)-18 (20 mg, 0.07 mmol) was converted into S-(2-acetamidoethyl) (S)-3-hydroxydecanethioate ((S)-18) that was obtained as a white solid ($14 \mathrm{mg}, 0.05 \mathrm{mmol}$, 70%, 3% ee determined by HPLC analysis on a chiral stationary phase, Figure S15).

Figure S10. HPLC chromatograms of synthetic (rac)-4 (top) and (R)-4 (bottom) obtained by kinetic resolution with BorDH2.

Figure S11. HPLC chromatograms of synthetic (rac)-6 (top) and (R)-6 (bottom) obtained by kinetic resolution with BorDH2.

Figure S12. HPLC chromatograms of synthetic (rac)-7 (top) and (R)-7 (bottom) obtained by kinetic resolution with BorDH2.

(rac)-9

BorDH2

(R)-9

(R)-S52

(R)-S53

Scheme S12. Kinetic resolution of (rac)-9 and synthesis of (rac)- and (R)-S53 for GC analysis.

Figure S13. Gas chromatograms of synthetic (rac)-S53 (top) and (R)-S53 (bottom) obtained by kinetic resolution with BorDH2.

Figure S14. HPLC chromatograms of synthetic (rac)-17 (top) and (S)-17 (bottom) obtained by kinetic resolution with BorDH2.

Figure S15. HPLC chromatograms of synthetic (rac)-18 (top) and (S)-18 (bottom) obtained by kinetic resolution with BorDH2.

24p5a039.22.10.fid
Rollux Bruker AV III 500 MHz Prodigy

R-BDB-10 001 _H_N 60D6 E: $\backslash \backslash$ Dickschat 39

Figure S16. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R)-1$.

24p5a039.22.12.fid
Pollux Bruker AV III 500 MHz Prodig
AK Prof. Dickschat
Name Yin
013_C_dept135 C6D6 E:
 Dickschat 392

4p5a039.22.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 391

Figure S17. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-1.

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-1.
44-5a001.20.12.fid
Instrument Bruker Avance I 500 MHz
AK Prof. Dickschat
AK Prof. Di
Title BDB-10-SNAC
013_C_dept135 CDC13 E:
 dickschat 12

Figure S19. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-1.

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 2 .

Figure S21. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 2 .

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-S4.

18مa0024.21.12.fid
strument Bruker AV I 500 MHz
K Prof.Dickscha
Title Bor-1
013_C_dept135 CDCl E:
 dickschat 242

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-S4.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-S4.

```
23p5a029.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof, Dickschat
Name Yir
R-Bor-1
013_C_dept135 CDClB E:\\ Dickschat 292
```


23p5a029.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin

$\begin{array}{ll}260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
Figure S25. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-S4.

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(S, 2 R, 3 R)$-S5.

49p5a043.21.13.fid

Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name
013_C_dept135 CDC13 E:
 Dickschat 432

Figure S27. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($S, 2 R, 3 R$)-S5.

\begin{abstract}

								$\underset{\underset{\sim}{e}}{\underset{\sim}{\top}}$	$\begin{aligned} & T \\ & \stackrel{T}{9} \end{aligned}$							
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	f1 (ppm		3.5	3.0	2.5	2.0	1.5	1.0	0.5

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(S, 2 R, 3 S)$-S5.

49p5b044.21.11.fid
ollux Bruker AV III 500 MHz Prodigy
, Vin
Name
013_C_dept135 CDC13 E:
 Dickschat 442

Figure S29. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($S, 2 R, 3 S$)-S5.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R, 2 S, 3 S)$-S5.

25p5a008.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name
013_C_dept135 CDClB E:
 Dickschat 82

25p5a008.22.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
\ Dickschat 81

Figure S32. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R, 2 S, 3 R)$-S5.

Instrument Bruker AV I 500 MHz
AK Prof.Dickschat
Name Yin
Title Bor-2
013_C_cpd CDC13 E: $\backslash \backslash$ didkschat 25

Figure S33. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R, 2 S, 3 R)$-S5.

Figure S34. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(2 R, 3 R)$-S6.

19p5a018.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
 Dickschat 181
$\begin{array}{lllllllllllllll}260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 \\ \mathrm{f}(\mathrm{ppm})\end{array}$
Figure S35. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 R, 3 R)$-S6.

Abstract

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 R, 3 S)$-S6.

9p5a021.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
K Prof. Dick
Name
013_C_dept135 CDCl E:
 Dickschat 212

Figure S37. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($2 R, 3 \mathrm{~S}$)-S6.

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 \mathrm{~S}, 3 \mathrm{~S})$-S6.

25p5a023.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name
013_C_dept135 CDCl3 E:
 Dickschat 232

25p5a023.22.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
 Dickschat 231

Figure S39. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($2 \mathrm{~S}, 3 \mathrm{~S}$)-S6.

Abstract

Figure S40. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 S, 3 R)$-S6.

18مa050.21.12.fid

instrument Bruker AV I 500 MHz
AK Prof.Dickscha
Name Yor-3
013_C_dept135 CDCl E: $\backslash \backslash$ dickschat 502

18c5a050.21.11.fid
Instrument Bruker AV I 500 MHz
AK Prof.Dickschat
Name Yin
013_C_cpd CDd3 E: $\backslash \backslash$ didkschat 501

Figure S41. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 S, 3 R)$-S6.

Figure S42. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(2 R, 3 R)$-3.

9p5a038.21.13.fid
ollux Bruker AV III 500 MHz Prodigy
K Prof. Dick
Name -Ti-1
013_C_dept135 CDCl E:
 Dickschat 382

Figure S43. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 R, 3 R)$-3.

Figure S44. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($2 R, 3 S$)-3.

19p5a039.21.12.fid
oollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
ame Yin
Nam
013_C_dept135 CDC13 E:
 Dickschat 392
p5a039.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
 Dickschat 391

Figure S45. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 R, 3 S)$-3.

Figure S46. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($2 \mathrm{~S}, 3 \mathrm{~S}$)-3.

25p5a049.21.12.fid

Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_dept135 CDCl E:
 Dickschat 492

25p5a049.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin

Figure S47. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 S, 3 S)$-3.

Abstract

Figure S48. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 S, 3 R)$-3.

Figure S49. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(2 S, 3 R)$-3.

Figure S50. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-S7.

Figure S51. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of (R)-S7.

Figure S52. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R, 3 R)$-S8.

18p5a043.22.13.fid
ollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
AM- 1
013_C_dept135 C6D6 E:
 Dickschat 432

Figure S53. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 R)$-S8.

Figure S54. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of ($R, 3 \mathrm{~S}$)-S8.

```
8p5a044.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
Name Yi
```

AM-2.2 013 C dept135 C6D6 E: $\backslash \backslash$ Dickschat 442

18p5a044.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 441

Figure S55. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 S)$-S8.

Figure S56. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of (R)-S9.

```
15c5a054.21.12.fid
Instrument Bruker AV I 500 MHz
AK Prof.Dickschat
Name Yin
013_C_dept135 C6D6 E:\\ dickschat 54 2
```

15c5a054.21.11.fid
Instrument Bruker AV I 500 MHz
AK Prof.Dickschat
Name Yin
013_C_cpd C6D6 E:
 dickschat 541

Figure S57. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-S9.

15p5a046.21.10.fid
Pollux Bruker AV III 500 MHz Prodigy

HT-3-1
001_H_N C6D6 E: $\backslash \backslash$ Dickschat 46

Figure S58. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-S9.

15p5a046.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_dept135 C6D6 E:
 Dickschat 462

5p5a046.21.11.fid
pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 461
\qquad

Figure S59. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-S9.

Figure S60. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R)-4$.

17مbb008.21.12.fid
istrument Bruker AV I 500 MHz
AK Prof.Dickschat
ame Yin
013_C_dept135 C6D6 E:
 dickschat 82

Figure S61. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R)-4$.

Figure S62. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{S})-4$.

17p5b003.21.12.fid
ollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
SHT-6-1
013_C_dept135 C6D6 E:
 Dickschat 32

17p5b003.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 31
$\left.\begin{array}{llllllllllllllllllll}10 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1(p p m)\end{array}\right)$
Figure S63. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{S})-4$.

Figure S64. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 R)$-S12.

013_C_cpd_N C6D6 E:
 Dickschat 11

Figure S65. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 R)$-S12.

Figure S66. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of ($R, 3 \mathrm{~S}$)-S12.

22p5a016.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
${ }^{\text {Name }}$ Kir3-4-2
013_C_dept135 C6D6 E:
 Dickschat 162

22p5a016.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
Kir3-4-2
013_C_cpd_N C6D6 E:
 Dickschat 161

Figure S67. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of ($R, 3 \mathrm{~S}$)-S12.

Figure S68. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of (R)-S13.
22.5b041.22.12.fid
instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
Title R-Kr3-5-1
013_C_dept135 CDC13 E:
 dickschat 412
22.5b041.22.11.fid

Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
013 C_cpd CDCl3 E: $\backslash \backslash$ didkschat 411

Figure S70. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-S13.
22.5b046.22.12.fid
nstrument Bruker AV I 500 MHz
K Prof. Dickschat
Notle RKir3-5
013_C_dept135 CDClB E:
 dickschat 462

Figure S71. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-S13.

Figure S72. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R)-5$.

34p5b004.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Kir3-7-1
013_C_dept135 C6D6 E:
 Dickschat 42

34p5b004.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Kir3-7-1
013_C_cpd_N C6D6 E:
 Dickschat 41
$\left.\begin{array}{llllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 1100 \\ f 1(\text { (ppm })\end{array}\right)$
Figure S73. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R)-5$.

Figure S74. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{S})-\mathbf{5}$.

34s7a005.21.13.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Kir3-7
013_C_dept135 C6D6 E:
 Dickschat 52

3457a005.21.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
Titel Kir3-7-2
侣

```
013_C_cpd_N C6D6 E:\\ Dickschat 51
013_C_cpd_N C6D6 E:\\ Dickschat 5 1
```


Figure S76. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R, 3 R)$-S15.

Figure S77. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R, 3 R)$-S15.

Figure S78. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R, 3 S)$-S15.

10مcc001.22.12.fid
instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
013_C_dept135 CDCl E:
 dickschat 12

10c5c001.22.11.fid
Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
Title BorS2-1-2
13_C_cpd CDCl3 E: $\backslash \backslash$ didkschat 11

Figure S79. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($R, 3 \mathrm{~S}$)-S15.

Figure S80. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R, 3 R)$-S16.

24p5a015.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
NorS2-2-2
013_C_dept135 CDCl E:
 Dickschat 152

24p5a015.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
 Dickschat 151

Figure S81. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($R, 3 R$)-S16.

Abstract

Figure S82. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R, 3 S)$-S16.

22p5a025.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
Bors2-2-2
013_C_dept135 CDCl3 E:
 Dickschat 252

Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
Bors2-2-2
013_C_cpd_N CDCl3 E:
 Dickschat 251

Figure S83. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of ($R, 3 \mathrm{~S}$)-S16.

Figure S84. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R)-6$.
41ธa037.21.12.fid
instrument Bruker AV I 500 MHz
Instrument Bruker
AK Prof. Din
Name Yin
Tite
013_C_dept135 C6D6 E:
 dickschat 372

15a037.21.11.fid
strument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
013_C_cpd C6D6 E:
 dickschat 371

Figure S85. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R)-6$.

Figure S86. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(S)-6$.

24s7a021.22.13.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Nor
013_C_dept135 C6D6 E:
 Dickschat 212

4s7a021.22.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E: $\backslash \backslash$ Dickschat 211

Figure S87. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-6.

Figure S88. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R, 3 R)$-S17.

08s7b004.22.13.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Din
Name Yin
Titel BorDH5-1-1
013_C_dept135 C6D6 E:
 Dickschat 42
sstrument Bruker AV III 700 MHz Cryo
K Prof. Dickschat
Name Yin
Titel BorDH5-1-1
013_C_cpd_N C6D6 E:
 Dickschat 41

Figure S89. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 R)$-S17.

Figure S90. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of ($R, 3 \mathrm{~S}$)-S17.

Figure S91. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(R, 3 S)$-S17.

Figure S92. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (R)-S18.

11p5a028.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
NorDH5-2-1
013_C_dept135 CDCl E:
 Dickschat 282

11p5a028.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name YorD 5 -2-1
013_C_cpd_N CDCl3 E:
 Dickschat 281

Figure S93. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-S18.

Figure S94. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-S18.

34c5a044.21.12.fid
nstrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
013_C_dept135 CDCl E:
 dickschat 442

Figure S95. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-S18.

Figure S96. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(R)-7$.

Figure S97. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-7.

Figure S98. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(S)-7$.

24p5a009.22.13.fid
ollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
Name 15
013_C_dept135 C6D6 E:
 Dickschat 92

24p5a009.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
BorDH5-3-2
013_C_cpd_N C6D6 E:
 Dickschat 91

Figure S99. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $(\mathrm{S})-7$.

001_H_N CDCl3 E:
 Dickschat 38

Figure S100. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 0}$.

14p5a038.22.12.fid
ollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
kol-1
013_C_dept135 CDC13 E:
 Dickschat 382

14p5a038.22.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N CDCl3 E:
 Dickschat 38

Figure S101. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 0}$.

Figure S102. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{S 2 1}$.

36C5a045.21.11.fid
Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
13_C_cpd CDCl3 E:
 didkschat 45

Figure S103. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 1}$.

Figure S104. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 2}$.

14p5b005.22.12.fid
ollux Bruker AV III 500 MHz Prodigy
Dickschat
KCI-3
013_C_dept135 C6D6 E:
 Dickschat 52

14p5b005.22.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin

Figure S105. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 2}$.

Figure S106. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{S 2 3}$.

44s7b017.21.13.fid
Instrument Bruker AV III 700 MHz Cry
AK Prof. Dickschat
Titel IKCI-4
013_C_dept135 C6D6 E:
 Dickschat 17

44s7b017.21.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
Titel LKCI-4
013_C_cpd_N C6D6 E:
 Dickschat 17

Figure S107. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 3}$.

15s7b010.22.11.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin

Figure S108. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 4}$.

15s7b010.22.13.fid
instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
ame Yin
013_C_dept135 C6D6 E:
 Dickschat 10

C.ept135 C6D6 E:
 Dickschat

Figure S109. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 4}$.

Figure S110. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(\mathrm{rac})-8$.

46s7a016.21.13.fid
instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
ame Yin
013_C_dept135 C6D6 E:
\ Dickschat 162

46s7a016.21.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 161
|

Figure S112. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-9.

25p5a015.22.13.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
R-BenSNAC
013_C_dept135 C6D6 E:
 Dickschat 152

25p5a015.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
R-BenSNAC
013_C_cpd_N C6D6 E:
 Dickschat 151

Figure S113. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (R)-9.

Figure S114. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $(S)-9$.

24s7b005.22.13.fid
Instrument Bruker AV III 700 MHz Cry
K Prof. Dickschat
Name Yin
013_C_dept135 C6D6 E:
 Dickschat 52

24s7b005.22.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
Titel S-Benzene
013_C_cpd_N C6D6 E:
 Dickschat 51

Figure S115. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (S)-9.

Figure S116. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{S} 27$.

17s7b021.21.13.fid
Instrument Bruker AV III 700 MHz Cryo
K Didschat
Name Yin
013_C_dept135 C6D6 E:
 Dickschat 212

17s7b021.21.11.fid
nstrument Bruker AV III 700 MHz Cryo
AK Didkschat
Name Yin
Titel BDB-II-E
013_C_cpd_N C6D6 E:
 Dickschat 211
$\begin{array}{llllllllllllll}260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 \\ 120 \\ f 1 & (\mathrm{ppm})\end{array}$
Figure S117. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 2 7}$.

Figure S118. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 3 0}$.

08s7a002.21.13.fid
Istrument Bruker AV III 700 MHz Cryo
K Didkschat
Name Yin
Titel BDB-11SNAC-Z
013_C_dept135 C6D6 E:
 Dickschat 22

887a002.21.12.fid
nstrument Bruker AV III 700 MHz Cryo
K Didkschat
Name Yin
Titel BDB-11 SNAC-Z
013_C_cpd_N C6D6 E:
 Dickschat 21

Figure S119. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 3 0}$.

Figure S120. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 32$.

013_C_dept135 CDCl3 E:
 Dickschat 62

Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
DHR-4
013_C_cpd_N CDCl3 E:
 Dickschat 61

Figure S121. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 32$.

Figure S122. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 11.

18p5a017.21.12.fid
ollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickscha
SHT-7-E
013_C_dept135 C6D6 E:
 Dickschat 172

18p5a017.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 171

Figure S123. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 11 .

Figure S124. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 10 .

33p5b037.22.13.fid
Pollux Bruker AV III 500 MHz Prodig
K Prof. Dickschat
SHT-7-Z
013_C_dept135 C6D6 E:
 Dickschat 372

33p5b037.22.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 371

Figure S125. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 10 .

Figure S126. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 3 6}$.

37p5a050.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
K Prof. Dickschat
Name
013_C_dept135 C6D6 E:
 Dickschat 502

37p5a050.21.11.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 501

Figure S128. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 38$.

35caa057.21.12.fid
nstrument Bruker AV I 500 MHz
K Prof. Dickschat
Till DHR2-2
013_C_dept135 CDCl3 E:
 dickschat 572

35C5a057.21.11.fid
Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
Title DHR2-2

Figure S129. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3 8}$.

Figure S130. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S} 39$.

013_C_dept135 C6D6 E:
 Dickschat 262

6p5a026.21.12.fid
Pollux Bruker AV III 500 MHz Prodigy
AK Prof. Dickschat
DHR2-3
013_C_cpd_N C6D6 E:
 Dickschat 261

Figure S132. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S} 41$.

16s7b018.22.14.fid
Instrument Bruker AV III 700 MHz Cryo
K Prof. Dickschat
Name MCl-7
013_C_dept135 C6D6 E:
 Dickschat 182

16s7b018.22.11.fid
instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 181

Figure S133. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 4 1}$.

Figure S134. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S} 42$.

17s7a001.22.13.fid
Istrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Titel LKCI-8
013_C_dept135 C6D6 E:
 Dickschat 12

7s7a001.22.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
013_C_cpd_N C6D6 E:
 Dickschat 11

Figure S135. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S 4 2}$.


```
Nameryiv% \
001_H_N C6D6 E:\\ Dickschat
```


Figure S136. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S} 43$.

17s7a002.22.13.fid
istrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Titel LKCI-9
013_C_dept135 C6D6 E:
 Dickschat 22

7s7a002.22.12.fid
Instrument Bruker AV III 700 MHz Cryo
AK Prof. Dickschat
Name Yin
Titel LKCI-9
013_C_cpd_N C6D6 E:
 Dickschat 21

Figure $\mathbf{S 1 3 7} .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{S} 43$.

Figure S138. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 45$.

35مa056.21.12.fid
Instrument Bruker AV I 500 MHz
Instrument Bruker
AK Prof. Dickschat
Name Yin
013_C_dept135 CDC13 E:
 dickschat 562

35C5a056.21.11.fid
Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Title DHR1-1
Title DHR1-1 013 C_cpd CDd3 E:
 didkschat 561

Figure $\mathbf{S} 139 .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 45$.

Figure S140. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 12.

37مa012.22.12.fid
Instrument Bruker AV I 500 MHz
AK Prof. Dickschat
Name Yin
013_C_dept135 C6D6 E: $\backslash \backslash$ dickschat 122

Figure S142. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 13 .

Figure S143. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of 13.

References

1 T. Lin, L. S. Borketey, G. Prasad, S. A. Waters and N. A. Schnarr, ACS Synth. Biol., 2013, 2, 635-642.
2 E. Liddle, A. Scott, L. C. Han, D. Ivison, T. S. Simpson, C. L. Willis and R. J. Cox, Chem. Commun., 2017, 53, 1727-1730.
3 A. May, P. Willoughby and T. Hoye, J. Org. Chem., 2008, 73, 3292-3294.
4 N. Claudia and J. M. J. Williams, Adv. Synth. Catal., 2003, 345, 835-848.
5 S. K. Piasecki, C. A. Taylor, J. F. Detelich, J. Liu, J. Zheng, A. Komsoukaniants, D. R. Siegel and A. T. Keatinge-Clay, Chem. Biol., 2011, 18, 1331-1340.

6 J. A. Davies, F. M. Bull, P. D. Walker, A. N. Weir, R. Lavigne, J. Masschelein, T. J. Simpson, P. R. Race, M. P. Crump and V. L. Willis, Org. Lett., 2020, 22, 63496353.

7 B. C. Raimundo and C. H. Heathcock, Synlett, 1995, 12, 1213-1214.
8 C. Bauder, Eur. J. Org. Chem., 2010, 16207-16216.
9 T. Yan, A. Hung, H. Lee, C. Chang and W. Liu, J. Org. Chem., 1995, 60, 33013306.

10 H. M. Ge, T. Huang, J. D. Rudolf, J. R. Lohman, S. X. Huang, X. Guo and B. Shen, Org. Lett., 2014, 16, 3958-3961.
11 M. M. Ahmed, M. S. Mortensen and G. A. O'Doherty, J. Org. Chem., 2006, 71, 7741-7746.
12 B. DeBoef, W. R. Counts and S. R. Gilbertson, J. Org. Chem., 2007, 72, 799-804.
13 Z. J. Jia, Q. Zhou, Q. Q. Zhou, P. Q. Chen and Y. C. Chen, Angew. Chem. Int. Ed., 2011, 123, 8797-8800.
14 C. Le Sann, D. M. Muñoz, N. Saunders, T. J. Simpson, D. I. Smith, F. Soulas, P. Watts and C. L. Willis, Org. Biomol. Chem., 2005, 3, 1719-1728.
15 Z. Yin, E. Liebhart, E. Stegmann, H. Brötz-Oesterhelt and J. S. Dickschat, Org. Chem. Front., 2022, 9, 2714-2720.
16 B. D. Ames, C. Nguyen, J. Bruegger, P. Smith, W. Xu, S. Ma, E. Wong, S. Wong, X. Xie, J. W. H. Li and J. C. Vederas, Proc. Natl. Acad. Sci., 2012, 109, 1114411149.

17 J. S. Dickschat, K. A. K. Pahirulzaman, P. Rabe and T. A. Klapschinski, ChemBioChem, 2014, 15, 810-814.
18 L. Kaysser, L. Lutsch, S. Siebenberg, E. Wemakor, B. Kammerer and B. Gust, J. Biol. Chem., 2009, 284, 14987-14996.
19 K. J. Berger, J. L. Driscoll, M. Yuan, B. D. Dherange, O. Gutierrez and M. D. Levin, J. Am. Chem. Soc., 2021, 143, 17366-17373.

