Supporting Information

Photoredox-catalysed Hydroaminoalkylation of on-DNA NArylamines

Yasaman Mahdavi-Amiria, Molly S. J. Hu ${ }^{\text {a }}$, Nicole Frias ${ }^{\text {a }}$, Matina Movahedia, Adam Csakaib, Lisa A. Marcaurelle, Ryan Hilia
${ }^{\text {a }}$ Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
${ }^{\mathrm{b}}$ Encoded Library Technologies/NCE Molecular Discovery, R\&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
Supporting Methods 2
General Information 2
DNA headpiece 2
Photocatalysts 3
Vinylarenes. 4
Synthetic procedures 5
General procedure for the preparation of DNA conjugates 7
HPLC purification 14
General procedure for ethanol precipitation 14
Photocatalysis reaction setup 15
LCMS analysis 16
Supporting Data 18
Stability of DNA under photoredox conditions 18
Analysis of HAT catalyst requirement 19
Table S1: examination of HAT catalyst (quinuclidine) dependence on reaction 19
LCMS spectra and deconvolution results for 1a derivatives 20
LCMS spectra and deconvolution results for 1 b derivatives 34
LCMS spectra and deconvolution results for 1c derivatives 47
LCMS spectra and deconvolution results for 1d derivatives 54
LCMS spectra and deconvolution results for 1 e derivatives 61
LCMS spectra and deconvolution results for 1 f derivatives 69
Analysis of post-reaction DNA integrity 79
References 82

Supporting Methods

General Information

Purifications were performed by reverse-phase high-performance liquid chromatography (HPLC, Agilent 1260 Infinity II) using a C18 stationary phase ($5 \mu \mathrm{~m}$ Eclipse XDB-C18 $9.4 \times 250 \mathrm{~mm}$). Liquid chromatography-mass spectrometry (LC-MS) analyses were performed using Agilent Infinity Lab LC/MSD system on a C18 stationary phase (HALO $400 \mathrm{~A}, \mathrm{ES}-\mathrm{C} 18,3.4 \mu \mathrm{M}, 2.1 \times 30 \mathrm{~mm}$). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz on a Bruker spectrometer. Processing of the spectra was performed with TopSpin software. Analytical thin-layer chromatography (TLC) was performed on aluminum plates pre-coated with silica gel 60F 254 as the adsorbent (Sigma-Aldrich, 1.05554). The developed plates were air-dried and exposed to UV light.

DNA headpiece

DNA headpiece was prepared according to literature methods ${ }^{1}$.

$$
\mathrm{P}_{17} \mathrm{O}_{106} \mathrm{~N}_{52} \mathrm{C}_{165} \mathrm{H}_{234}-\mathrm{NH}_{2}
$$

Molecular Weight: 5184 D

Figure S1. Structure of DNA headpiece

Photocatalysts

PC1

PC4

PC2

PC5

PC3

PC6

Figure S2. Structures of photocatalysts PC1-PC6

PC1 [(4,4'-di-tert-butyl-2,2'-bipyridine)-bis-(5-methyl-2-(5-fluoro-phenyl)-pyridine)-iridium(III)] hexafluorophosphate (Sigma-Aldrich, 908703)

PC2 [4,4'-Bis(1,1-dimethylethyl)-2,2'-bipyridine-kN,kN]bis[3,5-difluoro-2-(5-methyl-2-pyridinyl) phenyl] iridium hexafluorophosphate (Strem Chemicals, 77-0330)

PC3 4,4'-Bis(t-butyl-2,2'-bipyridine]bis[5-methyl-2-(4-methyl-2-pyridinyl-kN)phenyl-kC]iridium hexafluorophosphate (Strem Chemicals, 77-0218)

PC4 (4,4'-Di-t-butyl-2,2'-bipyridine)bis[3,5-difluoro-2-[5-trifluoromethyl-2-pyridinyl-kN)phenylkC]iridium(III) hexafluorophosphate (Strem Chemicals, 77-0425)

PC5 (2,2'-Bipyridine)bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-kN][phenyl-kC]iridium(III) hexafluorophosphate (Strem Chemicals, 77-0220)

PC6 (4,4'-Di-t-butyl-2,2'-bipyridine)bis[2-(2-pyridinyl-kN)phenyl-kC]iridium(III) hexafluorophosphate (Strem Chemicals, 77-0410)

Vinylarenes

Figure S3. Structures of vinylarenes

DPE (2a)	1,1-Diphenylethylene (Sigma-Aldrich, D206806)
4VP (2b)	4-Vinylpyridine (Sigma-Aldrich, V3204-5ML)
5EMP	5-Ethenyl-2 methoxy-pyridine (Combi Blocks, QE-5274)
4M5VT	4-Methyl-5-vinylthiazole (Combi Blocks, OR-0987)
diFP	3-(3,5-Difluorophenyl)propenol (Combi Blocks, SS-9410)
4MS	4-Methoxystyrene (Combi Blocks, QB-0479)
4AS	4-Aminostyrene (Combi Blocks, 4640)
4CS	4-Cyanostyrene (Combi Blocks, QF-7194)
2VhB	2-Vinyl-1h-benzimidazole (Combi Blocks, OR-7720)
2BrS	2-Bromostyrene (Combi Blocks, OT-0650)
4VBA	4-Vinylbenzoic acid (Combi Blocks, ST-3506)
3EHP	3-Ethenyl-1h-pyrazole (Combi Blocks, QE-0558)
4FMS	4-Fluoro-alpha-methylstyrene (Combi Blocks, QC-4533)

Synthetic procedures

4-(N-Butylamino)benzoic acid

4-(N-Butylamino)benzoic acid was made by a procedure adapted from literature ${ }^{2}$: 4-Aminobenzoic acid (Sigma-Aldrich, A9878) ($0.5 \mathrm{~g}, 3.65 \mathrm{mmol}$), butyraldehyde (Sigma-Aldrich, 8.01555 .0100) ($0.428 \mathrm{~mL}, 4.75 \mathrm{mmol}, 1.3 \mathrm{eq}$) and 2-Methylpyridine borane complex (SigmaAldrich, 654213) ($0.411 \mathrm{~g}, 3.76 \mathrm{mmol}, 1.03 \mathrm{eq}$) were stirred at room temperature in methanol (5 mL) for 14 h . TLC showed that the reaction was complete (TLC system: $10 \% \mathrm{MeOH} / \mathrm{DCM}$). The reaction mixture was then concentrated and partitioned between EtOAc (7 mL) and aqueous acid ($1 \mathrm{~N} \mathrm{HCl}, 2 \times 5 \mathrm{~mL}$). The organic fractions were combined, dried over MgSO_{4} (Sigma-Aldrich, MX0075-1) and concentrated to yield the product as a white powder. NMR spectrum matched literature data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.18$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})$: 194.1181 Found: 194.1158.

4-[(Cyclopentylmethyl)amino]benzoic acid

4-Aminobenzoic acid (Sigma-Aldrich, A9878) ($0.25 \mathrm{~g}, 1.823 \mathrm{mmol}$), cyclopentanecarboxaldehyde 95% (Sigma-Aldrich, 526037) ($0.24 \mathrm{~mL}, 2.188 \mathrm{mmol}, 1.2 \mathrm{eq}$) and 2-Methylpyridine borane complex (Sigma-Aldrich, 654213) ($0.22 \mathrm{~g}, 2 \mathrm{mmol}, 1.1 \mathrm{eq}$) were stirred at room temperature in methanol (10 mL) for 14 hours. TLC of the top liquid showed that the reaction was complete (TLC system: $40 \% \mathrm{EtOAc} / \mathrm{Hex}$). The resulting precipitate was collected, and the filtrate was acidified with 1 N hydrochloric acid to induce further precipitation. The solids were combined and dried under high vacuum to yield target material as a white powder. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92$ (d, J = 8.9 Hz, 2H), 6.56 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.17 (sep, J = 7.5 , 1H), 1.88-1.79 (m, 2H), 1.71-1.52 (m, 4H), 1.32-1.21 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (MHz, CDCl 3): $\delta 172.08,152.96,132.47$, 117.05, 111.44, 48.81, 39.46, 30.73, 25.38. HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}): 220.1337$ Found: 220.1326 Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NaNO}_{2}(\mathrm{M}+\mathrm{Na})$: 242.1156 Found: 242.1146

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-[(Cyclopentylmethyl)amino]benzoic acid

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-[(Cyclopentylmethyl)amino]benzoic acid

4-(Cycloheptylamino)benzoic acid

4-(Cycloheptylamino)benzoic acid was made by a procedure adapted from literature ${ }^{3}$: 4-amino benzoic acid (Sigma-Aldrich, A9878) ($0.137 \mathrm{~g}, 1 \mathrm{mmol}$), cycloheptanone (Sigma-Aldrich, C99000) ($236 \mathrm{uL}, 2 \mathrm{mmol}$), and glacial AcOH (Fisher Scientific, A38-212) ($300 \mathrm{uL}, 5 \mathrm{mmol}$) were mixed in 1,2-dichloroethane (4.5 mL). Sodium triacetoxyborohydride (Sigma-Aldrich, 316393) ($0.6 \mathrm{~g}, 2.8$ mmol) was added to the above solution and the reaction mixture stirred at room temperature for 27 h . Then cycloheptanone ($59 \mathrm{uL}, 0.5 \mathrm{mmol}$), glacial AcOH ($75 \mathrm{uL}, 1.25 \mathrm{mmol}$), 1,2dichloroethane (1.5 mL) and sodium triacetoxyborohydride ($0.15 \mathrm{~g}, 0.7 \mathrm{mmol}$) were again added to the reaction mixture and the reaction stirred at room temperature for another 5 h after which TLC showed that the reaction was complete (TLC system: $40 \% \mathrm{Hex} / \mathrm{EtOAc}$). The reaction was quenched with saturated aqueous NaHCO_{3} (Fisher Chemical, S233-500), then the product was extracted with EtOAc ($3 \times 7.5 \mathrm{~mL}$). The EtOAc extracts were combined, dried over MgSO_{4} (SigmaAldrich, MX0075-1) and concentrated to yield the crude product as a white powder. The product was triturated with ether/hexane (7:3) and the solid was filtered. The pure sample was then recrystallized from EtOAc/hexane. NMR spectrum matched literature data: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.95(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (bs, $1 \mathrm{H})$, 1.94-1.82 (m, 2H), 1.71-1.39 (m, 10H). HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}): 234.1494$ Found: 234.1494. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NaNO}_{2}(\mathrm{M}+\mathrm{Na}): 256.1314$ Found: 256.1317

General procedure for the preparation of DNA conjugates

HATU (Combi Blocks, OR-0618) (400 uL of 0.2 M in DMF), DIPEA (Alfa Aesar, A11801) (400 uL of 0.2 M in DMF) and the respective carboxylic acid (400 uL of 0.2 M in DMF) were mixed. The stock was cooled at $4^{\circ} \mathrm{C}$ for 10 minutes then transferred to 1000 uL of 1 mM solution of DNA headpiece in 250 mM sodium phosphate buffer ($\mathrm{pH}=9.4$). The resulting solution was shaken at room temperature. After 16 h the DNA was recovered from the mixture by ethanol precipitation and then purified by HPLC.

DNA conjugate 1a:

1a was synthesized according to the general procedure using 4-(N-Butylamino) benzoic acid.

Molecular Weight: 5359.7530 D

Component	Molecular	Absolute	Relative
Weight	Abundance	Abundance	
A	5359.00	30540	100.00

Figure S6. Deconvoluted LCMS data for DNA conjugate 1a

DNA conjugate 1b:

1b was synthesized according to the general procedure using 4-[(Cyclopentyl methyl) amino] benzoic acid.

Molecular Weight: 5385.7910 D

Deconvolution of Spectrum \# 1 @ 3.417 - 3.742 min

Components

Component	Molecular	Absolute	Relative
Weight	Abundance	Abundance	
A	5385.20	153884	100.00

Figure S7. Deconvoluted LCMS data for DNA conjugate 1b

DNA conjugate 1c:

1c was synthesized according to the general procedure using 4-(Cycloheptylamino) benzoic acid.

Molecular Weight: 5399.8180 D

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5401.30	312393	100.00

Figure S8. Deconvoluted LCMS data for DNA conjugate 1c

DNA conjugate 1d:

1d was synthesized according to the general procedure using 4-(Benzylamino) benzoic acid (Sigma Aldrich, L127728).

Molecular Weight: 5393.7700 D

Deconvolution of Spectrum \# 1 @ $3.254-3.563 \mathrm{~min}$

Component Molecular Weight 5393.19
Absolute Relative Abundance 192952100.00

Figure S9. Deconvoluted LCMS data for DNA conjugate 1d

DNA conjugate 1e:

1e was synthesized according to the general procedure using 2-[(4-Pyridinylmethyl) amino] isonicotinic acid (Sigma-Aldrich, CDS021130).

Molecular Weight: 5395.7460 D

Figure S10. Deconvoluted LCMS data for DNA conjugate 1e

DNA conjugate 1f:

1f was synthesized according to the general procedure using 2-(Ethylamino)-4-methyl-1,3-thiazole-5-carboxylic acid (Sigma-Aldrich, CBR00568).

Molecular Weight: 5352.7360 D

Figure S11. Deconvoluted LCMS data for DNA conjugate 1f

HPLC purification

HPLC purifications were conducted on a 1260 Infinity II LC System from Agilent.

HPLC method:

flow rate: $4 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 260 nm
mobile phase A: 0.1 M triethylammonium acetate (TEAA)
mobile phase B : Acetonitrile

Elapsed time (min)	$\% \mathrm{~B}$
0	10
10	20
23	45
26	80
28	80
29	10
31	10

Column: Agilent 5 $\mu \mathrm{m}$ Eclipse XDB-C18 $9.4 \times 250 \mathrm{~mm}$

General procedure for ethanol precipitation

To the reaction mixture containing DNA, was added $10 \%(\mathrm{~V} / \mathrm{V}) 4 \mathrm{M} \mathrm{NaCl}$ and 3 times the volume ethanol. The solution was placed on dry ice for 1 hour and then centrifuged at 15000 rpm , at $4^{\circ} \mathrm{C}$ for 30 minutes. the supernatant was removed, and the pellet was washed with 75% aq. ethanol and then air-dried.

Photocatalysis reaction setup

In a PCR tube was added 10 nmol of DNA conjugate (in $10 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$), quinuclidine (TCI America, Q0062) ($10 \mu \mathrm{~L}$ of 500 mM in DMF), alkene ($10 \mu \mathrm{~L}$ of 250 mM in DMF), and Iridium catalyst ($10 \mu \mathrm{~L}$ of 1 mM in DMF). The solution was degassed* in glove box for 2 hours and then placed approximately 10 cm from blue light (highest intensity) with cooling. After 1.5 h , the DNA was recovered from the reaction mixture by Ethanol precipitation. Pellet was air-dried and resuspended in $100 \mu \mathrm{~L}$ water and $5 \mu \mathrm{~L}$ of the resulting solution was injected to LCMS.

Reaction setup: Sample was secured 10 cm from Kessil Tuna Blue A160WE lamp set to the highest intensity. A fan was situated directly behind the reaction vessel to dissipate heat.

* Note that oxygen had a detrimental effect on the yield of the reaction. We observed that when the mixture was not thoroughly degassed prior to irradiation with blue light, the product was contaminated with N -dealkylated starting material.

LCMS analysis

LCMS analyses were performed using Agilent Infinity Lab LC/MSD system.

LCMS method:

Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 260 nm
mobile phase A: $10 \mu \mathrm{M}$ EDTA, 0.38% TEAA pH 7, 0.75% HFIP, in 90:10 Methanol:MilliQ water
Mobile phase B: $10 \mu \mathrm{M}$ EDTA, 0.38% TEAA pH 7, 0.75% HFIP, in MilliQ water

Elapsed time (min)	\%B
0	90
4	10
5	90
6	90

Column: HALO 400 A, ES-C18, 3.4 uM, $2.1 \times 30 \mathrm{~mm}$
Conversion calculations for on-DNA reactions through LCMS:
Reported \% conversion as determined from LCMS analysis by comparing the abundance of all DNA-derived compounds.

$$
\% \text { Conversion }=\frac{\text { Total abundance of target material }}{\text { Total abundance of DNA material }} \times 100
$$

Example of LCMS data and calculations:

Figure S12. An example of conversion calculations

Supporting Data

Stability of DNA under photoredox conditions

Photocatalysis reaction was performed on a model DNA conjugate with 4-vinyl pyridine for $0,1.5$, $2,2.5,3,4 \mathrm{~h}$ and the DNA stability was assessed using non-denaturing gel analysis:

Figure S13. Stability of DNA under photoredox conditions

Analysis of HAT catalyst requirement

Table S1: examination of HAT catalyst (quinuclidine) dependence on reaction

		SM	Single Addn	Double Addn	Triple Addn	Unknown	Dealkylation
1	1d + 4VP no quinuclidine	-	90%	-	-	-	10%
2	1d + DPE no quinuclidine	59%	16%	-	-	$5482.31: 10 \%$	15%
3	1d + 4VP with quinuclidine	-	68%	25%	7%	-	-
4	77%	23%	-	-	-	-	

LCMS spectra and deconvolution results for 1a derivatives

Table S2: Hydroaminoalkylation of various vinylarenes with DNA conjugate 1a

	Starting Material (1a)	Single Addition	Double Addition	Triple Addition
1a+4VP		4a: 73\%	27%	-
1a+4CS	8%	7a: 76\%	16%	-
1a+2BrS	15%	5a: 76\%	9%	-
1a+2VhB	15%	6a: 71\%	14%	-
1a+DPE	25%	3a: 75\%	-	-
1a+diFP	14%	8a: 86%	-	-
1a+3EhP	49%	9a: 51%	-	-
1a+4M5VT	51%	10a: 49%	-	-
1a+4FMS	66%	11a: 34%	-	-
1a+5EMP	68%	12a: 32%	-	-
1a+4MS	73%	13a: 27%	-	-
1a+4VBA	76%	14a: 24%	-	-
1a+4AS	100%	-	-	-

Molecular Weight: 5464.8930

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5464.24	137949	100.00
B	5569.37	50482	36.59

Figure S14. Deconvoluted LCMS data for 4a

Molecular Weight: 5542.8010

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5542.30	55761	100.00
B	5358.67	10836	19.43
C	5725.13	7163	12.85

Figure S15. Deconvoluted LCMS data for 5a

Molecular Weight: 5488.9150

Figure S16. Deconvoluted LCMS data for 7a

Molecular Weight: 5503.9300

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5503.38	97490	100.00
B	5359.10	21018	21.56
C	5646.93	19824	20.33

Figure S17. Deconvoluted LCMS data for 6a

Molecular Weight: 5540.0030

Deconvolution of Spectrum \# 1 @ 3.205-4.343min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5539.23	82233	100.00
B	5359.14	26802	32.59

Figure S18. Deconvoluted LCMS data for 3a ($\mathbf{1 0} \mathbf{n m o l}$)

Deconvol ution of Spect rum \# 1 @ 3.222-4.132 min

Absol ut e	Rel at i ve
Abundance	Abundance
69043	100.00
34104	49.40

Rel at i ve 100.00 49. 40

Figure S19. Deconvoluted LCMS data for 3a ($\mathbf{1 0 0} \mathbf{~ n m o l}$)

Molecular Weight: 5529.9118

Component	Molecular	Absolute	Relative
Aeight	Abundance	Abundance	
A	5529.38	25190	100.00
B	5359.88	4027	15.99

Figure S20. Deconvoluted LCMS data for 8a

Molecular Weight: 5453.8700

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5453.38	117571	100.00
B	5359.21	112927	96.05

Figure S21. Deconvoluted LCMS data for 9a

Molecular Weight: 5484.9420

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5359.12	47998	100.00
B	5484.38	45285	94.35

Figure S22. Deconvoluted LCMS data for 10a

Molecular Weight: 5495.9224

Figure S23. Deconvoluted LCMS data for 11a

Molecular Weight: 5494.9190

Component	Molecular	Absolute	Relative
Weight	Abundance	Abundance	
A	5359.03	101842	100.00
B	5494.42	48620	47.74

Figure S24. Deconvoluted LCMS data for 12a

Molecular Weight: 5493.9310

Deconvolution of Spectrum \# 1 @ 3.221-3.985 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5359.17	117613	100.00
B	5493.37	43497	36.98

Figure S25. Deconvoluted LCMS data for 13a

Molecular Weight: 5507.9140

$$
\text { Deconvolution of Spectrum \# } 1 \text { @ } 2.929 \text { - } 3.774 \mathrm{~min}
$$

Component Molecular Weight
$\begin{array}{ll}\text { A } & 5359.07 \\ \text { B } & 5507.44\end{array}$
$\begin{array}{ll}\text { A } & 5359.07 \\ \text { B } & 5507.44\end{array}$

Absolute Relative

 Abundance Abundance 104935100.00 33538 31.96Figure S26. Deconvoluted LCMS data for 14a

LCMS spectra and deconvolution results for 1 lb derivatives

Table S3: Hydroaminoalkylation of various vinylarenes with DNA conjugate 1b

	Starting Material (1b)	Single Addition	Double Addition	Triple Addition
1b+4VP	-	4b: 58\%	31\%	11\%
1b+4CS	-	7b: 72\%	28\%	-
$\mathbf{1 b}+2 \mathrm{BrS}$	-	5b: 79\%	21\%	-
1b+2VhB	-	6b: 79\%	21\%	-
1b+DPE	-	3b: 86\%	14\%	-
1b+diFP	-	8b: 83\%	17\%	-
1b+4M5VT	27\%	10b: 67\%	6\%	-
1b+4FMS	33\%	11b: 67\%	-	-
1b+3EhP	39\%	9b: 61\%	-	-
1b+5EMP	47\%	12b: 53\%	-	-
1b+4MS	48\%	13b: 52\%	-	-
1b+4VBA	67\%	14b: 33\%	-	-
1b+4AS	100\%	-	-	-

(

4b
Molecular Weight: 5490.9310

Figure S27. Deconvoluted LCMS data for 4b

Molecular Weight: 5514.9530

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5514.43	84625	100.00
B	5643.41	32524	38.43

Figure S28. Deconvoluted LCMS data for 7b

Molecular Weight: 5568.8390

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5568.29	68333	100.00
B	5751.42	18060	26.43

Figure S29. Deconvoluted LCMS data for 5b

Molecular Weight: 5529.9680

Figure S30. Deconvoluted LCMS data for 6b

Molecular Weight: 5566.0410

Component	Molecular	Absolute	Relative
Weight	Abundance	Abundance	
A	5565.35	52284	100.00
B	5745.63	8516	16.29

Figure S31. Deconvoluted LCMS data for 3b

Molecular Weight: 5555.9498

Component	Molecular Weight	Absolute	Relative
Abundance	Abundance		
B	5555.34	100210	100.00
	5725.76	20673	20.63

Figure S32. Deconvoluted LCMS data for 8b

Molecular Weight: 5510.9800

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5510.40	112765	100.00
B	5385.11	44314	39.30
C	5635.72	9991	8.86

Figure S33. Deconvoluted LCMS data for 10b

Molecular Weight: 5521.9604

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5521.30	65013	100.00
B	5385.22	32602	50.15

Figure S34. Deconvoluted LCMS data for 11b

Molecular Weight: 5479.9080

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5479.30	143998	100.00
B	5385.14	93740	65.10

Figure S35. Deconvoluted LCMS data for 9b

Deconvolution of Spectrum \# 1 @ 3.384 - 3.953 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5520.32	92687	100.00
B	5385.18	82469	88.98

Figure S36. Deconvoluted LCMS data for 12b

Molecular Weight: 5519.9690

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5519.35	51096	100.00
B	5385.10	47038	92.06

Figure S37. Deconvoluted LCMS data for 13b

Molecular Weight: 5533.9520

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5385.22	118981	100.00
B	5533.46	59173	49.73

Figure S38. Deconvoluted LCMS data for 14b

LCMS spectra and deconvolution results for 1c derivatives

Table S4: Hydroaminoalkylation of various vinylarenes with DNA conjugate 1c

	Starting Material (1c)	Single Addition	Double Addition	Triple Addition
1c+4VP	69%	4c: 31%	-	-
1c+4CS	83%	7c: 17%	-	-
1c+2VhB	86%	6c: 14%	-	-
1c+2BrS	88%	5c: 12%	-	-
1c+diFP	89%	8c: 11%	-	-
1c+4M5VT	93%	10c: 7%	-	-
1c+DPE	100%	3c: 0%	-	-
1c+4FMS	100%	11c: 0%	-	-
1c+3EhP	100%	9c: 0%	-	-
1c+5EMP	100%	12c: 0%	-	-
1c+4MS	100%	13c: 0%	-	-
1c+4VBA	100%	14c: 0%	-	-
1c+4AS	100%	-	-	-

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5399.28	212905	100.00
B	5504.30	94072	44.18

Figure S39. Deconvoluted LCMS data for 4c

Molecular Weight: 5528.9800

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5399.33	187971	100.00
B	5528.40	39590	21.06

Figure S40. Deconvoluted LCMS data for 7c

Molecular Weight: 5543.9950

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5399.19	169927	100.00
B	5543.16	28136	16.56

Figure S41. Deconvoluted LCMS data for $\mathbf{6 c}$

Molecular Weight: 5582.8660

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5399.22	120466	100.00
B	5582.53	15979	13.26

Figure S42. Deconvoluted LCMS data for 5c

Molecular Weight: 5569.9768

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5399.30	130458	100.00
B	5569.26	15674	12.01

Figure S43. Deconvoluted LCMS data for 8c

Figure S44. Deconvoluted LCMS data for 10c

LCMS spectra and deconvolution results for 1d derivatives

Table S5: Hydroaminoalkylation of various vinylarenes with DNA conjugate 1d

	Starting Material (1d)	Single Addition	Double Addition	Triple Addition	Other
1d+4VP	-	4d: 68\%	25%	7%	-
1d+4CS	13%	7d: 75\%	12%	-	-
1d+2BrS	60%	5d: 40\%	-	-	-
1d+2VhB	44%	6d: 56\%	-	-	-
1d+DPE	77%	3d: 23\%	-	-	-
1d+4M5VT	67%	10d: 33\%	-	-	-
1d+diFP	100%	8d: 0\%	-	-	-
1d+4FMS	100%	11d: 0\%	-	-	-
1d+3EhP	82%	9d: 0\%	-	-	9d-quinuclidine adduct: 18\%
1d+5EMP	100%	12d: 0\%	-	-	-
1d+4MS	91%	13d: 0\%	-	-	13d-quinuclidine adduct: 9\%
1d+4VBA	90%	14d: 0\%	-	-	14d-quinuclidine adduct: 10\%
1d+4AS	100%	-	-	-	-

Molecular Weight: 5498.9100

Figure S45. Deconvoluted LCMS data for 4d

Molecular Weight: 5522.9320

Figure S46. Deconvoluted LCMS data for 7d

Molecular Weight: 5576.8180

Figure S47. Deconvoluted LCMS data for 5d

Molecular Weight: 5537.9470

Deconvolution of Spectrum \# 1 @ 3.010-3.677 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5536.83	66853	100.00
B	5393.31	52213	78.10

Figure S48. Deconvoluted LCMS data for $\mathbf{6 d}$

Molecular Weight: 5574.0200

Deconvolution of Spectrum \# 1 @ 3.270-4.278 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5393.20	100616	100.00
B	5572.45	30459	30.27

Figure S49. Deconvoluted LCMS data for 3d

Molecular Weight: 5518.9590

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5393.28	162858	100.00
B	5518.47	78733	48.34

Figure S50. Deconvoluted LCMS data for 10d

LCMS spectra and deconvolution results for 1 e derivatives

Table S6: Hydroaminoalkylation of various vinylarenes with DNA conjugate $\mathbf{1 e}$

	Starting Material (1e)	Single Addition	Double Addition	Triple Addition
1e+4VP	39\%	25: 40\%	15\%	6\%
$1 \mathrm{e}+4 \mathrm{CS}$	63\%	26: 31\%	6\%	-
$1 \mathrm{e}+2 \mathrm{BrS}$	72\%	27: 28\%	-	-
$1 \mathrm{e}+2 \mathrm{VhB}$	78\%	28: 22%	-	-
1e+DPE	86\%	29: 14\%	-	-
1e+diFP	72\%	30: 28\%	-	-
1e+4M5VT	90\%	31: 10\%	-	-
1e+3EhP	100\%	-	-	-
1e+4FMS	100\%	-	-	-
1e+5EMP	100\%	-	-	-
1e+4MS	100\%	-	-	-
1e+4VBA	100\%	-	-	-
$1 \mathrm{e}+4 \mathrm{AS}$	100\%	-	-	-

Molecular Weight: 5500.8860

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5500.61	13318	100.00
B	5395.73	13279	99.71
C	5606.46	5036	37.81
D	5712.73	2139	16.06

Figure S51. Deconvoluted LCMS data for 25

Molecular Weight: 5524.9080

Figure S52. Deconvoluted LCMS data for 26

Molecular Weight: 5578.7940

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5395.19	28271	100.00
B	5577.51	11176	39.53

Figure S53. Deconvoluted LCMS data for $\mathbf{2 7}$

28
Molecular Weight: 5539.9230

Deconvolution of Spectrum \# 1 @ 2.977 - 3.416 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5395.29	22199	100.00
B	5539.43	6370	28.69

Figure S54. Deconvoluted LCMS data for $\mathbf{2 8}$

29
Molecular Weight: 5575.9960

Deconvolution of Spectrum \# 1 @ 3.092-3.628 min

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5395.29	98910	100.00
B	5575.16	16746	16.93

Figure S55. Deconvoluted LCMS data for 29

30
Molecular Weight: 5565.9048

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5395.19	92618	100.00
B	5565.39	36139	39.02

Figure S56. Deconvoluted LCMS data for $\mathbf{3 0}$

Molecular Weight: 5520.9350

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5395.40	169561	100.00
B	5520.22	19791	11.67

Figure S57. Deconvoluted LCMS data for 31

LCMS spectra and deconvolution results for 1 f derivatives

Table S7: Hydroaminoalkylation of various vinylarenes with DNA conjugate $\mathbf{1 f}$

	Starting Material (1f)	Single Addition	Double Addition	Triple Addition	Other
1f+4VP	29\%	15: 39%	25\%	7\%	-
$1 \mathrm{f}+4 \mathrm{CS}$	47\%	16: 40\%	13\%	-	-
1f+2BrS	80\%	17: 20%	-	-	-
1f+2VhB	72\%	18: 28%	-	-	-
1f+DPE	73\%	19: 27%	-	-	-
1f+diFP	57\%	20: 23%	-	-	$\begin{gathered} \hline \text { Dealkylated 1f: } \\ 20 \% \\ \hline \end{gathered}$
1f+3EhP	91\%	21: 9\%	-	-	-
1f+4M5VT	87\%	22: 13%	-	-	-
1f+5EMP	93\%	24: 7\%	-	-	-
1f+4FMS	100\%	23: 0\%	-	-	-
1f+4MS	100\%	-	-	-	-
1f+4VBA	100\%	-	-	-	-
$1 \mathrm{f}+4 \mathrm{AS}$	100\%	-	-	-	-

15
Molecular Weight: 5457.8760

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5457.26	10806	100.00
B	5352.38	7884	72.96
C	5564.12	6808	63.00
D	5667.32	2005	18.55

Figure S58. Deconvoluted LCMS data for 15

16
Molecular Weight: 5481.8980

Figure S59. Deconvoluted LCMS data for 16

17
Molecular Weight: 5535.7840

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.57	15344	100.00
B	5536.38	3823	24.92

Figure S60. Deconvoluted LCMS data for $\mathbf{1 7}$

18
Molecular Weight: 5496.9130

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.01	36598	100.00
B	5496.21	13925	38.05

Figure S61. Deconvoluted LCMS data for 18

Molecular Weight: 5532.9860

Deconvolution of Spectrum \# 1 @ $3.124-3.888 \mathrm{~min}$

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.27	96726	100.00
B	5532.70	34981	36.17

Figure S62. Deconvoluted LCMS data for 19

20
Molecular Weight: 5522.8948

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.22	43189	100.00
B	5521.85	16761	38.81
C	5323.80	15220	35.24

Figure S63. Deconvoluted LCMS data for 20

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.34	230034	100.00
B	5446.03	22952	9.98

Figure S64. Deconvoluted LCMS data for 21

22
Molecular Weight: 5477.9250

Component	Molecular Weight	Absolute Abundance	Relative Abundance
A	5352.14	249573	100.00
B	5477.64	35657	14.29

Figure S65. Deconvoluted LCMS data for 22

24
Molecular Weight: 5487.9020

Component	Molecular	Absolute	Relative
Weight	Abundance	Abundance	
A	5352.26	270283	100.00
B	5487.27	21224	7.85

Figure S66. Deconvoluted LCMS data for $\mathbf{2 4}$

Analysis of post-reaction DNA integrity

Synthesis and Purification of LongSAdo-HP-YN1

Elongation Duplex Sequences:
5'-/5Phos/AAA TCG ATG TGT TCC GCA AGA AGC CTG GTA AGC GGA GAA AGG TCG TT -3’

5’-/5Phos/CGA CCT TTC TCC GCT TAC CAG GCT TCT TGC GGA ACA CAT CGA TTT GG -3’

Ligation was conducted using a modified procedure. ${ }^{1,4}$ The elongation duplex (IDT) were first combined by adding $100 \mu \mathrm{~L}$ of 2 mM of each strand, in water ($200 \mu \mathrm{~L}$ total). The duplex was annealed by heating to $95{ }^{\circ} \mathrm{C}$ for 5 minutes, then cooling to rt at a ramp of $-0.1^{\circ} \mathrm{C} / \mathrm{s}$. The annealed duplex solution (1.4 equiv, $185.9 \mu \mathrm{~L}, 1 \mathrm{mM}$) was added to SAdo-HP-YN1 (1 equiv, $132.8 \mathrm{nmol}, 132.8 \mu \mathrm{~L}, 1 \mathrm{mM}$), along with $150.2 \mu \mathrm{~L}$ of water, and $53 \mu \mathrm{~L} 10 \mathrm{x}$ T4 ligation buffer. The sample was then heated to $95^{\circ} \mathrm{C}$ for 1 minute, and cooled to $16^{\circ} \mathrm{C}$ over 10 minutes. T4 ligase ($7.98 \mu \mathrm{~L}, 400,000$ cohesive end units $/ \mathrm{mL}, \mathrm{NEB}$) was added, the reaction was mixed gently by pipetting up and down, and left to react overnight at $16^{\circ} \mathrm{C}$. Ethanol precipitation was completed according to the general procedure for ethanol precipitation. The product was purified using HPLC and the collected fractions were lyophilized three times, prior to the hydroaminoalkylation photoreaction.

Quantitative PCR analysis protocol

Forward and Reverse Primer Sequences:

DELPCR3: 5'-AAC GAC CTT TCT CCG CT -3' $\mathrm{Tm}(50 \mathrm{mM} \mathrm{NaCl})=53.7^{\circ} \mathrm{C}$

Quantitative PCR was performed after the hydroaminoalkylation photoreaction on LongSAdo-HP-YN1 and compared against a no-reaction control. Data was collected using a CFX Connect instrument from BioRad. A standard curve was prepared at $100 \mathrm{nM}, 10 \mathrm{nM}, 1 \mathrm{nM}, 0.1 \mathrm{nM}$ and 0.01 nM concentrations. The qPCR reagents were prepared with SYBR Green I as the detection dye. To $10 \mu \mathrm{~L}$ of $1 \mu \mathrm{M}$ of the template sequence, was added $2.5 \mu \mathrm{~L}$ of each primer (IDT) at $10 \mathrm{uM}, 5 \mu \mathrm{~L}$ of 10 x SYBR Green, $5 \mu \mathrm{~L}$ of water, and 25 $\mu \mathrm{L}$ of 2 X Q5 Master Mix (NEB), for a total of $50 \mu \mathrm{~L}$. The resulting $\Delta \mathrm{Ct}$ value was calculated using CFX manager. The qPCR cycles were as follows:

Cycle Step	Temperature, ${ }^{\circ} \mathrm{C}$	Time (seconds)	Cycles
Initiation	95	30	1

Denaturation	95	10	30
Annealing	58	30	
Extension	72	$30+$ plate read	

Ligation Test on LongSAdo-HP-YN1

Closing Primer Sequences:
5'-/5Phos/ACG ATG CCC GGT CTA CNN NNN NNN NNN NCT GAT GGC GCG AGG GAG GC-3'
5'-GTA GAC CGG GCA TCG TAA-3'
Following the photoreaction on LongSAdo-HP-YN1, ligation efficacy was assessed to evaluate the integrity of the DNA code for downstream applications. Closing primers were ligated on as previously described. The 10 nmol hydroaminoalkylation reaction and no reaction control were both cleaned up by ethanol precipitation (according to the general procedure), and 30 pmols of each sample was loaded with Gel Loading Buffer II (ThermoFisher) onto a 15\% denaturing gel for polyacrylamide gel electrophoresis ($150 \mathrm{~V}, 70$ minutes). The gel was stained with ethidium bromide and visualized using Bio-Rad Gel Doc XR+. Densitometry was performed using Rio-Rad Image Lab.

B

Figure S67. Analysis of DNA tag integrity following photoredox-catalysed hydroaminoalkylation of longSAdo-YN1 and DPE. A) Photoredox reactions were performed on 10 nmol scale. qPCR analysis was performed using Q5 polymerase (M0492, NEB). Grey lines indicate 10 -fold dilution series. Red and blue curves indicate no-reaction control and photoredox reaction, respectively. Cycle threshold values were used to calculate concentrations. 29.9% degradation was observed for this process compared to the noreaction control. B) Ligation efficiency comparison between the no-reaction control and DNA photoredox catalysed hydroaminoalkylation reaction using T4 DNA ligase (M0202, NEB). M: molecular weight ladder, 1: starting long SAdo-YN1 substrate, 2: closing duplex, 3: ligation reaction of long-SAdo-YN1 photoreacted with 1,1-dipheylethylene, 4: ligation reaction of long-SAdo-YN1 as no-reaction control, M: molecular weight ladder.

References

(1) Clark, M. A.; Acharya, R. A.; Arico-Muendel, C. C.; Belyanskaya, S. L.; Benjamin, D. R.; Carlson, N. R.; Centrella, P. A.; Chiu, C. H.; Creaser, S. P.; Cuozzo, J. W.; Davie, C. P.; Ding, Y.; Franklin, G. J.; Franzen, K. D.; Gefter, M. L.; Hale, S. P.; Hansen, N. J. V.; Israel, D. I.; Jiang, J.; Kavarana, M. J.; Kelley, M. S.; Kollmann, C. S.; Li, F.; Lind, K.; Mataruse, S.; Medeiros, P. F.; Messer, J. A.; Myers, P.; O’Keefe, H.; Oliff, M. C.; Rise, C. E.; Satz, A. L.; Skinner, S. R.; Svendsen, J. L.; Tang, L.; van Vloten, K.; Wagner, R. W.; Yao, G.; Zhao, B.; Morgan, B. A. Design, Synthesis and Selection of DNA-Encoded Small-Molecule Libraries. Nat. Chem. Biol. 2009, 5 (9), 647-654. https://doi.org/10.1038/nchembio. 211.
(2) Andrade, A. L.; Melich, K.; Whatley, G. G.; Kirk, S. R.; Karpen, J. W. Cyclic Nucleotide-Gated Channel Block by Hydrolysis-Resistant Tetracaine Derivatives. J. Med. Chem. 2011, 54 (13), 4904-4912. https://doi.org/10.1021/jm200495g.
(3) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures1. J. Org. Chem. 1996, 61 (11), 3849-3862. https://doi.org/10.1021/jo960057x.
(4) J. P. Phelan, S. B. Lang, J. Sim, S. Berritt, A. J. Peat, K. Billings, L. Fan and G. A. Molander, J. Am. Chem. Soc., 2019, 141, 3723-3732. https://doi.org/10.1021/jacs.9b00669.

