Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Selective oxidative β -C–H bond sulfenylation of tetrahydroisoquinolines with elemental sulfur

Tao Guo,^a Lei Bi,^a Lu Shen,^a Quanhong Wei,^a Congjun Zhu,^{*a} Panke Zhang,^{*b} and Yunhui Zhao^{*c}

 ^a School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
 ^b Green Catalysis Center, College of Chemistry, Henan Advanced Institute of Technology, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
 ^c School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China

Supplementary Information Table of Content

1 General Experimental	2
2Experimental section	2
2.1 Impact of reaction parameters	2
2.2 Control experiments	3
2.3 General procedure for synthesis of desired products 3 and 5	5
3 Copies of ¹ H and ¹³ C NMR Spectra	22

1 General Experimental

Unless otherwise mentioned, all materials were commercially obtained and used without further purification. imidazoheterocycles (2),¹ sulfide (7)² and disulfide (8)² were synthesized according to previously described methods. The ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded at 500 MHz, 126 MHz, 471 MHz, respectively, on a Bruker AM500 MHz with chemical shift values in ppm relative to TMS (δ H 0.00 and δ C 0.0) as internal standard. The coupling constants *J*, are reported in Hertz (Hz). All melting points were determined on a SGW X-4A melting point instrument without correction. High-resolution mass spectra (HRMS) were recorded on Q-Exactive plus Orbitrap (ESI). Infrared spectra (IR) were recorded on Spectrum TWO. Reactions were monitored by thin layer chromatography (TLC), on glass plates coated with silica gel with Fluorescent indicator (Huanghai, HSGF254) and visualized with UV light at 254 nm. Flash chromatography was performed on silica gel (Huanghai, 300-400) using petroleum ether (PE)-ethyl acetate (EA) as eluent. The structure of product **31** (CCDC file number 2168420) was further confirmed by X-ray diffraction collected on a diffractometer with graphite-monochromated Cu Ka radiation.

2 Experimental section

$NH + S_8 + N Ph$ condition								
	√	2a		N 3a				
Entry ^a	Oxidant (eq.)	Additive (eq.)	Solvent (0.1 M)	Temperature (°C)	Yield (%) ^b			
1			DMF	100	0			
2	$Cu(OAc)_2(2)$		DMF	100	0			
3	$Ag_2CO_3(2)$		DMF	100	0			
4	KIO ₃ (2)		DMF	100	27			
5	$KIO_4(2)$		DMF	100	Trace			
6	KIO ₃ (2)		DMAc	100	Trace			
7	KIO ₃ (2)		Xylene	100	0			
8	KIO ₃ (2)		NMP	100	Trace			
9	KIO ₃ (2)		DMSO	100	56			
10	KIO ₃ (2)		DMSO	90	33			
11	KIO ₃ (2)		DMSO	110	78			

2.1 Impact of reaction parameters

12	$KIO_3(2)$		DMSO	120	62
13	$KIO_3(1)$		DMSO	110	39
14	KIO ₃ (3)		DMSO	110	73
15	KIO ₃ (2)	I ₂ (0.5)	DMSO	110	70
16	KIO ₃ (2)	TBAI (0.5)	DMSO	110	68
17	KIO ₃ (2)	$FeCl_{3}(0.2)$	DMSO	110	30
18°	KIO ₃ (2)		DMSO	110	76
19 ^d	KIO ₃ (2)		DMSO	110	45
20 ^e	KIO ₃ (2)		DMSO	110	75
21	KIO ₃ (2)		DMSO (0.2M)	110	66
22	KIO ₃ (2)		DMSO (0.05M)	110	55
23^{f}	KIO ₃ (2)		DMSO	110	59
24 ^g	KIO ₃ (2)		DMSO	110	61
25	DDQ (2)		DMSO	110	0
26	DTBP (2)		DMSO	110	57
27	TBHP (2)		DMSO	110	34

^a Reaction conditions: **1a** (0.8 mmol), S₈ (0.6 mmol), **2a** (0.2 mmol), oxidant, additive, and solvent in air reacted for 10 h. ^b Isolated yield. ^c Reaction time: 24 h. ^d Under N₂. ^e Under O₂. ^f **1a** (0.6 mmol) was used. ^g S₈ (0.4 mmol) was used.

2.2 Control experiments

2.3 General procedure for synthesis of desired products 3 and 5

2 mL DMSO, 1,2,3,4-tetrahydroisoquinolines (1, 0.8 mmol), imidazoheterocycles (2, 0.2 mmol), $S_8(19.2 mg, 0.6 mmol)$ and KIO₃ (85.6 mg, 0.4 mmol), were added into the dry thick-walled glass pressure tube. The mixture was stirred in a preheated oil bath at 110 °C for in air 10 h. Then the reaction was cooled down to room temperature, diluted with 20 mL ethyl acetate and washed with 10 mL H₂O. The aqueous layer was extracted twice with ethyl acetate (5 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents the residue was purified by flash column chromatography (silica gel, PE–EtOAc, 4 : 1 to 1 : 1) to afford the desired products **3** and **5**.

4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline **3a** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (55.1 mg, 78% yield), mp 146-148 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.01 (s, 1H), 8.24 – 8.19 (m, 4H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.77 – 7.73 (m, 3H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.38 – 7.35 (m, 1H), 7.32 – 7.28 (m, 1H), 6.82 (td, *J* = 7.0, 1.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 152.1, 151.0, 147.5, 139.6, 133.6, 133.3, 130.9, 128.8, 128.5, 128.4, 128.3, 128.0, 126.9, 126.8, 124.4, 122.9, 117.9, 113.4, 103.7

IR (KBr) 1632, 1559, 1442, 1345, 1226, 1153, 975, 748, 690 cm⁻¹

HRMS for C₂₂H₁₆N₃S⁺ (M+H)⁺: calcd. 354.10594, found 354.10590

4-((2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-yl)thio)isoquinoline
3b was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1).
Yellow solid (46.9 mg, 61% yield), mp 175-177 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.04 (s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 7.0 Hz, 1H), 8.16 (d, J = 9.0 Hz, 2H), 8.00 (d, J = 8.5 Hz, 1H), 7.82 – 7.68 (m, 4H), 7.35 – 7.31 (m, 1H), 6.98 – 6.95 (m, 2H), 6.84 (t, J = 7.0 Hz, 1H), 3.83 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 160.2, 152.2, 151.1, 147.6, 139.6, 133.7, 131.0, 129.9, 128.6, 128.4, 128.1, 127.0, 126.9, 125.9, 124.4, 123.1, 117.8, 114.0, 113.3, 102.7, 55.4

IR (KBr) 2927, 1724, 1609, 1454, 1339, 1245, 1175, 1036, 834, 752 cm⁻¹

HRMS for C₂₃H₁₈N₃OS⁺(M+H)⁺: calcd. 384.11651, found 384.11630

4-(3-(isoquinolin-4-ylthio)imidazo[1,2-a]pyridin-2-yl)benzonitrile

3c was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (60.2 mg, 80% yield), mp 214-216 °C.

¹H NMR (500 MHz, CDCl₃) δ 9.06 (s, 1H), 8.36 (d, J = 8.5 Hz, 2H), 8.28 – 8.26 (m, 2H), 8.02 (d, J = 8.5 Hz, 1H), 7.85 (t, J = 9.0 Hz, 1H), 7.78 – 7.70 (m, 5H), 7.42 – 7.39 (m, 1H), 6.92 (t, J = 6.5 Hz, 1H) ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 149.8, 147.8, 139. 5, 137.8, 133.63, 132.4, 131.3, 128.9, 128.6, 128.6, 128.4, 127.7, 126.3, 124.6, 122.8, 119.0, 118.3, 114.1, 112.1, 105.2 IR (KBr) 2921, 2852, 2226, 1561, 1464, 1343, 1234, 1154, 845, 759, 738 cm⁻¹ HRMS for C₂₃H₁₅N₄S⁺ (M+H)⁺: calcd. 379.10119, found 379.10129

4-((2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridin-3-

yl)thio)isoquinoline

3d was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). White solid (56.3 mg, 67% yield), mp 168-170 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.05 (s, 1H), 8.34 (d, *J* = 8.5 Hz, 2H), 8.26 (t, *J* = 7.5 Hz, 2H), 8.00(d, *J* = 8.5 Hz, 1H), 7.82 (t, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.74 – 7.68 (m, 4H), 7.40 - 7.36 (m, 1H), 6.90 (t, *J* = 6.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 151.3, 150.5, 147.7, 139.5, 136.8, 133.6, 131.2, 130.7 (q, *J* = 32.3 Hz), 128.7, 128.6, 128.5, 128.2, 127.4, 126.5, 125.5 (q, *J* = 3.5 Hz), 124.6, 124.2 (q, *J* = 270.3.4 Hz), 122.9, 118.2, 113.9, 104.8

¹⁹F NMR (471 MHz, CDCl₃) δ -62.6

IR (KBr) 2920, 2850, 1619, 1565, 1492, 1323, 1166, 1097, 1066, 843, 744 cm⁻¹ **HRMS for C₂₃H₁₅F₃N₃S⁺ (M+H)⁺: calcd.** 422.09333, found 422.09344

4-((2-(3-nitrophenyl)imidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3e was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (55.8 mg, 70% yield), mp 196-197 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.15 (t, *J* = 2.0 Hz, 1H), 9.04 (s, 1H), 8.58 – 8.56 (m, 1H), 8.30 – 8.28 (m, 2H), 8.21 – 8.19 (m, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.73 – 7.70 (m, 2H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.42 – 7.39 (m, 1H), 6.93 (t, *J* = 7.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 151.4, 149.2, 148.5, 147.6, 139.6, 135.1, 134.2, 133.6, 131.3, 129.5, 128.6, 128.5, 128.3, 127.6, 126.4, 124.6, 123.3, 122.8, 118.2, 114.0, 105.1

IR (KBr) 2919, 1538, 1491, 1342, 1229, 1087, 820, 745, 703 cm⁻¹

HRMS for C₂₂H₁₅N₄O₂S⁺ (M+H)⁺: calcd. 399.09102, found 399.09106

2-(3-(isoquinolin-4-ylthio)imidazo[1,2-a]pyridin-2-yl)phenol

3f was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (25.2 mg, 34% yield), mp 172-174 °C.

¹H NMR (500 MHz, CDCl₃) δ 13.0 (s, 1H), 9.03 (s, 1H), 8.57 (d, J = 8.0 Hz, 1H), 8.32 – 8.29 (m, 2H), 8.00 (d, J = 8.5 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.76 – 7.69 (m, 3H), 7.39 (t, J = 8.0 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.08 (d, J = 8.5 Hz, 1H), 6.91 (t, J = 7.0 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 158.5, 151.2, 150.2, 145.2, 139.4, 133.7, 131.2, 130.9, 129.6, 128.6,

128.5, 128.2, 127.8, 126.2, 124.2, 122.9, 119.0, 117.9, 117.0, 116.0, 114.2, 102.6 **IR (KBr)** 2923, 2854, 1722, 1568, 1455, 1348, 1250, 1152, 736 cm⁻¹ **HRMS for C₂₂H₁₆N₃OS⁺ (M+H)⁺:** calcd. 370.10086, found 370.10114

4-((2-pentylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline
3g was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1).
Yellow oil (31.2 mg, 45% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 8.34 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 7.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 7.5 Hz, 1H), 7.72 – 7.62 (m, 3H), 7.31 – 7.28 (m, 1H), 6.82 (t, J = 7.0 Hz, 1H), 2.97 (t, J = 8.0 Hz, 2H), 1.84 – 1.78 (m, 2H), 1.38 – 1.29 (m, 4H), 0.83 (t, J = 7.5 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 150.8, 147.6, 139.5, 133.6, 131.0, 128.5, 128.4, 128.0, 127.5, 126.3, 124.3, 123.0, 117.5, 113.0, 104.2, 31.8, 29.5, 28.3, 22.5, 14.1 IR (KBr) 2920, 2850, 1630, 1554, 1493, 1382, 1336, 1226, 975, 752, 737 cm⁻¹ HRMS for C₂₁H₂₂N₃S⁺ (M+H)⁺: calcd. 348.15289, found 348.15268

4-((2-(naphthalen-2-yl)imidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3h was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (45.7 mg, 57% yield), mp 184-186 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.04 (s, 1H), 8.71 (s, 1H), 8.35 (dd, J = 8.5, 1.5 Hz, 1H), 8.29 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 9.0 Hz, 1H), 7.90 – 7.76 (m, 6H), 7.68 (t, J = 7.5 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.36 (t, J = 7.5 Hz, 1H), 6.88 (t, J = 7.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 152.1, 151.2, 147.7, 140.0, 133.8, 133.5, 133.4, 131.1, 130.8, 128.8, 128.6, 128.4, 128.2, 128.1, 127.7, 127.1, 126.9, 126.6, 126.2, 126.1, 124.5, 123.1, 118.0, 113.5, 104.3 IR (KBr) 2922, 2852, 1567, 1487, 1334, 1225, 1139, 825, 738 cm⁻¹

HRMS for C₂₆H₁₈N₃S⁺ (M+H)⁺: calcd. 404.12159, found 404.12158

4-((2-(thiophen-2-yl)imidazo[1,2-a]pyridin-3-yl)thio)isoquinoline **3i** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (53.8 mg, 75% yield), mp 186-188 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 9.04 (s, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 8.21 (d, *J* = 6.5 Hz, 1H), 8.00 – 7.99 (m, 2H), 7.85 – 7.80 (m, 2H), 7.73 – 7.68 (m, 2H), 7.37 (d, *J* = 5.0 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 1H), 7.08 (t, *J* = 4.5 Hz, 1H), 6.84 (t, *J* = 7.0 Hz, 1H) ¹³**C NMR (126 MHz, CDCl₃)** δ 151.1, 147.6, 147.4, 139.8, 136.1, 133.8, 131.1, 128.6, 128.4, 128.1, 127.9, 127.2, 126.9, 126.5, 124.3, 122.9, 117.7, 113.5, 102.8

IR (KBr) 2921, 2852, 1558, 1490, 1375, 1341, 1214, 1141, 976, 751, 697 cm⁻¹ **HRMS for C₂₀H₁₄N₃S₂⁺ (M+H)⁺:** calcd. 360.06237, found 360.06223

4-((6-bromo-2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3j was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). White solid (70.6 mg, 82% yield), mp 142-143 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.03 (s, 1H), 8.37 (s, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 8.17 (d, *J* = 7.0 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.62 (d, *J* = 9.5 Hz, 1H), 7.44 – 7.36 (m, 4H)

¹³C NMR (126 MHz, CDCl₃) δ 152.7, 151.2, 145.9, 139.3, 133.5, 132.8, 131.0, 130.4, 129.1, 128.6, 128.5, 128.5, 128.4, 128.1, 126.4, 124.6, 122.9, 118.5, 108.4, 104.3

IR (KBr) 2920, 1561, 1490, 1332, 1221, 1162, 1067, 811, 771, 686 cm⁻¹ HRMS for C₂₂H₁₅BrN₃S⁺ (M+H)⁺: calcd. 432.01646, found 432.01669

4-((7-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3k was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (58.9 mg, 80% yield), mp 146-148 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.02 (s, 1H), 8.24 (d, J = 8.5 Hz, 1H), 8.18 – 8.16 (m, 2H), 8.09 (d, J = 7.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.79 – 7.76 (m, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.50 (s, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.38 – 7.35 (m, 1H), 6.67 (dd, J = 7.0, 1.5 Hz, 1H), 2.42 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 152.2, 151.0, 148.0, 139.6, 138.2, 133.7, 133.5, 130.9, 128.7, 128.5, 128.3, 128.0, 127.1, 123.6, 123.0, 116.5, 116.0, 102.8, 21.5

IR (KBr) 2919, 1644, 1551, 1441, 1354, 1235, 1170, 1071, 881, 770, 688 cm⁻¹

HRMS for $C_{23}H_{18}N_3S^+(M+H)^+$: calcd. 368.12159, found 368.12167

5-(isoquinolin-4-ylthio)-6-phenylimidazo[2,1-b]thiazole

31 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). White solid (35.8 mg, 50% yield), mp 114-116 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.05 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 2H), 8.02 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.42 – 7.38 (m, 3H), 7.33 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 4.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 153.3, 152.0, 151.3, 140.7, 133.7, 133.4, 131.0, 128.5, 128.4, 128.3, 128.1, 127.8, 127.5, 123.1, 117.9, 113.4, 105.4

IR (KBr) 2920, 2850, 1538, 1469, 1435, 1372, 1245, 1130, 974, 743, 696 cm⁻¹

HRMS for C₂₀H₁₄N₃S₂⁺ (M+H)⁺: calcd. 360.06237, found 360.06235

6-methyl-4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3m was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (56.3 mg, 77% yield), mp 137-138 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.93 (s, 1H), 8.22 – 8.19 (m, 3H), 8.12 (d, J = 8.5 Hz, 1H), 7.74 – 7.71 (m, 3H), 7.58 (dd, J = 8.5, 1.0 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.32 – 7.28 (m, 1H), 6.82 (t, J = 6.5 Hz, 1H), 2.54 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 152.0, 150.5, 147.4, 139.0, 138.2, 133.3, 133.2, 132.0, 128.8, 128.7, 128.5, 128.5, 127.1, 126.8, 126.5, 124.4, 122.8, 117.9, 113.3, 103.9, 21.7

IR (KBr) 2921, 2852, 1629, 1558, 1454, 1335, 1233, 978, 759, 695 cm⁻¹

HRMS for C₂₃H₁₈N₃S⁺ (M+H)⁺: calcd. 368.12159, found 368.12131

6,7-dimethoxy-4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3n was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (48.0 mg, 58% yield), mp 211-213 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.86 (s, 1H), 8.30 (d, *J* = 7.5 Hz, 3H), 8.04 (s, 1H), 7.70 (d, *J* = 7.0 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.41 – 7.38 (m, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.17 (s, 1H), 6.84 (t, *J* = 6.5 Hz, 1H), 4.00 (s, 3H), 3.76 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 153.7, 151.1, 150.8, 149.4, 147.3, 141.2, 133.5, 131.3, 128.9, 128.7, 128.7, 126.7, 124.9, 124.6, 123.9, 117.9, 113.3, 105.9, 105.0, 102.0, 56.2, 56.1

IR (KBr) 2921, 1619, 1502, 1463, 1340, 1253, 1150, 873, 723 cm⁻¹

HRMS for C₂₄H₂₀N₃O₂S⁺ (M+H)⁺: calcd. 414.12707, found 414.12701

4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinolin-7-amine

30 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (39.2 mg, 53% yield), mp 217-219 °C.

¹**H NMR (500 MHz, DMSO-d₆)** δ 9.05 (s, 1H), 8.46 (d, *J* = 7.0 Hz, 1H), 8.30 (d, *J* = 7.5 Hz, 2H), 8.11 (s, 1H), 7.70 – 7.65 (m, 4H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 4.5 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.00 (t, *J* = 7.0 Hz, 1H), 6.61 (s, 2H)

¹³C NMR (126 MHz, DMSO-d₆) δ 150.2, 148.5, 146.8, 145.5, 139.3, 133.5, 130.3, 129.6, 128.7, 128.7, 128.5, 126.4, 125.2, 122.8, 120.7, 117.3, 113.2, 109.5, 99.4

IR (KBr) 2920, 2851, 1632, 1448, 1349, 1225, 1150, 835, 754, 689 cm⁻¹

HRMS for C₂₂H₁₇N₄S⁺ (M+H)⁺: calcd. 369.11684, found 369.11679

8-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)-[1,3]dioxolo[4,5-g]isoquinoline

3p was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Brown solid (37.4 mg, 47% yield), mp 201-203 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.77 (s, 1H), 8.25 (d, *J* = 7.0 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 2H), 7.75 – 7.73 (m, 2H), 7.51 (s, 1H), 7.45(t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.0 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.19 (s, 1H), 6.86 (t, *J* = 7.0 Hz, 1H), 6.14 (s, 2H)

¹³C NMR (126 MHz, CDCl₃) δ 152.1, 151.7, 149.2, 148.9, 147.5, 140.0, 133.4, 132.4, 128.9, 128.7, 128.6, 126.9, 126.1, 125.7, 124.5, 118.0, 113.4, 104.4, 103.8, 102.1, 99.9

IR (KBr) 2921, 1577, 1452, 1343, 1231, 1037, 962, 759, 706 cm⁻¹

HRMS for C₂₃H₁₆N₃O₂S⁺(M+H)⁺: calcd. 398.09577, found 398.09570

8-chloro-4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3q was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). White solid (64.7 mg, 84% yield), mp 208-209 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.44 (s, 1H), 8.21 (d, *J* = 6.5 Hz, 1H), 8.18 – 8.15 (m, 3H), 7.84 (s, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.39 – 7.32 (m, 2H), 6.85 (t, *J* = 6.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 152.3, 147.9, 147.6, 140.5, 134.9, 133.3, 133.1, 130.8, 128.9, 128.6, 128.5, 128.4, 127.0, 127.0, 125.8, 124.3, 122.1, 118.0, 113.5, 103.2

IR (KBr) 2919, 1609, 1563, 1464, 1441, 1344, 1226, 889, 800, 745cm⁻¹

HRMS for C₂₂H₁₅ClN₃S⁺ (M+H)⁺: calcd. 388.06697, found 388.06705

7-nitro-4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline

3r was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (52.6 mg, 66% yield), mp 177-179 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.21 (s, 1H), 8.92 (d, *J* = 2.0 Hz, 1H), 8.51 (dd, *J* = 9.0, 2.0 Hz, 1H), 8.40 (d, *J* = 9.0 Hz, 1H), 8.26 (d, *J* = 6.5 Hz, 1H), 8.15 (d, *J* = 7.0 Hz, 2H), 7.97 (s, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.46 – 7.37 (m, 4H), 6.92 (t, *J* = 6.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 152.6, 152.5, 147.7, 146.6, 143.2, 136.2, 133.0, 129.1, 128.7, 128.6, 127.8, 127.5, 127.4, 125.4, 124.8, 124.3, 124.2, 118.2, 113.8, 102.6

IR (KBr) 2922, 1620, 1522, 1465, 1340, 1232, 1086, 794, 731, 692 cm⁻¹ **HRMS for C₂₂H₁₅N₄O₂S⁺ (M+H)⁺:** calcd. 399.09102, found 399.09128

methyl 4-((2-phenylimidazo[1,2-a]pyridin-3-yl)thio)isoquinoline-6-carboxylate **3s** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (60.2 mg, 73% yield), mp 80-82 °C.

¹**H** NMR (500 MHz, CDCl₃) δ 9.18 (s, 1H), 8.88 (s, 1H), 8.64 (s, 1H), 8.23 (dd, J = 8.5, 1.0 Hz, 1H), 8.13 (d, J = 7.5 Hz, 2H), 8.08 (d, J = 7.0 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.0 Hz, 1H), 7.24 – 7.21 (m, 1H), 6.91 (t, J = 6.5 Hz, 1H), 4.02 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 151.1, 143.8, 142.8, 139.8, 133.1, 132.6, 132.6, 130.8, 129.4, 128.6, 128.3, 128.2, 127.8, 127.6, 126.1, 124.9, 122.7, 117.7, 113.0, 105.7, 52.8 IR (KBr) 2956, 1717, 1574, 1352, 1278, 1208, 1103, 993, 755, 697 cm⁻¹ HRMS for C₂₄H₁₈N₃O₂S⁺ (M+H)⁺: calcd. 412.11142, found 412.11133

3-((5-methylpyridin-3-yl)thio)-2-phenylimidazo[1,2-a]pyridine
3t was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1).
Yellow oil (30.9 mg, 49% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 6.5 Hz, 1H), 8.21 – 8.17 (m, 4H), 7.75 (d, J = 9.0 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.41 – 7.36 (m, 2H), 7.03 (s, 1H), 6.92 (t, J = 7.0 Hz, 1H), 2.19 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 151.9, 148.2, 147.4, 144.3, 133.7, 133.2, 128.9, 128.7, 128.6, 128.5, 128.5, 127.1, 124.4, 118.0, 113.5, 104.8, 18.5 IR (KBr) 2923, 2852, 1631, 1578, 1496, 1465, 1341, 1230, 1161, 755, 793 cm⁻¹

HRMS for C₁₉H₁₆N₃S⁺ (M+H)⁺: calcd. 318.10594, found 318.10583

2-phenyl-3-((4-phenylpyridin-3-yl)thio)imidazo[1,2-a]pyridine

3u was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow oil (42.4 mg, 56% yield).

¹**H NMR (500 MHz, CDCl₃)** δ 8.39 (d, *J* = 5.0 Hz, 1H), 8.14 (d, *J* = 7.0 Hz, 2H), 8.08 (d, *J* = 7.0 Hz, 1H), 7.81 (s, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.55 – 7.48 (m, 5H), 7.44 (t, *J* = 7.0 Hz, 2H), 7.39 – 7.36 (m, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 5.0 Hz, 1H), 6.84 (t, *J* = 7.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 151.9, 148.1, 147.4, 146.9, 137.4, 133.2, 130.7, 129.1, 128.8, 128.8, 128.8, 128.5, 128.5, 126.9, 124.6, 124.3, 118.0, 113.4, 104.9

IR (KBr) 2919, 1571, 1495, 1441, 1341, 1233, 1032, 733, 693 cm⁻¹

HRMS for C₂₄H₁₈N₃S⁺ (M+H)⁺: calcd. 380.12159, found 380.12173

4-((2-phenylimidazo[1,2-a]pyridin-3-yl)selanyl)isoquinoline

3v was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow oil (51.5 mg, 64% yield).

¹**H NMR (500 MHz, CDCl₃)** δ 9.06 (s, 1H), 8.37 (d, *J* = 7.0 Hz, 1H), 8.12 (d, *J* = 7.5 Hz, 2H), 8.08 (s, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.68 (m, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.42 – 7.39 (m, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 6.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 152.6, 152.2, 148.1, 143.3, 135.5, 133.9, 131.2, 129.2, 129.1, 128.8, 128.5, 128.5, 128.1, 126.7, 125.6, 125.0, 124.1, 117.9, 113.4, 100.9

120.5, 120.5, 120.1, 120.7, 125.0, 125.0, 124.1, 117.5, 115.4, 100.5

IR (KBr) 2919, 1630, 1565, 1464, 1340, 1232, 1148, 1073, 743, 703 cm⁻¹

HRMS for $C_{22}H_{16}N_3Se^+(M+H)^+$: calcd. 402.05040, found 402.05020

4-((3-phenylimidazo[1,5-a]pyridin-1-yl)thio)isoquinoline

5a was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 2:1). Yellow solid (51.3 mg, 73% yield), mp 80-81 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.01 (s, 1H), 8.53 (d, *J* = 8.5 Hz, 1H), 8.29 (d, *J* = 7.0 Hz, 1H), 8.23 (s, 1H), 7.92 (d, *J* = 7.0 Hz, 1H), 7.82 – 7.77 (m, 3H), 7.66 – 7.60 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 6.87 – 6. 84 (m, 1H), 6.64 (t, *J* = 7.0 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 150.6, 142.3, 139.6, 135.3, 134.4, 130.7, 130.3, 129.5, 129.3, 129.1, 128.4, 128.3, 128.0, 127.6, 124.0, 122.3, 121.5, 118.2, 114.0

IR (KBr) 2923, 1726, 1668, 1562, 1459, 1368, 1263, 1020, 733, 693 cm⁻¹ **HRMS for C₂₂H₁₆N₃S⁺ (M+H)⁺:** calcd. 354.10594, found 354.10577

3-(isoquinolin-4-ylthio)-1-phenylimidazo[1,5-a]quinolone

5b was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 2:1).

Yellow solid (51.6 mg, 64% yield), mp 150-152 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.03 (s, 1H), 8.52 (d, *J* = 8.5 Hz, 1H), 8.32 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.68 – 7.62 (m, 4H), 7.59 – 7. 52 (m, 5H), 7.37 – 7.34 (m, 1H), 7.24 – 7.21 (m, 1H), 7.17 (d, *J* = 9.5 Hz, 1H)

¹³C NMR (126 MHz, CDCl₃) δ 150.7, 143.4, 142.4, 134.6, 134.4, 133.0, 132.5, 130.8, 130.2, 129.9, 129.8, 129.6, 129.0, 129.0, 128.4, 128.1, 127.8, 125.8, 125.6, 124.1, 120.9, 117.5, 116.2
IR (KBr) 2923, 2853, 1722, 1616, 1561, 1457, 1353, 1256, 1099, 747, 700 cm⁻¹
HRMS for C₂₆H₁₈N₃S⁺ (M+H)⁺: calcd. 404.12159, found 404.12125

4-((1H-indol-3-yl)thio)isoquinoline

5c was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow oil (36.5 mg, 66% yield).

¹**H NMR (500 MHz, DMSO-d₆)** δ 11.8 (s, 1H), 9.08 (s, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.94 – 7.90 (m, 3H), 7.78 – 7.75 (m, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.09 – 7.05 (m, 1H)

¹³C NMR (126 MHz, DMSO-d₆) δ 150.3, 140.8, 137.2, 133.3, 133.1, 131.6, 130.7, 128.9, 128.8, 128.5, 128.2, 123.2, 122.8, 120.8, 118.7, 113.0, 98.1

IR (KBr) 2921, 2852, 1618, 1571, 1490, 1454, 1378, 1228, 1098, 741 cm⁻¹

HRMS for C₁₇H₁₃N₂S⁺ (M+H)⁺: calcd. 277.07940, found 277.07928

4-((2-methyl-1H-indol-3-yl)thio)isoquinoline **5d** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (33.3 mg, 57% yield), mp 244-246 °C. ¹**H NMR (500 MHz, DMSO-d₆)** δ 11.81 (s, 1H), 9.07 (s, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.93 (t, *J* = 7.5 Hz, 1H), 7.78 (t, *J* = 8.5 Hz, 1H), 7.70 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 2.34 (s, 3H) ¹³**C NMR (126 MHz, DMSO-d₆)** δ 149.8, 143.0, 139.6, 136.3, 133.1, 131.5, 130.8, 129.8, 128.8, 128.5, 128.2, 123.1, 122.1, 120.6, 118.0, 112.0, 94.4, 12.2 **IR (KBr)** 2920, 2851, 1619, 1572, 1449, 1375, 1227, 1074, 772, 728 cm⁻¹

HRMS for C₁₈H₁₅N₂S⁺ (M+H)⁺: calcd. 291.09505, found 291.09509

4-((2-phenyl-1H-indol-3-yl)thio)isoquinoline

5e was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (49.8 mg, 71% yield), mp 238-240 °C.

¹H NMR (500 MHz, DMSO-d₆) δ 12.3 (s, 1H), 9.1 (s, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.87 (t, J = 7.5 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.51 – 7.46 (m, 3H), 7.42 (t, J = 7.0 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H) ¹³C NMR (126 MHz, DMSO-d₆) δ 150.0, 143.1, 139.4, 136.9, 133.0, 131.5, 131.5, 130.6, 130.6, 129.2, 128.8, 128.7, 128.6, 128.2, 123.4, 123.0, 121.2, 119.0, 112.7, 94.7 IR (KBr) 2920, 2851, 1736, 1573, 1445, 1376, 1225, 1041, 747, 692 cm⁻¹ HRMS for C₂₃H₁₇N₂S⁺ (M+H)⁺: calcd. 353.11070, found 353.11041

4-((3-methyl-1H-indol-2-yl)thio)isoquinoline

5f was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (27.8 mg, 48% yield), mp 144-146 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.98 (s, 1H), 8.45 (s, 1H), 8.27 (d, *J* = 8.5 Hz, 1H), 8.12 (s, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.27 – 7.20 (m, 2H), 7.14 (t, *J* = 7.0 Hz, 1H), 2.48 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 151.1, 142.5, 137.2, 134.2, 131.0, 128.5, 128.5, 128.4, 128.2, 127.8, 123.5, 123.4, 120.1, 119.7, 119.4, 119.3, 110.9, 9.6

IR (KBr) 2919, 1518, 1572, 1444, 1379, 1255, 1164, 980, 729 cm⁻¹

HRMS for C₁₈H₁₅N₂S⁺ (M+H)⁺: calcd. 291.09505, found 291.09497

4-((5-bromo-1H-indol-3-yl)thio)isoquinoline

5g was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Brown solid (44.5 mg, 63% yield), mp 196-198 °C.

¹**H NMR (500 MHz, DMSO-d₆)** δ 12.05 (s, 1H), 9.13 (s, 1H), 8.39 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 2.5 Hz, 1H), 7.96 – 7.93 (m, 2H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.58 (s, 1H), 7.53 (d, *J* = 8.5 Hz, 1H), 7.34 (d, *J* = 9.5 Hz, 1H)

¹³C NMR (126 MHz, DMSO-d₆) δ 150.6, 140.8, 136.0, 134.8, 133.3, 131.7, 130.8, 130.3, 128.8, 128.6, 128.3, 125.4, 123.2, 120.8, 115.2, 113.6, 97.9

IR (KBr) 2920, 2851, 1573, 1452, 1377, 1257, 1102, 879, 742 cm⁻¹

HRMS for C₁₇H₁₂BrN₂S⁺ (M+H)⁺: calcd. 354.98991, found 354.98993

4-((7-methyl-1H-indol-3-yl)thio)isoquinoline

5h was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (30.3 mg, 52% yield), mp 188-190 °C

¹**H NMR (500 MHz, DMSO-d₆)** δ 11.8 (s, 1H), 9.09 (s, 1H), 8.39 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.95 – 7.90 (m, 3H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.0 Hz, 1H), 7.02 – 6.97 (m, 2H), 2.53 (s, 3H)

¹³C NMR (126 MHz, DMSO-d₆) δ 150.3, 140.8, 136.8, 133.3, 132.8, 131.6, 130.7, 128.8, 128.6, 128.5, 128.2, 123.3, 123.2, 122.3, 121.0, 116.3, 98.4, 17.1

IR (KBr) 2919, 2851, 1613, 1573, 1435, 1379, 1227, 1123, 1022, 779, 741 cm⁻¹ **HRMS for C₁₈H₁₅N₂S⁺ (M+H)⁺:** calcd. 291.09505, found 291.09503

4-((1-methyl-1H-indol-3-yl)thio)isoquinoline

5i was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 2:1). Yellow solid (36.0 mg, 62% yield), mp 129-130 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.96 (s, 1H), 8.40 (d, J = 8.5 Hz, 1H), 8.01 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.39 – 7.37 (m, 2H), 7.28 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 3.84 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 149.7, 140.9, 137.7, 135.2, 133.7, 131.3, 130.5, 129.6, 128.1, 128.1, 127.6, 123.4, 122.8, 120.8, 119.6, 110.0, 98.6, 33.3

IR (KBr) 2920, 1569, 1511, 1458, 1334, 1240, 1154, 737 cm⁻¹

HRMS for C₁₈H₁₅N₂S⁺ (M+H)⁺: calcd. 291.09505, found 291.09473

1-(isoquinolin-4-ylthio)naphthalen-2-ol

5j was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (36.3 mg, 60% yield), mp 198-200 °C.

¹**H NMR (500 MHz, DMSO-d**₆) δ 10.63 (s, 1H), 9.07 (s, 1H), 8.40 (d, *J* = 8.5 Hz, 1H), 8.25 (d, *J* = 8.5 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.97 – 7.92 (m, 2H), 7.77 (t, *J* = 7.0 Hz, 1H), 7.63 (s, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 9.0 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H)

¹³C NMR (126 MHz, DMSO-d₆) δ 159.1, 149.9, 139.7, 136.1, 133.4, 133.0, 131.5, 129.7, 129.2, 128.8, 128.5, 128.4, 128.3, 124.2, 123.9, 123.3, 119.0, 106.2

IR (KBr) 2921, 1617, 1502, 1435, 1345, 1272, 1211, 1152, 813, 744 cm⁻¹

HRMS for C₁₉H₁₄NOS⁺ (M+H)⁺: calcd. 304.07906, found 304.07901

6-bromo-1-(isoquinolin-4-ylthio)naphthalen-2-ol

5k was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (54.1 mg, 71% yield), mp 221-223 °C.

¹**H NMR (500 MHz, DMSO-d₆)** δ 10.8 (s, 1H), 9.1 (s, 1H), 8.36 (d, *J* = 8.5 Hz, 1H), 8.21 – 8.16 (m, 3H), 8.01 (d, *J* = 9.0 Hz, 1H), 7.93 (td, *J* = 7.0, 1.0 Hz, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 7.62 – 7.59 (m, 2H), 7.42 (d, *J* = 9.0 Hz, 1H)

¹³C NMR (126 MHz, DMSO-d₆) δ 159.1, 149.7, 139.4, 134.4, 133.0, 131.6, 131.1, 130.7, 130.4, 130.0, 128.9, 128.3, 128.1, 127.9, 126.2, 122.8, 119.8, 116.3, 106.3

IR (KBr) 2921, 2852, 1725, 1615, 1589, 1485, 1380, 1340, 1189, 807, 745 cm⁻¹

HRMS for C₁₉H₁₃BrNOS⁺ (M+H)⁺: calcd. 381.98957, found 381.98965

1-(isoquinolin-4-ylthio)-7-methoxynaphthalen-2-ol

51 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1).

Yellow solid (43.5 mg, 65% yield), mp 178-180 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.00 (s, 1H), 8.43 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.87 – 7.82 (m, 2H), 7.74 – 7.68 (m, 3H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.31 (s, 1H), 7.19 (d, *J* = 8.5 Hz, 1H), 7.01 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.69 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 159.8, 157.8, 150.4, 140.2, 137.2, 134.0, 132.9, 130.9, 130.4, 128.4, 128.2, 127.9, 127.4, 124.8, 122.9, 116.1, 114.5, 105.2, 103.6, 55.3

IR (KBr) 2919, 1616, 1512, 1462, 1418, 1377, 1139, 1091, 838, 750 cm⁻¹

HRMS for $C_{20}H_{16}NO_2S^+(M+H)^+$: calcd. 334.08963, found 334.08960

1-(isoquinolin-4-ylthio)naphthalen-2-amine

5m was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 1:1). Yellow solid (40.6 mg, 67% yield), mp 185-187 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.96 (s, 1H), 8.41 (d, *J* = 8.0 Hz, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.41 – 7.38 (m, 1H), 7.27 – 7.24 (m, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 4.76 (s, 2H)

¹³C NMR (126 MHz, CDCl₃) δ 149.7, 148.9, 139.2, 136.6, 133.9, 132.4, 130.6, 128.7, 128.7, 128.3, 128.1, 127.7, 124.0, 123.2, 122.9, 117.8, 102.0

IR (KBr) 2920, 1615, 1473, 1379, 1215, 1055, 978, 816, 746cm⁻¹

HRMS for C₁₉H₁₅N₂S⁺ (M+H)⁺: calcd. 303.09505, found 303.09503

4-((2,4,6-trimethoxyphenyl)thio)isoquinoline

5n was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1). Yellow solid (49.6 mg, 76% yield), mp 111-113 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.89 (s, 1H), 8.32 (d, *J* = 8.5 Hz, 1H), 7.89 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 6.14 (s, 2H), 3.78 (s, 3H), 3.72 (s, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 163.3, 162.5, 149.5, 140.6, 134.2, 130.3, 130.2, 128.3, 127.9, 127.4, 124.0, 97.0, 91.4, 56.3, 55.6

IR (KBr) 2922, 1569, 1412, 1338, 1225, 1122, 1028, 816, 741 cm⁻¹

HRMS for C₁₈H₁₈NO₃S⁺ (M+H)⁺: calcd. 328.10019, found 328.10007

4-(isoquinolin-4-ylthio)-N,N-dimethylaniline

50 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1 to 2:1). Yellow solid (43.8 mg, 78% yield), mp 132-134 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 9.05 (s, 1H), 8.30 (d, *J* = 8.5 Hz, 1H), 8.22 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 9.0 Hz, 2H), 6.68 (d, *J* = 8.5 Hz, 2H), 2.96 (s, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 150.8, 150.7, 143.3, 135.1, 134.6, 131.4, 130.7, 128.5, 128.1, 127.7, 124.0, 116.8, 113.3, 40.4

IR (KBr) 2919, 1588, 1504, 1360, 1226, 1192, 980, 811, 749 cm⁻¹

HRMS for $C_{17}H_{17}N_2S^+$ (M+H)⁺: calcd. 281.11070, found 281.11069

3-iodo-2-phenylimidazo[1,2-a]pyridine^[3] 6 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 8:1 to 4:1). ¹H NMR (500 MHz, CDCl₃) δ 8.15 – 8.11 (m, 3H), 7.65 (d, *J* = 9.5 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.27 – 7.26 (m, 1H), 6.94 (t, *J* = 7.0 Hz, 1H) HRMS for C₁₃H₁₀IN₂⁺ (M+H)⁺: calcd. 320.98832, found 320.98831

bis(2-phenylimidazo[1,2-a]pyridin-3-yl)sulfane^[2]

7 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 6:1 to 3:1). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 4H), 7.62 (t, J = 7.5 Hz, 4H), 7.58 – 7.54 (m, 4H), 7.49 (d, J = 9.0 Hz, 2H), 7.11 (t, J = 8.0 Hz, 2H), 6.36 (t, J = 7.0 Hz, 2H) HRMS for C₂₆H₁₉N₄S⁺ (M+H)⁺: calcd. 419.13249, found 419.13232

1,2-bis(2-phenylimidazo[1,2-a]pyridin-3-yl)disulfane^[2]

8 was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 6.0 Hz, 2H), 7.63 (s, 4H), 7.35 (d, J = 7.5 Hz, 2H), 7.19 (t, J = 7.5 Hz, 2H), 7.13 – 7.09 (m, 6H), 6.73 (t, J = 7.0 Hz, 2H) HRMS for C₂₆H₁₉N₄S₂⁺ (M+H)⁺: calcd. 451.10456, found 451.10489

References

Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792–805.
 Reddy, R. J.; Shankar, A.; Kumar, J. J.; Sharadha, N. New J. Chem., 2022, 46, 4784–4791

Reference:

- 1. D. C. Mohan, R. R. Donthiri, S. N. Rao, S. Adimurthya, Adv. Synth. Catal. 2013, 355, 2217-2221.
- 2. R. J. Reddy, A. Shankar, J. J. Kumar, N. Sharadha, New J. Chem., 2022, 46, 4784-4791.
- 3. Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792-805.

3 Copies of ¹H and ¹³C NMR Spectra

¹H NMR (500 MHz, CDCl₃) of **3a**

¹H NMR (500 MHz, CDCl₃) of **3b**

¹H NMR (500 MHz, CDCl₃) of **3c**

¹³C NMR (126 MHz, CDCl₃) of **3c**

¹H NMR (500 MHz, CDCl₃) of **3d**

29

¹³C NMR (126 MHz, CDCl₃) of **3d**

¹H NMR (500 MHz, CDCl₃) of **3e**

¹³C NMR (126 MHz, CDCl₃) of **3e**

¹H NMR (500 MHz, CDCl₃) of **3f**

¹³C NMR (126 MHz, CDCl₃) of **3f**

¹H NMR (500 MHz, CDCl₃) of **3g**

¹H NMR (500 MHz, CDCl₃) of **3h**

¹H NMR (500 MHz, CDCl₃) of **3i**

¹³C NMR (126 MHz, CDCl₃) of **3i**

¹H NMR (500 MHz, CDCl₃) of **3**j

`N 3j

Br

¹³C NMR (126 MHz, CDCl₃) of **3**j

¹H NMR (500 MHz, CDCl₃) of **3**k

¹³C NMR (126 MHz, CDCl₃) of **3**k

¹H NMR (500 MHz, CDCl₃) of **3**l

¹³C NMR (126 MHz, CDCl₃) of **3**l

PPM

¹H NMR (500 MHz, CDCl₃) of **3m**

¹³C NMR (126 MHz, CDCl₃) of **3m**

¹H NMR (500 MHz, CDCl₃) of **3n**

¹³C NMR (126 MHz, CDCl₃) of **3n**

¹H NMR (500 MHz, DMSO-d₆) of **30**

¹³C NMR (126 MHz, DMSO-d₆) of **30**

¹H NMR (500 MHz, CDCl₃) of **3p**

¹³C NMR (126 MHz, CDCl₃) of **3p**

¹H NMR (500 MHz, CDCl₃) of **3q**

¹³C NMR (126 MHz, CDCl₃) of **3q**

¹H NMR (500 MHz, CDCl₃) of **3r**

¹³C NMR (126 MHz, CDCl₃) of **3r**

¹H NMR (500 MHz, CDCl₃) of **3s**

¹H NMR (500 MHz, CDCl₃) of **3t**

¹H NMR (500 MHz, CDCl₃) of **3u**

¹³C NMR (126 MHz, CDCl₃) of **3u**

¹H NMR (500 MHz, CDCl₃) of **3v**

¹H NMR (500 MHz, CDCl₃) of 5a

¹³C NMR (126 MHz, CDCl₃) of 5a

¹H NMR (500 MHz, CDCl₃) of **5b**

Ν

¹³C NMR (126 MHz, CDCl₃) of **5b**

¹H NMR (500 MHz, DMSO- d_6) of **5**c

¹³C NMR (126 MHz, DMSO-d₆) of **5**c

¹H NMR (500 MHz, DMSO- d_6) of **5d**

13 C NMR (126 MHz, DMSO-d₆) of **5d**

¹H NMR (500 MHz, DMSO- d_6) of **5**e

¹³C NMR (126 MHz, DMSO-d₆) of **5**e

¹³C NMR (126 MHz, DMSO-d₆) of **5g**

¹H NMR (500 MHz, DMSO-d₆) of **5h**

 13 C NMR (126 MHz, DMSO-d₆) of **5h**

¹³C NMR (126 MHz, CDCl₃) of **5**i

¹H NMR (500 MHz, DMSO-d₆) of **5**j

¹³C NMR (126 MHz, DMSO-d₆) of **5**j

¹H NMR (500 MHz, DMSO-d₆) of **5**k

¹³C NMR (126 MHz, DMSO-d₆) of **5**k

