Stereoselective Synthesis of the Spirocyclic Core of 13-Desmethyl Spirolide \mathbf{C} using an aza-Claisen Rearrangement and an exoselective Diels-Alder Cycloaddition

Andrew D. W. Earl, ${ }^{a}$ Freda F. Li, *a,b Chao Ma, ${ }^{a}$ Daniel P. Furkert, ${ }^{a, b}$ Margaret A. Brimble. *a,b
${ }^{a}$ School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
${ }^{b}$ Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.

*Corresponding authors: m.brimble@auckland.ac.nz,freda.li@auckland.ac.nz

Supporting Information

Table of Contents

S2 Synthesis of bromodiene 26
S3 Synthesis of silyl enol ether dienes 32-34 and $\mathbf{3 8}$
S6 Attempted Diels-Alder cycloadditions of lactams 27 and 28 with boron-substituted furans
S7 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compounds 8, 15a, 16a and 16b, 21-24, 26, 28, 30-39, S1, S3, S5, S12, and S13.

S29 Key NOESY correlations of $(\pm)-\mathbf{3 0},(\pm)-\mathbf{3 1},(\pm)-\mathbf{3 5}-(\pm)-\mathbf{3 7},(\pm)-\mathbf{3 9}, \mathbf{1 6 a}$ and 16b
S37 X-ray crystal structure of (\pm)-35
S38 References

Synthesis of bromodiene 26

Scheme S1. Synthesis of bromodienes $\mathbf{2 5}^{[1]}$ and 26. Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 30 \mathrm{~min}$, 90%; (b) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $5 \mathrm{~h}, 92 \%$.

Experimental Procedures

Alcohol S1

To a solution of benzoate $\mathbf{2 5}^{[1]}(1.85 \mathrm{~g}, 6.93 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.87 \mathrm{~g}, 20.8 \mathrm{mmol})$ at room temperature and the resulting mixture stirred for 30 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O}, 4: 1$) to afford free alcohol $\mathbf{S 1}(1.04 \mathrm{~g}, 90 \%)$ as a pale yellow oil.
$\mathbf{R}_{f}: 0.26$ (pet. ether- $\mathrm{Et}_{2} \mathrm{O}, 4: 1$);
$v_{\max } / \mathrm{cm}^{-1}: 3407,1718,1588,1095,955$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 6.29(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=14.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}$, $1 \mathrm{H}), 4.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13}$ C NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 136.1,129.4,128.7,120.2,62.4 ;$
HRMS (ESI ${ }^{+}$m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{BrNaO}: 186.0019$; found 186.0015.

Diene 26

To a stirred solution of alcohol $\mathbf{S 1}(50 \mathrm{mg}, 0.31 \mathrm{mmol})$ and imidazole ($25 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TBSCl ($56 \mathrm{mg}, 0.37 \mathrm{mmol}$) at room temperature. The resulting mixture was stirred for 5 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo.

Purification by flash chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O}, 19: 1$) afforded silyl-protected alcohol 26 ($79 \mathrm{mg}, 92 \%$) as a colourless oil.

Rf: 0.52 (pet. ether- $\mathrm{Et}_{2} \mathrm{O}, 19: 1$);
$v_{\max } / \mathrm{cm}^{-1}: 2956,2930,2857,1258,1129,1102,1011,834,802,775$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 6.27(\mathrm{dt}, J=14.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=14.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.59$ (s, 1H), 4.33-4.32 (m, 2H), 0.92 (s, 9H), 0.08 (s, 6H);
${ }^{13}$ C NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 136.9,129.9,127.4,119.3,62.6,26.1,18.6,-5.2 ;$
HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{BrNaOSi}$ 299.0437; found 299.0435.

Synthesis of silyl enol ether dienes 32-34 and 38

Scheme S2. Synthesis of silyl enol ether dienes 32-34 and 38. Reagents and conditions: (a) THF, rt, 2 h, 66\%71%; (b) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $1-3 \mathrm{~h}, 92-98 \%$.

Experimental Procedures

Enone S3

To a stirred solution of aldehyde $\mathbf{S 2}{ }^{[2]}(1.00 \mathrm{~g}, 5.74 \mathrm{mmol})$ in THF (57 mL) at room temperature was added 1-(triphenylphosphoranylidene)-2-propanone ($1.92 \mathrm{~g}, 6.02 \mathrm{mmol}$) and the reaction stirred for 2 h . The reaction mixture was then concentrated in vacuo and the crude residue was purified by flash chromatography (pet. etherEtOAc 4:1) to afford the enone product ($\mathbf{S 3}, 0.99 \mathrm{~g}, 71 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.64$ (pet. ether-EtOAc, 7:3);
$v_{\max } / \mathrm{cm}^{-1}: 2955,2930,2886,2857,1679,1360,1252,1135,836 ;$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82(\mathrm{dt}, J=15.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=15.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=3.6$, $2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 (s, 3H), 0.92 ($\mathrm{s}, 9 \mathrm{H}$), 0.08 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.6,146.4,128.9,62.3,27.5,26.0,18.5,-5.3$.
HRMS (ESI/Q-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{Si}$, 237.1281; found, 237.1286.

Enone S5

To a stirred solution of aldehyde $\mathbf{S} \boldsymbol{4}^{[3]}(0.500 \mathrm{~g}, 2.77 \mathrm{mmol})$ in THF $(27.7 \mathrm{~mL})$ at room temperature was added 1-(triphenylphosphoranylidene)-2-propanone $(0.928 \mathrm{~g}, 2.91 \mathrm{mmol})$ and the reaction stirred for 2 h . The reaction mixture was then concentrated in vacuo and the residue was purified by flash chromatography (pet. ether-EtOAc 4:1) to afford the enone product ($\mathbf{S 5}, 0.404 \mathrm{~g}, 66 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.45$ (pet. ether-EtOAc, 4:1);
$v_{\max } / \mathrm{cm}^{-1}: 2937,2912,2838,1674,1611,1513,1247,1032$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dt}, J=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J$ $=16.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=4.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.3,159.5,143.3,130.5,129.8,129.5,114.0,72.8,68.7,55.4,27.4$;
HRMS (ESI/Q-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}, 243.0992$; found, 243.0986.

Diene 32

To a stirred solution of enone $\mathbf{S 3}(0.200 \mathrm{~g}, 0.933 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 1.5$ $\mathrm{mmol})$ and TBSOTf ($0.3 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The resulting mixture was allowed to warm to room temperature and stirred for 1.5 h before water $(9 \mathrm{~mL})$ was added, the layers were separated, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 9 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O} 19: 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded the silyl enol ether product (32, $0.285 \mathrm{~g}, 96 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.88$ (pet. ether-EtOAc, 7:3);
$\nu_{\max } / \mathrm{cm}^{-1}: 2956,2930,2887,2858,1593,1472,1463,1313,1253,1131,1074,1023,963,834,811,777$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.11-6.01(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, 9H), 0.18 ($\mathrm{s}, 6 \mathrm{H}$), 0.07 ($\mathrm{s}, 6 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,130.1,127.4,95.3,63.2,26.1,26.0,18.5,18.4,-4.5,-5.1$;
HRMS (ESI/Q-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{NaO}_{2} \mathrm{Si}_{2}, 351.2146$; found, 351.2140.

Diene 33

To a stirred solution of enone $\mathbf{S 5}(0.200 \mathrm{~g}, 0.908 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 1.5$ $\mathrm{mmol})$ and TBSOTf ($0.3 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The resulting mixture was allowed to warm to room temperature and stirred for 2.5 h before water (9 mL) was added, the layers were separated, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 9 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.

Purification by flash chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O}$ 19:1, $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded the silyl enol ether product (33, $0.280 \mathrm{~g}, 92 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.39$ (pet. ether-EtOAc, 19:1);
$v_{\max } / \mathrm{cm}^{-1}: 2959,2931,2857,1679,1612,1513,1248,1025,826 ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.14-6.04(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.3,154.7,130.5,130.2,129.5,127.1,113.9,95.9,71.9,69.8,55.4,26.0,18.4$, -4.5;
HRMS (ESI/Q-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}, 357.1856$; found, 357.1848 .

Diene 34

To a stirred solution of enone $\mathbf{S} 7^{[4]}(0.500 \mathrm{~g}, 2.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}(0.55 \mathrm{~mL}$, $3.9 \mathrm{mmol})$ and TBSOTf $(0.9 \mathrm{~mL}, 3.9 \mathrm{mmol})$. The resulting mixture was allowed to warm to room temperature and stirred for 1.5 h before water (12 mL) was added, the layers were separated, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 12 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O} 19: 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded the silyl enol ether product ($\mathbf{3 4}, 0.796 \mathrm{~g}, 98 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.53$ (pet. ether-EtOAc, 19:1);
$v_{\max } / \mathrm{cm}^{-1}: 2956,2931,2886,2858,1721,1314,1266,1109,1025,826,710$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.24-6.12(\mathrm{~m}, 2 \mathrm{H})$, 4.89 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37$ (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.98$ (s, 9H), 0.19 (s, 6H);
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.4,154.3,133.1,131.7,130.4,129.8,128.5,124.1,96.9,64.7,26.0,18.4$, $-2.8,-4.5$;
HRMS (ESI/Q-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{Si}, 341.1543$; found, 341.1540.
The analytical data were in agreement with those reported in the literature. ${ }^{[4]}$

Diene 38

To a stirred solution of enone $\mathbf{S 8}^{[5]}(0.100 \mathrm{~g}, 0.458 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}$, $0.73 \mathrm{mmol})$ and TBSOTf $(0.17 \mathrm{~mL}, 0.73 \mathrm{mmol})$. The resulting mixture was allowed to warm to room temperature and stirred for 2 h before water (2.5 mL) was added, the layers were separated, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (pet. ether- $\mathrm{Et}_{2} \mathrm{O} 19: 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded the silyl enol ether product ($\mathbf{3 8}, 0.148 \mathrm{~g}, 97 \%$) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}=0.79$ (pet. ether-EtOAc, 19:1);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.26-6.23$ $(\mathrm{m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,156.5,135.8,132.9,130.4,129.6,128.3,121.4,93.2,62.0,25.9,18.3$, 13.6, -4.7.

The analytical data were in agreement with those reported in the literature. ${ }^{[5]}$

Reactions of lactams 27 and 28 with boron-substituted furans S9-S11

All of the following reaction conditions returned only unreacted starting materials, except for Table S1, entry 5, wherein partial alcoholysis of $\mathbf{S 9}$ was observed.

Table S1. Diels-Alder cycloaddition of N-Cbz lactam 27 with 2-boron-substituted furans S9-S11.

	 27	$\xrightarrow[\times]{\text { Table S1 }}$ $\begin{aligned} & \text { S9 } R=\mathrm{Bpin} \\ & \text { S10 } R=B(\mathrm{OH})_{2} \\ & \text { S11 } R=\mathrm{BF}_{3} \mathrm{~K} \end{aligned}$
Entry	R	Conditions
1	Bpin	toluene/acetonitrile ($2: 1$), $80{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$
2		$\mathrm{Mg}(\mathrm{OTf})_{2}$, toluene/acetonitrile (2:1), $80^{\circ} \mathrm{C}, 18 \mathrm{~h}$
3		p-xylene, $165{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$
4		$\operatorname{Mg}(\mathrm{OTf})_{2} \text {, p-xylene, } 165^{\circ} \mathrm{C}, 18 \mathrm{~h}$
5		ethanol, $100{ }^{\circ} \mathrm{C}, 54 \mathrm{~h}$
6		toluene/acetonitrile (2:1), $50{ }^{\circ} \mathrm{C}, 72 \mathrm{~h}$
7	$\mathrm{B}(\mathrm{OH})_{2}$	toluene/acetonitrile (2:1), $80{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\mathrm{BF}_{3} \mathrm{~K}$	acetonitrile, rt, 18 h acetonitrile, $80^{\circ} \mathrm{C}, 18 \mathrm{~h}$

Table S2. Diels-Alder cycloaddition of N-Ts lactam $\mathbf{2 8}$ with 2-boron-substituted furans S10 and S11.

 28		
Entry	R	Conditions
1	$\mathrm{B}(\mathrm{OH})_{2}$	Toluene/acetonitrile (2:1), $80{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\mathrm{BF}_{3} \mathrm{~K}$	acetonitrile, rt, 18 h acetonitrile, $80^{\circ} \mathrm{C}, 18 \mathrm{~h}$

Amide 15a

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]
Amine S12

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-113.3

~

S12

N-Boc-amine 21

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.\mathrm{d}_{6}, 340 \mathrm{~K}\right)$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 340 \mathrm{~K}$)

21
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\mathrm{d}_{6}, 340 \mathrm{~K}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)

Significant signal broadening was observed in the ${ }^{13} \mathrm{C}$ NMR spectrum due to the presence of rotamers. Attempts to obtain a clear ${ }^{13} \mathrm{C}$ NMR at 340 K were not successful, as degradation of α, β-unsaturated ester $\mathbf{2 2}$ occurred during the experiment before resolution of rotamers.

N-Boc-aminoester 23

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

23

․․

Lactam 24
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-Cbz-lactam S13

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

α-Exo-methylene lactam 8
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Alcohol S1

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S1

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3})

Bromodiene 26

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

α-Exo-methylene lactam 28
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Enone S3
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Enone S5

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

S5

Diene 32

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

32
\qquad

教

Diene 33

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cycloadduct (\pm)-30

The product was isolated as a 5:1 mixture of inseparable exo and endo diastereomers.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cycloadduct (\pm)-31

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

Cycloadduct (\pm)-35
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cycloadduct (\pm)-36

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$(\pm)-36$

Cycloadduct (\pm)-37
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cycloadduct (\pm)-39

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

ppm
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Cycloadducts 16a and 16b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\because \dot{m} \dot{m}$

Key NOESY correlations of Cycloadduct (\pm)-30

Key NOESY correlations of Cycloadduct (\pm)-31

Key NOESY correlations of Cycloadduct (\pm)-35

Key NOESY correlations of Cycloadduct (\pm)-36

Key NOESY correlations of Cycloadduct (\pm)-37

Key NOESY correlations of Cycloadduct (\pm)-39

Key NOESY correlations of Cycloadduct 16a

Key NOESY correlations of Cycloadduct 16b

Crystal Structure of Cycloadduct (\pm)-35 - CCDC 2205771

Crystallisation: Single crystals of cycloadduct (\pm)- $\mathbf{3 5}$ were obtained by slow recrystallisation of a solution of the compound in Pet. Ether: $\mathrm{Et}_{2} \mathrm{O}$ (9:1).

Figure S1. ORTEP diagram drawn with 50% ellipsoid probability of the crystal structure of cycloadduct (\pm)-35

Table S3. Crystal data and structure refinement details for cycloadduct (\pm)-35

Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{NO}_{5} \mathrm{Si}_{2}$
Formula weight	587.93
Temperature (K)	$104.3(8)$
Wavelength (A)	1.54184
Crystal system	Monoclinic
Space group	P 21
$\mathrm{a}\left(\AA \AA^{\AA}\right)$	$8.01200(10)$
$\mathrm{b}(\AA)$	$11.4236(2)$
$\mathrm{c}(\AA)$	$18.6445(3)$
$\alpha\left({ }^{\AA}\right)$	90.000
$\beta\left({ }^{\circ}\right)$	$101.794(2)$
$\gamma\left({ }^{\circ}\right)$	90.000
$\mathrm{~V}\left(\AA^{3}\right)$	$1670.43(5)$
Z	2
$\mathrm{D}_{\mathrm{c}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.169
$\mathrm{~F}(000)$	640
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	1.262
$\left.\theta_{\text {max }}{ }^{\circ}\right)$	68.250
$\left.{ }^{\circ}\right)$	21914
Total reflections	6128
Unique reflections	
Reflections $[I>2 \sigma(I)]$	6128
Parameters	372
$R_{\text {int }}$	0.0477
Goodness-of-fit on F^{2}	1.037
$R\left[F_{2}>2 \sigma\left(F_{2}\right)\right]$	0.0311
$w R\left(F_{2}\right.$, all data $)$	0.0747

References

[1] H. Choi, H. J. Shirley, H. R. M. Aitken, T. Schulte, T. Söhnel, P. A. Hume, M. A. Brimble, D. P. Furkert, Org. Lett. 2020, 22, 1022-1027.
[2] J. A. Lafontaine, D. P. Provencal, C. Gardelli, J. W. Leahy, J. Org. Chem. 2003, 68, 4215-4234.
[3] F. Yang, J. J. Newsome, D. P. Curran, J. Am. Chem. Soc. 2006, 128, 14200-14205.
[4] J. L. Freeman, M. A. Brimble, D. P. Furkert, Org. Biomol. Chem. 2019, 17, 2705-2714.
[5] Z. Wang, N. Krogsgaard-Larsen, B. Daniels, D. P. Furkert, M. A. Brimble, J. Org. Chem. 2016, 81, 10366-10375.

[^0]:

