Stereoselective Synthesis of the Spirocyclic Core of 13-Desmethyl Spirolide C using an aza-Claisen Rearrangement and an *exo*selective Diels-Alder Cycloaddition

Andrew D. W. Earl,^a Freda F. Li,^{*a,b} Chao Ma,^a Daniel P. Furkert,^{a,b} Margaret A. Brimble.^{*a,b} ^aSchool of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.

^bMaurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.

*Corresponding authors: m.brimble@auckland.ac.nz, freda.li@auckland.ac.nz

Supporting Information

Table of Contents

- S2 Synthesis of bromodiene 26
- S3 Synthesis of silyl enol ether dienes **32–34** and **38**
- S6 Attempted Diels-Alder cycloadditions of lactams 27 and 28 with boron-substituted furans
- S7 ¹H and ¹³C Spectra of compounds 8, 15a, 16a and 16b, 21–24, 26, 28, 30–39, S1, S3, S5, S12,

and S13.

- S29 Key NOESY correlations of (±)-30, (±)-31, (±)-35–(±)-37, (±)-39, 16a and 16b
- S37 X-ray crystal structure of (±)-**35**
- S38 References

Synthesis of bromodiene 26

Scheme S1. Synthesis of bromodienes 25^[1] and 26. *Reagents and conditions*: (a) K₂CO₃, MeOH, rt, 30 min, 90%; (b) TBSCl, imidazole, CH₂Cl₂, rt, 5 h, 92%.

Experimental Procedures

Alcohol S1

To a solution of benzoate $25^{[1]}$ (1.85 g, 6.93 mmol) in MeOH (50 mL) was added K₂CO₃ (2.87 g, 20.8 mmol) at room temperature and the resulting mixture stirred for 30 min before sat. aq. NH₄Cl (25 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The crude product was purified by flash column chromatography (pet. ether-Et₂O, 4:1) to afford free alcohol **S1** (1.04 g, 90%) as a pale yellow oil. **R**_f: 0.26 (pet. ether-Et₂O, 4:1);

 v_{max}/cm^{-1} : 3407, 1718, 1588, 1095, 955;

¹**H NMR** (500 MHz; CDCl₃): δ 6.29 (d, *J* = 14.9 Hz, 1H), 6.22 (dt, *J* = 14.8, 4.7 Hz, 1H), 5.82 (s, 1H), 5.64 (s, 1H), 4.32 (d, *J* = 3.3 Hz, 2H), 1.54 (s, 1H);

¹³C NMR (125 MHz; CDCl₃): δ 136.1, 129.4, 128.7, 120.2, 62.4;

HRMS (ESI⁺) *m/z*: [M + Na]⁺ calculated for C₅H₇BrNaO: 186.0019; found 186.0015.

Diene 26

To a stirred solution of alcohol **S1** (50 mg, 0.31 mmol) and imidazole (25 mg, 0.37 mmol) in CH_2Cl_2 (2 mL) was added TBSCl (56 mg, 0.37 mmol) at room temperature. The resulting mixture was stirred for 5 h before sat. aq. NH₄Cl (5 mL) was added. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*.

Purification by flash chromatography (pet. ether-Et₂O, 19:1) afforded silyl-protected alcohol **26** (79 mg, 92%) as a colourless oil.

R_f: 0.52 (pet. ether-Et₂O, 19:1);

 v_{max}/cm^{-1} : 2956, 2930, 2857, 1258, 1129, 1102, 1011, 834, 802, 775;

¹**H NMR** (500 MHz; CDCl₃): δ 6.27 (dt, J = 14.7, 1.7 Hz, 1H), 6.15 (dt, J = 14.6, 4.2 Hz, 1H), 5.77 (s, 1H), 5.59

(s, 1H), 4.33–4.32 (m, 2H), 0.92 (s, 9H), 0.08 (s, 6H);

¹³C NMR (125 MHz; CDCl₃): δ 136.9, 129.9, 127.4, 119.3, 62.6, 26.1, 18.6, -5.2;

HRMS (ESI⁺) m/z: [M + Na]⁺ calculated for C₁₁H₂₁BrNaOSi: 299.0437; found 299.0435.

Synthesis of silyl enol ether dienes 32–34 and 38

Scheme S2. Synthesis of silyl enol ether dienes 32–34 and 38. *Reagents and conditions*: (a) THF, rt, 2 h, 66%–71%; (b) TBSOTf, Et₃N, CH₂Cl₂, rt, 1–3 h, 92–98%.

Experimental Procedures

Enone S3

To a stirred solution of aldehyde $S2^{[2]}$ (1.00 g, 5.74 mmol) in THF (57 mL) at room temperature was added 1-(triphenylphosphoranylidene)-2-propanone (1.92 g, 6.02 mmol) and the reaction stirred for 2 h. The reaction mixture was then concentrated *in vacuo* and the crude residue was purified by flash chromatography (pet. ether-EtOAc 4:1) to afford the enone product (S3, 0.99 g, 71%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.64$ (pet. ether-EtOAc, 7:3);

 v_{max}/cm^{-1} : 2955, 2930, 2886, 2857, 1679, 1360, 1252, 1135, 836;

¹**H NMR** (400 MHz, CDCl₃): δ 6.82 (dt, *J* = 15.6, 3.6 Hz, 1H), 6.34 (dt, *J* = 15.9, 2.1 Hz, 1H), 4.36 (dd, *J* = 3.6, 2.2 Hz, 2H), 2.27 (s, 3H), 0.92 (s, 9H), 0.08 (s, 6H);

¹³C NMR (100 MHz, CDCl₃): δ 198.6, 146.4, 128.9, 62.3, 27.5, 26.0, 18.5, -5.3.

HRMS (ESI/Q-TOF) *m/z*: [M+Na]⁺ calcd for C₁₁H₂₂NaO₂Si, 237.1281; found, 237.1286.

Enone S5

To a stirred solution of aldehyde $S4^{[3]}$ (0.500 g, 2.77 mmol) in THF (27.7 mL) at room temperature was added 1-(triphenylphosphoranylidene)-2-propanone (0.928 g, 2.91 mmol) and the reaction stirred for 2 h. The reaction mixture was then concentrated *in vacuo* and the residue was purified by flash chromatography (pet. ether-EtOAc 4:1) to afford the enone product (S5, 0.404 g, 66 %) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (pet. ether-EtOAc, 4:1);

 v_{max}/cm^{-1} : 2937, 2912, 2838, 1674, 1611, 1513, 1247, 1032;

¹**H NMR** (400 MHz, CDCl₃): δ 7.28–7.25 (m, 2H), 6.90–6.88 (m, 2H), 6.79 (dt, *J* = 16.0, 4.5 Hz, 1H), 6.33 (dt, *J* = 16.0, 1.9 Hz, 1H), 4.50 (s, 2H), 4.17 (dd, *J* = 4.5, 1.9 Hz, 2H), 3.81 (s, 3H), 2.26 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 198.3, 159.5, 143.3, 130.5, 129.8, 129.5, 114.0, 72.8, 68.7, 55.4, 27.4;

HRMS (ESI/Q-TOF) *m/z*: [M+Na]⁺ calcd for C₁₃H₁₆NaO₃, 243.0992 ; found, 243.0986.

Diene 32

To a stirred solution of enone **S3** (0.200 g, 0.933 mmol) in CH₂Cl₂ (9 mL) at 0 °C, was added Et₃N (0.2 mL, 1.5 mmol) and TBSOTf (0.3 mL, 1.5 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 1.5 h before water (9 mL) was added, the layers were separated, and the aqueous layer extracted with CH₂Cl₂ (2 × 9 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (pet. ether-Et₂O 19:1, 1% Et₃N) afforded the silyl enol ether product (**32**, 0.285 g, 96%) as a colourless oil.

 $R_{f} = 0.88$ (pet. ether-EtOAc, 7:3);

 v_{max} /cm⁻¹: 2956, 2930, 2887, 2858, 1593, 1472, 1463, 1313, 1253, 1131, 1074, 1023, 963, 834, 811, 777; **¹H NMR** (400 MHz, CDCl₃): δ 6.11–6.01 (m, 2H), 4.28 (s, 2H), 4.26 (d, *J* = 3.6 Hz, 2H), 0.97 (s, 9H), 0.91 (s, 9H), 0.18 (s, 6H), 0.07 (s, 6H);

¹³C NMR (100 MHz, CDCl₃): δ 155.0, 130.1, 127.4, 95.3, 63.2, 26.1, 26.0, 18.5, 18.4, -4.5, -5.1; HRMS (ESI/Q-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₇H₃₆NaO₂Si₂, 351.2146; found, 351.2140.

Diene 33

To a stirred solution of enone **S5** (0.200 g, 0.908 mmol) in CH_2Cl_2 (9 mL) at 0 °C, was added Et₃N (0.2 mL, 1.5 mmol) and TBSOTf (0.3 mL, 1.5 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 2.5 h before water (9 mL) was added, the layers were separated, and the aqueous layer extracted with CH_2Cl_2 (2 × 9 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*.

Purification by flash chromatography (pet. ether- Et_2O 19:1, 1% Et_3N) afforded the silyl enol ether product (**33**, 0.280 g, 92%) as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.39$ (pet. ether-EtOAc, 19:1);

 v_{max}/cm^{-1} : 2959, 2931, 2857, 1679, 1612, 1513, 1248, 1025, 826;

¹**H NMR** (400 MHz, CDCl₃): δ 7.28–7.26 (m, 2H), 6.89–6.87 (m, 2H), 6.14–6.04 (m, 2H), 4.46 (s, 2H), 4.31 (d, J = 2.6 Hz, 2H), 4.07 (d, J = 4.5 Hz, 2H), 3.81 (s, 3H), 0.97 (s, 9H), 0.19 (s, 6H);

¹³**C NMR** (100 MHz, CDCl₃): *δ* 159.3, 154.7, 130.5, 130.2, 129.5, 127.1, 113.9, 95.9, 71.9, 69.8, 55.4, 26.0, 18.4, -4.5;

HRMS (ESI/Q-TOF) *m/z*: [M+Na]⁺ calcd for C₁₉H₃₀NaO₃Si, 357.1856; found, 357.1848.

Diene 34

To a stirred solution of enone **S7**^[4] (0.500 g, 2.45 mmol) in CH₂Cl₂ (25 mL) at 0 °C, was added Et₃N (0.55 mL, 3.9 mmol) and TBSOTf (0.9 mL, 3.9 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 1.5 h before water (12 mL) was added, the layers were separated, and the aqueous layer extracted with CH₂Cl₂ (2 × 12 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (pet. ether-Et₂O 19:1, 1% Et₃N) afforded the silyl enol ether product (**34**, 0.796 g, 98%) as a colourless oil.

 $\mathbf{R}_{f} = 0.53$ (pet. ether-EtOAc, 19:1);

 v_{max}/cm^{-1} : 2956, 2931, 2886, 2858, 1721, 1314, 1266, 1109, 1025, 826, 710;

¹**H NMR** (400 MHz, CDCl₃): δ 8.08–8.05 (m, 2H), 7.58–7.54 (m, 1H), 7.47–7.43 (m, 2H), 6.24–6.12 (m, 2H), 4.89 (d, J = 5.4 Hz, 2H), 4.37 (d, J = 1.5 Hz, 2H), 0.98 (s, 9H), 0.19 (s, 6H);

¹³C NMR (100 MHz, CDCl₃): δ 166.4, 154.3, 133.1, 131.7, 130.4, 129.8, 128.5, 124.1, 96.9, 64.7, 26.0, 18.4, -2.8, -4.5;

HRMS (ESI/Q-TOF) *m/z*: [M+Na]⁺ calcd for C₁₈H₂₆NaO₃Si, 341.1543; found, 341.1540.

The analytical data were in agreement with those reported in the literature.^[4]

Diene 38

To a stirred solution of enone $S8^{[5]}$ (0.100 g, 0.458 mmol) in CH₂Cl₂ (5 mL) at 0 °C, was added Et₃N (0.10 mL, 0.73 mmol) and TBSOTf (0.17 mL, 0.73 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 2 h before water (2.5 mL) was added, the layers were separated, and the aqueous layer extracted with CH₂Cl₂ (2 × 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (pet. ether-Et₂O 19:1, 1% Et₃N) afforded the silyl enol ether product (**38**, 0.148 g, 97 %) as a colourless oil.

 $\mathbf{R}_{f} = 0.79$ (pet. ether-EtOAc, 19:1);

¹**H NMR** (400 MHz, CDCl₃): δ 8.06–8.03 (m, 2H), 7.55 (tt, J = 7.6, 2.0 Hz, 1H), 7.46–7.42 (m, 2H), 6.26–6.23 (m, 1H), 4.97 (d, J = 7.0 Hz, 2H), 4.56 (d, J = 1.4 Hz, 1H), 4.38 (s, 1H), 1.89 (s, 3H), 0.97 (s, 9H), 0.18 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 166.5, 156.5, 135.8, 132.9, 130.4, 129.6, 128.3, 121.4, 93.2, 62.0, 25.9, 18.3, 13.6, -4.7.

The analytical data were in agreement with those reported in the literature.^[5]

Reactions of lactams 27 and 28 with boron-substituted furans S9-S11

All of the following reaction conditions returned only unreacted starting materials, except for Table S1, entry 5, wherein partial alcoholysis of **S9** was observed.

Table S1. Diels-Alder cycloaddition of N-Cbz lactam 27 with 2-boron-substituted furans S9-S11.

	CbzN O 27	+ R Table S1 CbzN G	
Entry	R	Conditions	
1		toluene/acetonitrile (2:1), 80 °C, 18 h	
2	Bpin	Mg(OTf) ₂ , toluene/acetonitrile (2:1), 80 °C, 18 h	
3		p-xylene, 165 °C, 18 h	
4		Mg(OTf) ₂ , p-xylene, 165 °C, 18 h	
5		ethanol, 100 °C, 54 h	
6		toluene/acetonitrile (2:1), 50 °C, 72 h	
7	B(OH) ₂	toluene/acetonitrile (2:1), 80 °C, 18 h	
8	BF ₃ K	acetonitrile, rt, 18 h	
9		acetonitrile, 80 °C, 18 h	

Table S2. Diels-Alder cycloaddition of N-Ts lactam 28 with 2-boron-substituted furans S10 and S11.

Entry	R	Conditions
1	B(OH) ₂	Toluene/acetonitrile (2:1), 80 °C, 18 h
2	BF ₃ K	acetonitrile, rt, 18 h
3		acetonitrile, 80 °C, 18 h

Amide 15a

Amine S12

¹H NMR (400 MHz, DMSO-d₆, 340 K)

¹H NMR (400 MHz, DMSO-d₆, 340 K)

N-Boc-aminoester 23

¹³C NMR (100 MHz, CDCl₃)

Lactam 24

ppm

Alcohol S1

Bromodiene 26

*a-Exo-*methylene lactam 28

Enone S3

The product was isolated as a 5:1 mixture of inseparable exo and endo diastereomers.

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

0 ppm

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

Cycloadducts 16a and 16b

Crystal Structure of Cycloadduct (±)-35 – CCDC 2205771

Crystallisation: Single crystals of cycloadduct (\pm)-**35** were obtained by slow recrystallisation of a solution of the compound in Pet. Ether:Et₂O (9:1).

Figure S1. ORTEP diagram drawn with 50% ellipsoid probability of the crystal structure of cycloadduct (\pm)-35

Table S3. Crystal data and structure refinement details for cycloadduct (\pm) -
--

Empirical formula	C ₃₂ H ₅₃ NO ₅ Si ₂
Formula weight	587.93
Temperature (K)	104.3(8)
Wavelength (A)	1.54184
Crystal system	Monoclinic
Space group	P 21
a (Å)	8.01200(10)
b (Å)	11.4236(2)
c (Å)	18.6445(3)
α (°)	90.000
β (°)	101.794(2)
γ (°)	90.000
V (Å ³)	1670.43(5)
Z	2
$D_c (Mg/m^3)$	1.169
F(000)	640
$\mu (mm^{-1})$	1.262
$ heta_{max}(^{\circ})$	68.250
Total reflections	21914
Unique reflections	6128
Reflections $[I \ge 2\sigma(I)]$	6128
Parameters	372
Rint	0.0477
Goodness-of-fit on F ²	1.037
$R[F_2 > 2\sigma(F_2)]$	0.0311
$wR(F_2, all data)$	0.0747

References

- [1] H. Choi, H. J. Shirley, H. R. M. Aitken, T. Schulte, T. Söhnel, P. A. Hume, M. A. Brimble, D. P. Furkert, *Org. Lett.* **2020**, *22*, 1022–1027.
- [2] J. A. Lafontaine, D. P. Provencal, C. Gardelli, J. W. Leahy, J. Org. Chem. 2003, 68, 4215–4234.
- [3] F. Yang, J. J. Newsome, D. P. Curran, J. Am. Chem. Soc. 2006, 128, 14200–14205.
- [4] J. L. Freeman, M. A. Brimble, D. P. Furkert, Org. Biomol. Chem. 2019, 17, 2705–2714.
- [5] Z. Wang, N. Krogsgaard-Larsen, B. Daniels, D. P. Furkert, M. A. Brimble, J. Org. Chem. 2016, 81, 10366–10375.