Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Hydrogen bond templated synthesis of catenanes and rotaxanes from a single isophthalic acid derivative

Sean R. Barlow, Geoffrey R. Akien and Nicholas. H. Evans*

Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK Email: <u>n.h.evans@lancaster.ac.uk</u>

Contents

Part 1: Supplementary Experimental Procedures for Main Article General Information Additional Reaction Schemes Supplementary Experimental Procedures Part 2: Spectral Data for Main Article	S2 S2 S3 S4 S6		
		Part 3: Alternative Synthesis of Catenane 15	S48
		Reaction Scheme	S48
		Experimental Procedures & Spectral Data	S49
		References	S68

Part 1: Supplementary Experimental Procedures for Main Article

General Information

All reagents and solvents were used as obtained from commercial suppliers, unless otherwise stated. Dry solvents, Et_3N and DIPEA were purchased dry and stored under an inert atmosphere. $Cu(CH_3CN)_4BF_4$ was stored in a desiccator over P_4O_{10} . Petrol refers to the fractions of petroleum that boil between 40°C and 60°C. Deionised water was used in all cases. All aqueous solutions are saturated unless otherwise stated.

Azido-functionalized isophthalic acid derivative 1^1 and alkyne 20^2 were all synthesized based on previously reported procedures.

Silica gel with a 60Å particle size was used as the stationary phase for column chromatography. Analytical TLC was used to monitor the progress of column chromatography, with analytical TLC plates examined under short wavelength (254 nm) UV light or staining with potassium permanganate and phosphomolybdic acid solutions as appropriate. Preparatory TLC was carried out on silica gel possessing a fluorescent indicator to allow for examination with short wavelength UV light.

IR spectra were recorded on an Agilent Technologies Cary 630 FTIR spectrometer. NMR spectra were recorded on a Bruker AVANCE III 400 or Bruker Fourier 300 spectrometer at 298 K (unless otherwise stated). Mass spectra were recorded on a Shimadzu LCMS IT ToF instrument. Melting points were recorded on a Gallenkamp capillary melting point apparatus and are uncorrected.

Additional Reaction Schemes

(A) Scheme for synthesis of isophthalic acid 1

Supplementary Scheme 1: Synthesis of isophthalic acid derivative 1.

(B) Scheme for synthesis of rotaxane axles 22 and 24

Supplementary Scheme 2: Synthesis of non-interlocked axles 22 and 24.

Supplementary Experimental Procedures

Axle 22

Azide **18** (32 mg, 0.067 mmol) and alkyne **20**² (16 mg, 0.067 mmol) were dissolved in dry CH₂Cl₂ (3 mL) and place under an argon atmosphere. Cu(CH₃CN)₄BF₄ (1 mg, 0.001 mmol), TBTA (1.5 mg, 0.001 mmol) and DIPEA (11 μ L, 7.2 mg, 0.06 mmol) were added and then the reaction was stirred for 16 hours at room temperature maintaining the argon atmosphere. The reaction mixture was diluted to 10 mL, washed with 0.02 M EDTA in aq. 1 M NH₃ (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried (MgSO₄), filtered and solvent removed *in vacuo*. The crude material was purified by silica gel column chromatography (CH₂Cl₂/CH₃OH 98:2) to afford the *title product* as a colourless glassy film (39 mg, 82%).

*R*_f 0.80 (CH₂Cl₂:CH₃OH 96:4).

v_{max} / cm⁻¹ (neat): 3315 (N-H), 2924 (C-H), 1641 (C=O), 1533 (C-N), 1276 (C-O).

δ_H (**400 MHz, CDCl₃**): 8.31 (1H, bs, NH^γ), 8.14 (1H, d, J = 7.7 Hz, H^{15/17}), 8.10 (1H, s, H¹⁹), 8.05 (1H, d, J = 7.8 Hz, H^{15/17}), 7.88 (2H, s, H²³), 7.80 (1H, s, H²⁵), 7.54 (1H, t, J = 7.8 Hz, H¹⁶), 7.32-7.13 (12H, m, H¹, H², H³, H⁹ & NH^β), 4.77 (2H, d, J = 5.7 Hz, H²¹), 4.50-4.46 (2H, m, H¹⁰), 4.43 (2H, s, H⁷), 4.19 (1H, t, J = 7.2 Hz, H⁵), 3.89 (2H, d, J = 7.3 Hz, H⁶), 3.69-3.60 (2H, m, H¹²), 2.27-2.18 (2H, m, H¹¹).

 $δ_C$ (100 MHz, CDCl₃): 166.7 (C²⁰), 166.0 (C¹³), 146.0 (C⁸), 141.7 (C⁴), 141.5 (C²²), 133.8 (C^{14/18}), 133.7 (C^{14/18}), 131.6 (C^{15/17}), 131.5 (C^{15/17}), 131.0 (C²⁶), 129.4 (C¹⁶), 128.4 (C²), 128.2 (C³), 128.1 (C²³), 128.0 (C²⁴), 126.5 (C¹), 123.9 (C¹⁹), 123.5 (C⁹), 121.2 (C²⁵), 73.8 (C⁶), 64.1 (C⁷), 50.9 (C⁵), 49.6 (C¹⁰), 43.1 (C²¹), 38.6 (C¹²), 29.0 (C¹¹).

δF (**377 MHz, CDCl**₃): - 62.7.

m/z (ESI): 732.2380 ([M+Na]⁺ C₃₇H₃₃F₆N₅O requires 732.2385).

Azide **19** (32 mg, 0.070 mmol) and alkyne **20**² (16 mg, 0.070 mmol) were dissolved in dry CH₂Cl₂ (3 mL) and placed under an argon atmosphere. Cu(CH₃CN)₄BF₄ (1 mg, 0.001 mmol), TBTA (1.5 mg, 0.001 mmol) and DIPEA (12 μ L, 7.8 mg, 0.07 mmol) were added and then the reaction was stirred for 16 hours at room temperature maintaining the argon atmosphere. The reaction mixture was diluted to 10 mL, washed with 0.02 M EDTA in aq. 1 M NH₃ (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried (MgSO₄), filtered and solvent removed *in vacuo*. The crude material was purified by silica gel column chromatography (CH₂Cl₂/CH₃OH 98:2) to afford the *title product* as a colourless glassy film (38 mg, 78%).

*R*_f 0.83 (CH₂Cl₂:CH₃OH 96:4).

v_{max} / cm⁻¹ (neat): 3063 (N-H), 2922 (C-H), 1638 (C=O), 1541 (C-N), 1276 (C-O).

δ_H (**400 MHz, CDCl₃**): 10.15 (1H, s, NH^γ), 8.38 (2H, s, H²²), 8.18-8.04 (2H, m, H^{15/17} & H¹⁹), 7.95 (1H, d, J = 7.8 Hz, H^{15/17}), 7.64 (1H, s, H²⁴), 7.42 (1H, t, J = 7.8 Hz, H¹⁶), 7.35-7.08 (12H, m, H¹, H², H³, H⁹ & NH^β), 4.43 (2H, s, H⁷), 4.38 (2H, t, J = 5.9 Hz, H¹⁰), 4.12 (1H, t, J = 7.2 Hz, H⁵), 3.85 (2H, d, J = 7.3 Hz, H⁶), 3.52 (2H, app. q, J = 5.7 Hz, H¹²), 2.27-2.18 (2H, m, H¹¹).

δ_C (**100 MHz, CDCl₃**): 166.0 (C¹³), 165.6 (C²⁰), 145.6 (C⁸), 141.6 (C⁴), 133.9 (C^{14/18}), 133.5 (C^{14/18}), 132.2 (C²⁵), 131.8 (C^{15/17}), 131.6 (C^{15/17}), 129.5 (C¹⁶), 128.5 (C²²), 128.4 (C²), 128.1 (C³), 126.5 (C¹), 124.6 (C²¹), 124.0 (C¹⁹), 123.5 (C⁹), 120.2 (C²³), 117.1 (C²⁴), 73.9 (C⁶), 64.0 (C⁷), 50.8 (C⁵), 49.8 (C¹⁰), 38.6 (C¹²), 28.9 (C¹¹).

δF (**377 MHz, CDCl**₃): - 62.8

m/*z* (ESI): 718.2256 ([M+Na]⁺ C₃₆H₃₁F₆N₆O requires 718.2229).

Part 2: Spectral Data for Main Article

Alkyne 5

Deprotected amine alkyne salt 8 ¹**H NMR**: (300 MHz, D₆-DMSO)

Alkyne-azide 11 ¹H NMR: (400 MHz, 9:1 CDCl₃/ CD₃OD)

¹³C NMR: (100 MHz, 9:1 CDCl₃/ CD₃OD)

Alkyne 6 ¹H NMR: (400 MHz, CDCl₃)

¹³C NMR: (100 MHz, CDCl₃)

Deprotected amine alkyne salt 9 ¹**H NMR**: (400 MHz, D₆-DMSO)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

C29 H28 N6 O4 [M+H]+ : Predicted region for 525.2245 m/z

Alkyne 7 ¹**H NMR**: (400 MHz, CDCl₃)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

S17

Deprotected amine alkyne salt 10 ¹H NMR: (400 MHz, D₆-DMSO)

Alkyne-azide 13 ¹H NMR: (400 MHz, CDCl₃)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

Catenane 15 ¹H NMR: (400 MHz, 50:50 CDCl₃/CD₃OD)

¹³C NMR: (100 MHz, 50:50 CDCl₃/CD₃OD)

HRMS (ES +ve)

C57 H58 N8 O9 [M+H]+ : Predicted region for 999.4400 m/z

Catenane 16 ¹H NMR: (400 MHz, 50:50 CDCl₃/CD₃OD)

NB: Despite drying, residual CH_2Cl_2 (1 eq) from purification remains in sample.

¹³C NMR: (100 MHz, 50:50 CDCl₃/CD₃OD)

NB: Evidence of some H/D exchange (samples exposed to CDCl₃/CD₃OD).

Catenane 17 ¹H NMR: (400 MHz, 50:50 CDCl₃/CD₃OD)

¹³C NMR: (100 MHz, 50:50 CDCl₃/CD₃OD)

HRMS (ES +ve)

Azide 18 ¹H NMR: (400 MHz, CDCl₃) with ¹⁹F NMR insert (377 MHz)

HRMS (ES +ve)

Azide 19 ¹H NMR: (400 MHz, D₆-DMSO) with ¹⁹F NMR insert (377 MHz)

¹³C NMR: (100 MHz, D₆-DMSO)

Rotaxane 21 ¹H NMR: (400 MHz, CDCl₃) with ¹⁹F NMR insert (377 MHz)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

Rotaxane 23 ¹H NMR: (400 MHz, CDCl₃) with ¹⁹F NMR insert (377 MHz)

¹³C NMR: (100 MHz, CDCl₃)

Axle 22 ¹H NMR: (400 MHz, CDCl₃) with ¹⁹F NMR insert (377 MHz)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

S36

Axle 24 ¹H NMR: (400 MHz, CDCl₃) with ¹⁹F NMR insert (377 MHz)

¹³C NMR: (100 MHz, CDCl₃)

HRMS (ES +ve)

¹H-¹H ROESY Spectra Catenane 15

¹H–¹H ROESY NMR spectrum of catenane **15** (50:50 CDCl₃:CD₃OD, 400 MHz, 298 K). Inter-component through-space cross-peaks are circled.

¹H–¹H ROESY NMR spectrum of catenane **16** (50:50 CDCl₃:CD₃OD, 400 MHz, 298 K). Inter-component through-space cross-peaks are circled.

¹H–¹H ROESY NMR spectrum of catenane **17** (50:50 CDCl₃:CD₃OD, 400 MHz, 298 K). Inter-component through-space cross-peaks are circled.

Plausible co-conformations of catenanes **15-17** with inter-component ROESY NMR interactions highlighted.

Rotaxane 21

H ROESY NMR spectrum of rotaxane 21 (CDCl₃, 400 MHz, 298 K Inter-component through-space cross-peaks are circled.

¹H⁻¹H ROESY NMR spectrum of rotaxane **23** (CDCl₃, 400 MHz, 298 K). Inter-component through-space cross-peaks are circled.

Plausible conformations of rotaxanes **21** and **23** with inter-component ROESY NMR interactions highlighted.

VT ¹H NMR Stacked Spectra Catenane 17

¹H NMR spectra of catenane **17** recorded at T = 238 K to 408 K in C₂D₂Cl₄ (400 MHz).

 1 H- 1 H COSY NMR spectrum of catenane **17** (C₂D₂Cl₄, 408 K, 400 MHz) used to aid with 1D 1 H NMR proton assignment.

Part 3: Alternative Synthesis of Catenane 15

Reaction Scheme

Supplementary Scheme 3: Alternative synthesis of catenane 15.

Experimental Procedures

Boc-ester ESI-1

To a suspension of mono-methyl isophthalate (381 mg, 2.12 mmol) in dry CH₃CN (20 mL), DCC (480 mg, 2.33 mmol) and *N*-hydroxysuccinimide (292 mg, 2.54 mmol) were added. The reaction mixture was stirred under an Ar (g) atmosphere for 20 h. The urea precipitate was filtered off and the solvent of the filtrate removed *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (15 mL) and added to a suspension of 1-(*N*-Boc-aminomethyl)-4-(aminomethyl)benzene (500 mg, 2.12 mmol) and NEt₃ (368 μ L, 268 mg, 2.64 mmol) in dry CH₂Cl₂ (20 mL). The reaction mixture was stirred under an Ar (g) atmosphere for 20 h. The mixture was diluted with CH₂Cl₂, and then washed with 1M HCl (aq) (2 × 25 mL), sat. NaHCO₃ (2 × 25 mL) and H₂O (1 × 25 mL), then the organic layer dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was purified by silica gel chromatography (CH₂Cl₂/CH₃OH 99.5:0.5 to 98:2) to yield the pure product as a white solid (568 mg, 65%).

*R*f 0.22 (CH₂Cl₂/CH₃OH 98:2)

Mp 140-142 °C

 $\upsilon_{\text{max}}/\text{cm}^{-1}$ (neat) 3340, 3290 (multiple N–H), 3020, 2980, 2850 (multiple C–H), 1720, 1680, 1630 (3 × C=O), 1520, 1300, 1250, 1150, 1080, 1050.

δH(400 MHz; CDCl₃) 8.38 (1H, t, ${}^{4}J$ = 1.5 Hz, 2-iso *H*), 8.17 (1H, dt, ${}^{3}J$ = 7.8 Hz ${}^{4}J$ = 1.5 Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J$ = 7.8 Hz ${}^{4}J$ = 1.5 Hz, 4- or 6-iso *H*), 7.54 (1H, t, ${}^{3}J$ = 7.8 Hz, 5-iso *H*), 7.26-7.34 (4H, m, Ar*H*), 6.59 (1H, br s, iso N*H*), 4.89 (1H, br s, Boc N*H*), 4.64 (2H, d, ${}^{3}J$ = 5.6 Hz, C*H*₂), 4.30 (2H, d, ${}^{3}J$ = 5.6 Hz, C*H*₂), 3.93 (3H, s, OC*H*₃), 1.46 (9H, s, C(C*H*₃)₃).

*∂***C**(**100 MHz; CDCl**₃) 166.3, 166.2, 155.9 (3 × *C*=O), 138.6, 137.0, 134.6, 132.5, 131.9, 130.5, 128.9, 128.3, 127.9, 127.5 (10 × Ar*C*), 79.6 (O*C*(CH₃)₃), 52.4 (O*C*H₃), 44.3, 43.9 (2 × N*C*H₂), 28.4 (O*C*(*C*H₃)₃).

m/z (ES) 421.1731 ([M + Na]⁺ C₂₂H₂₆N₂NaO₅ requires 421.1734).

Boc-ester ESI-1

¹H NMR (CDCl₃, 400 MHz)

Boc-ester ESI-1

IR (neat)

Mass Spectrum (ES +ve)

0

421.5

422.0

421.0

S51

422.5

423.0

423.5

424.0

424.5

Boc-acid ESI-2

KOH (68 mg, 1.2 mmol) in H₂O (1 mL) was added to a solution of **ESI-1** (400 mg, 1.00 mmol) in THF (10 mL), and the reaction mixture was stirred for 22 h. THF was removed *in vacuo*, and then the residue was diluted with H₂O and then 10% citric acid (aq) was added generating a white precipitate. This solid was collected by vacuum filtration, washed with CH₂Cl₂ and H₂O, and then dried to yield the pure product as a white solid (336 mg, 87%).

Mp 206 °C (dec. – decarboxylation)

 υ_{max}/cm^{-1} (neat) 3340, 3300 (multiple N–H), 2980, 2930, 2890 (multiple C–H), 1680, 1630 (2 × C=O observed, third coincident), 1510, 1250, 1170.

 ∂ **H**(**400 MHz; D₆-DMSO**) 13.16 (1H, br s, COO*H*), 9.22 (1H, t, ${}^{3}J = 5.9$ Hz, iso N*H*), 8.47 (1H, t, ${}^{4}J = 1.6$ Hz, 2-iso *H*), 8.12 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 8.07 (1H, dt, ${}^{3}J = 7.9$ Hz ${}^{4}J = 1.4$ Hz, 4- or 6-iso *H*), 7.60 (1H, t, ${}^{3}J = 7.8$ Hz, 5-iso *H*), 7.35 (1H, t, ${}^{3}J = 6.2$ Hz, Boc N*H*), 7.17-7.27 (4H, m, Ar*H*), 4.45 (2H, d, ${}^{3}J = 6.0$ Hz, C*H*₂), 4.09 (2H, d, ${}^{3}J = 6.0$ Hz, C*H*₂), 1.38 (9H, s, C(C*H*₃)₃).

*∂***C(100 MHz; D₆-DMSO)** 166.9, 165.3, 155.7 (3 × *C*=O), 138.7, 137.9, 134.7, 131.8, 131.6, 131.0, 128.8, 128.1, 127.2, 126.9 (10 × ArC), 77.7 (O*C*(CH₃)₃), 43.1, 42.5 (2 × N*C*H₂), 28.2 (O*C*(*C*H₃)₃).

m/z (ES) 407.1568 ([M + Na]⁺ C₂₁H₂₄N₂NaO₅ requires 407.1577).

Boc-acid ESI-2

Boc-acid ESI-2

IR (neat)

Mass Spectrum (ES +ve)

Boc-bromo ESI-3

To a suspension of **ESI-2** (320 mg, 0.832 mmol) in dry CH₃CN (50 mL), DCC (189 mg, 0.916 mmol) and *N*-hydroxysuccinimide (115 mg, 0.999 mmol) were added. The reaction mixture was stirred under an Ar (g) atmosphere for 16 h. The urea precipitate was filtered off and the solvent of the filtrate removed *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (15 mL) and added to a solution 3-bromopropyl amine hydrobromide (182 mg, 0.832 mmol) and NEt₃ (261 μ L, 190 mg, 1.87 mmol) in dry CH₂Cl₂ (15 mL). The reaction mixture was stirred under an Ar (g) atmosphere for 20 h. The reaction mixture was then washed with 1M HCl (aq) (2 × 30 mL), sat NaHCO₃ (2 × 30 mL) and H₂O (1 × 30 mL), then the organic layer dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was purified by silica gel chromatography (CH₂Cl₂/CH₃OH 98:2 to 97:3) to yield the pure product as a white solid (113 mg, 27%).

Rf 0.39 (CH₂Cl₂/CH₃OH 96:4)

Mp 113-116 °C (phase transition)

 υ_{max}/cm^{-1} (neat) 3340, 3270 (multiple N–H), 2990, 2930, 2880 (multiple C–H), 1680, 1630 (2 × C=O observed, third coincident), 1510, 1240, 1160.

 δ H(400 MHz; CDCl₃) 8.22 (1H, s, 2-iso *H*), 7.94-7.99 (2H, app t, 4- & 6-iso *H*), 7.52 (1H, t, ${}^{3}J = 7.8$ Hz, 5-iso *H*), 7.19-7.27 (4H, m, Ar*H*), 6.72-6.77 (2H, m, 2 × iso N*H*), 4.97 (1H, br s, Boc N*H*), 4.58 (2H, d, ${}^{3}J = 5.7$ Hz, CH₂), 4.27 (2H, d, ${}^{3}J = 5.7$ Hz, CH₂), 3.54-3.59 (2H, app quart, NHCH₂CH₂CH₂Br), 3.45 (2H, t, ${}^{3}J = 6.4$ Hz, NHCH₂CH₂CH₂Br), 2.13-2.20 (2H, app quint, NHCH₂CH₂CH₂Br), 1.46 (9H, s, C(CH₃)₃).

*∂*C(100 MHz; CDCl₃) 166.8, 166.4 (2 × *C*=O observed, 1 missing), 138.5, 136.9, 134.5, 134.5 (sic), 130.2, 129.1, 128.2, 127.7, 125.2 (9 × Ar*C*, 2 environments coincident), 79.7 (O*C*(CH₃)₃), 44.3, 44.0, 38.8 (3 × NH*C*H₂), 32.1 (*C*H₂CH₂Br), 30.8 (CH₂*C*H₂Br), 28.4 (OC(*C*H₃)₃).

m/z (ES) 526.1308 ([M + Na]⁺ BrC₂₄H₃₀N₃NaO₄ requires 526.1312).

NB: Compound gels in fresh (i.e. anhydrous) CDCl₃.

Boc-bromo ESI-3

Boc-bromo ESI-3

IR (neat)

Mass Spectrum (ES +ve)

Boc-azide ESI-4

NaN₃ (66 mg, 1.01 mmol) was added to a solution of **ESI-3** (102 mg, 0.202 mmol) in dry DMF (5 mL), and the reaction mixture was heated to 80 °C under an Ar (g) atmosphere for 16 h. After cooling to RT, H₂O (30 mL) was added, and the aqueous layer extracted with EtOAc (4 × 20 mL). The combined organic layers were washed with H₂O (3 × 20 mL), then dried (Na₂SO₄) and the solvent remove *in vacuo* to yield the product as a white solid (60 mg, 64%).

Rf 0.39 (CH₂Cl₂/CH₃OH 96:4)

Mp 120 °C (phase transition)

 υ_{max}/cm^{-1} (neat) 3350, 3280 (multiple N–H), 2980, 2930, 2870 (multiple C–H), 2090 (N=N=N), 1680, 1630 (2 × C=O observed, third coincident), 1510, 1240, 1160.

 δ H(400 MHz; CDCl₃) 8.22 (1H, s, 2-iso *H*), 7.93-7.99 (2H, m, 4- & 6-iso *H*), 7.52 (1H, t, ${}^{3}J = 7.8$ Hz, 5-iso *H*), 7.18-7.26 (4H, m, Ar*H*), 6.78-6.81 (2H, m, 2 × iso N*H*), 4.99 (1H, br s, Boc N*H*), 4.57 (2H, d, ${}^{3}J = 5.4$ Hz, CH₂), 4.25 (2H, d, ${}^{3}J = 5.4$ Hz, CH₂), 3.47-3.51 (2H, app quart, NHCH₂CH₂CH₂N₃), 3.39 (2H, t, ${}^{3}J = 6.4$ Hz, NHCH₂CH₂CH₂N₃), 1.83-1.90 (2H, app quint, NHCH₂CH₂CH₂N₃), 1.46 (9H, s, C(CH₃)₃).

*∂***C**(**100 MHz; CDCl**₃) 166.7, 166.4, 156.1 (3 × *C*=O), 138.5, 136.9, 134.6, 134.4, 130.2, 129.0, 128.2, 127.6, 125.2 (9 × Ar*C*, 2 environments coincident), 79.7 (O*C*(CH₃)₃), 49.4 (CH₂CH₂N₃), 44.3, 44.0, 37.8 (3 × NH*C*H₂), 28.7 (*C*H₂CH₂N₃), 28.4 (OC(*C*H₃)₃).

m/z (ES) 489.2238 ([M + Na]⁺ C₂₄H₃₀N₆NaO₄ requires 489.2221).

NB: Compound gels in fresh (i.e. anhydrous) CDCl₃.

Boc-azide ESI-4

Boc-azide ESI-4

Mass Spectrum (ES +ve)

C24 H30 N6 O4 [M+Na]+ : Predicted region for 489.2221 m/z

Alkyne-azide 11

Boc-azide **ESI-4** (51 mg, 0.11 mmol) was dissolved in CH_2Cl_2 (2 mL) and cooled to 0 °C. TFA (0.5 mL) was added, and the reaction stirred for 2 h, allowing to warm to RT. Solvent and excess TFA were removed *in vacuo* to leave the unprotected amine salt that was taken on assuming quantitative formation.

To a suspension of **2** (19 mg, 0.11 mmol) in dry CH₃CN (2.5 mL), DCC (25 mg, 0.12 mmol) and *N*-hydroxysuccinimide (15 mg, 0.13 mmol) were added. The reaction mixture was stirred under an Ar (g) atmosphere for 16 h. The urea precipitate was filtered off and the solvent of the filtrate removed *in vacuo*. The residue was suspended in dry CH₂Cl₂ (2.5 mL), and a solution of the amine salt prepared above and NEt₃ (150 μ L, 109 mg, 1.08 mmol) in dry CH₂Cl₂ (2.5 mL) was added. The reaction mixture was stirred under an Ar (g) atmosphere for 72 h. The reaction mixture was diluted to 10 mL then washed with 1M HCl (aq) (2 × 10 mL), sat NaHCO₃ (2 × 10 mL) and H₂O (1 × 10 mL), then the organic layer dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was purified by silica gel chromatography (EtOAc/Petrol 40-60 2:1 to 3:1) to yield the pure product as a white solid (30 mg, 52%).

*R*f 0.21 (EtOAc/Petrol 40-60 3:1)

Mp 196 °C (phase transition)

 υ_{max}/cm^{-1} (neat) 3280 (N–H), 3060, 2920, 2870 (multiple C–H), 2100 (N=N=N), 1630, 1600 (2 × C=O observed, third coincident), 1540, 1500, 1300, 1250, 1180, 1020.

 δ H(400 MHz; 1:1 CDCl₃/CD₃OD) 8.21 (1H, t, ⁴*J* = 1.6 Hz, 2-iso *H*), 7.92-7.97 (2H, m, 4- & 6-iso *H*), 7.77-7.81 (2H, m, Ar*H*), 7.51 (1H, t, ³*J* = 7.8 Hz, 5-iso *H*), 7.29 (4H, s, Ar*H*), 6.97-7.01 (2H, m, Ar*H*), 4.73 (2H, d, ⁴*J* = 2.3 Hz, CH₂CCH), 4.55 (2H, s, CH₂), 4.52 (2H, s, CH₂), 3.45 (2H, t, ³*J* = 6.8 Hz, NHCH₂CH₂CH₂N₃), 3.38 (2H, t, ³*J* = 6.8 Hz, NHCH₂CH₂CH₂N₃), 2.72 (1H, t, ⁴*J* = 2.3 Hz, alkynyl *H*), 1.83-1.90 (2H, app quint, NHCH₂CH₂CH₂N₃).

C(100 MHz; 1:1 CDCl₃/CD₃OD) 168.9, 168.9 (sic), 168.6 (3 × *C*=O observed), 161.0, 138.7, 138.1, 135.4, 135.3, 131.0, 129.7, 129.5, 128.5, 128.4, 127.9, 126.5, 115.3, 138.5, 136.9, 134.5, 134.5 (sic), 130.2, 129.1, 128.2, 127.7, 125.2 (13 × Ar*C*, 2 environments coincident), 78.5 (CH₂CCH), 76.8 (CH₂CCH), 56.4 (*C*H₂CCH), 44.2, 44.0 (2 × NH*C*H₂), 38.1 (NH*C*H₂CH₂CH₂N₃), 29.3 (*C*H₂CH₂N₃).

NHCH₂CH₂CH₂N₃ obscured by methanol solvent peak

m/z (ES) 547.2067 ([M + Na]⁺ C₂₉H₂₈N₆NaO₄ requires 547.2064).

NB: Atoms labelled as on chemical structure on next page.

Alkyne-azide 11

¹H NMR (1:1 CDCl₃/CD₃OD, 400 MHz)

Alkyne-azide 11

Mass Spectrum (ES +ve)

C29 H28 N6 O4 [M+Na]+ : Predicted region for 547.2064 m/z

Macrocycle **14** (24 mg, 0.051 mmol) and alkyne-azide **11** (27 mg, 0.051 mmol) were dissolved in dry CH₂Cl₂ (20 mL) and stirred under an Ar (g) atmosphere until dissolved. Then Cu(CH₃CN)₄BF₄ (3.2 mg, 0.010 mmol), TBTA (5.5 mg, 0.010 mmol) and DIPEA (10 μ L, 7.3 mg, 0.057 mmol) were added. The reaction mixture was stirred for 15 h, and then the solvent removed *in vacuo*. The crude material was submitted to silica gel chromatography (CH₂Cl₂/CH₃OH 99:1 to 96:4). To remove DIPEA (salt), a CH₂Cl₂ solution washed with 1M HCl (aq), sat. NaHCO₃ (aq) and H₂O, dried (MgSO₄), and solvent removed *in vacuo*, to yield pure product as a white solid film (27 mg, 53%).

Rf 0.24 (CH₂Cl₂/CH₃OH 96:4)

Mp >166 °C (phase transition)

 υ_{max}/cm^{-1} (neat) 3310 (N–H), 3050, 2920, 2870 (multiple C–H), 1630, 1600 (2 × C=O observed, multiple coincident), 1530, 1500, 1290, 1220, 1180, 1070, 1020.

\deltaH(400 MHz; 1:1 CDCl₃/CD₃OD) 8.66 (1H, br s, *H*^c), 8.14-8.17 (2H, m, *H*^{b & b'}), 8.07 (1H, d, ³*J* = 7.8 Hz, *H*^{2 or 18}), 7.98 (1H, d, ³*J* = 7.8 Hz, *H*^{2 or 18}), 7.73 (2H, d, ³*J* = 8.9 Hz, *H*¹⁰), 7.69 (1H, s, *H*¹³), 7.59-7.64 (2H, m, *H*^a & *H*¹), 7.47 (1H, s, *H*³), 7.36 (2H, d, ³*J* = 7.9 Hz, *H*^{6 or 7}), 7.00 (2H, d, ³*J* = 8.9 Hz, *H*¹¹), 6.95 (2H, d, ³*J* = 7.9 Hz, *H*^{6 or 7}), 6.90 (4H, d, ³*J* = 7.9 Hz, *H*^f), 6.52 (4H, d, ³*J* = 7.9 Hz, *H*^g), 5.38 (2H, s, *H*¹²), 4.54 (2H, d, ²*J* = 14 Hz, *H*^e), 4.39 (2H, s, *H*^{5 or 8}), 4.36 (2H, d, ²*J* = 14 Hz, *H*^e), 4.21 (2H, br s, *H*¹⁴), 3.83-3.91 (4H, m, *H*^h), 3.79 (2H, br s, *H*^{5 or 8}), 2.94 (2H, br s, *H*¹⁶), 2.73-2.88 (4H, m, *H*ⁱ), 2.46-2.58 (4H, m, *H*ⁱ), 1.80 (2H, br s, *H*¹⁵).

&C(**100 MHz; 1:1 CDCl₃/CD₃OD**) 168.1, 167.8, 167.2, 167.7 (4 × *C*=O observed), 160.6, 144.3, 140.1, 137.8, 137.3, 136.0, 134.7, 134.4, 134.3, 132.6, 132.4, 132.3, 130.4, 130.1, 130.0, 130.0 (sic), 129.5, 129.4, 129.0, 127.1, 125.4, 125.3, 124.3, 115.9 (24 × Ar*C* & triazole *C*), 78.5 (CH₂CCH)??, 74.2 (sym macro OCH₂O) ,70.8, 69.2 (2 × sym macro OCH₂CH₂O), 61.3 (CH₂CCH), 45.0 (sym macro NHCH₂), 44.2, 44.0 (2 × NHCH₂), 38.1 (NHCH₂CH₂CH₂N₃), 30.3 (CH₂CH₂N₃).

NHCH₂CH₂CH₂N₃ obscured by methanol solvent peak

m/z (ES) 999.4371 ([M + H]⁺ C₅₇H₅₉N₈O₉ requires 999.4400) & 1021.4216 ([M + Na]⁺ C₅₇H₅₈N₈NaO₉ requires 1021.4219).

NB: Atoms labelled as on chemical structure on next page.

¹³C NMR (1:1 CDCl₃/CD₃OD, 100 MHz)

IR (neat)

References

- (1) M. J. Langton, L. C. Duckworth and P. D. Beer, Chem. Commun., 2013, 49, 8608-8610.
- (2) N. H. Evans, C. E. Gell and M. J. G. Peach, Org. Biomol. Chem., 2016, 14, 792-7981.