Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Divergent Dehydroxyfluorination and Carbonation of Alcohols with Trifluoromethyl Trifluoromethanesulfonate

Long-Yu Ran, Xue Ding, Xue-Ping Yan, Cheng-Pan Zhang* School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.

E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com. ORCID for Cheng-Pan Zhang: 0000-0002-2803-4611.

Table of Contents

1. General information
2. Screening the optimal reaction conditions for dehydroxyfluorination of
4-biphenylmethanol (1a) with CF ₃ SO ₂ OCF ₃ (2)S2
3. Screening the optimal reaction conditions for asymmetric carbonation of
4-biphenylmethanol (1a) and 1,1,1,3,3,3-hexafluoro-2-propanol (4a) with
CF ₃ SO ₂ OCF ₃ (2)S5
4. General procedure for dehydroxyfluorination of alcohols (1) with 2S10
5. General procedure for asymmetric carbonation of two different alcohols (1 and 4)
with 2
6. ¹⁹ F NMR and HPLC measurement for the mechanistic insights
7. NMR spectra of the products

1. General information.

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, the NMR spectra were recorded in CDCl₃ or CD₃CN on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm) for ¹H NMR and PhOCF₃ (-58.0 ppm) or PhCF₃ (-63.0 ppm) for ¹⁹F NMR. The HPLC experiments were conducted on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 μ m, 4.6 × 250 mm), and the yields of products were determined by using the corresponding pure compounds as the external standards, respectively. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Melting points of the solid products were dried before use according to the literature.² Other reagents in the reactions were all purchased from the commercial sources and used without further purification.

2. Screening the optimal reaction conditions for dehydroxyfluorination of **4-biphenylmethanol** (1a) with CF₃SO₂OCF₃ (2).

Ph	$H \xrightarrow{CF_3SO_2OCF_3} \frac{2 (1 \text{ equiv})}{\text{base (1 equiv)}} Ph - \sqrt{2}$	F +0	
1a	DCM (2 mL) F	F-1 Ph	3 Ph
(0.2 mmol)	20 0 10 11, 112, 12 11		
Entry ^a	Base	Yield (F-1 , %)	Yield (3 , %)
1	Et ₃ N	14	50
2 ^{<i>b</i>}	Et ₃ N	trace	40
3	propan-2-amine	0	0
4	DBU	10	40
5	DABCO	0	57
6	2,6-di-tert-butylpyridine	0	35
7	2,4-lutidine	< 1	38
8	DMF	< 1	0
9	MTBD	15	20

Table S1. Dehydroxyfluorination of 1a with 2 in the presence of different bases.

10	DMAP	trace	69
11 ^b	DMAP	1	61
12 ^c	DMAP	trace	72
13 ^d	DMAP	trace	37
14 ^{<i>c,d</i>}	DMAP	1	70
15	ⁱ Pr ₂ NEt	25	27
16	DMAc	0	0
17	pyridine	0	60
18	BTMG	61	22
19	none	0	0

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.2 mmol), base (0.2 mmol), CH₂Cl₂ (2 mL), -20 °C to r.t., N₂, 12 h. Yields were determined by HPLC (λ = 249 nm, water/methanol = 10/90 (v/v)) using F-1 ($t_R = 5.26$ min) and 3 ($t_R = 11.96$ min) as external standards. Abbreviations: DBU = DABCO 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-*a*]azepine, =1,4-diazabicyclo[2.2.2]octane, DMF = N,N-dimethylformamide, MTBD = 1-methyl-1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine, DMAP = 4-dimethylaminopyridine, ${}^{i}Pr_2NEt = N$ -ethyl-N-isopropylpropan-2-amine, DMAc = bN,N-dimethylacetamide, BTMG = 2-(*tert*-butyl)-1,1,3,3-tetramethylguanidine. -20 °C to 40 °C. ^c 24 h. ^d -20 °C to 80 °C.

Ph- 1a (0.2 mmol)	CF ₃ SO ₂ OCF ₃ 2 (1 equiv) BTMG(1 equiv) solvent (2 mL) -20 °C to rt, N ₂ , 12 h	Ph- F-1 Ph	o o o o o Ph
Entry ^a	Solvent	Yield (F-1 , %)	Yield (3 , %)
1	DMF	4	27
2	THF	65	19
3	MeCN	29	18
4	toluene	30	10
5	DME	14	10

Table S2. Dehydroxyfluorination of 1a with 2 in different solvents.

6	DMSO	trace	7
7	PhCl	52	23
8	1,4-dioxane	59	21
9	<i>n</i> -hexane	23	0
10	DMAc	0	27
11	DCM	61	22

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2** (0.2 mmol), BTMG (0.2 mmol), solvent (2 mL), -20 °C to r.t., N₂, 12 h. Yields were determined by HPLC (λ = 249 nm, water/methanol = 10/90 (v/v)) using **F-1** (t_R = 5.26 min) and **3** (t_R = 11.96 min) as external standards.

Table S3. Dehydroxyfluorination of 1a with 2/BTMG in different reactant ratios.

Ph- 1a (x mmol)	CF ₃ SO ₂ OCF ₃ 2 (y mmol) BTMG (z mmol) THF (2 mL) -20 °C to rt, N ₂ , 12 h	Ph- F-1 Ph	
Entry ^a	x : y : z	Yield (F-1 , %)	Yield (3 , %)
1	1:0.5:1	47	27
2	1:0.5:1.5	48	22
3	1:0.5:2	28	17
4	1:1:1	65	19
5	1:1:1.5	56	30
6	1:1:2	58	36
7	1:1:2.5	57	29
8	1:1:3	64	22
9	1:1.5:0.2	3	trace
10	1:1.5:0.5	13	10
11	1:1.5:1	71 (67)	18
12 ^b	1:1.5:1	40	18
13 ^c	1:1.5:1	45	15
14	1:1.5:1.5	61	30

^a Reaction conditions: 1a (0.2 mmol), 2 (y mmol), BTMG (z mmol), THF (2 mL), -20

°C to r.t., N₂, 12 h. Yields were determined by HPLC ($\lambda = 249$ nm, water/methanol = 10/90 (v/v)) using **F-1** (t_R = 5.26 min) and **3** (t_R = 11.96 min) as external standards. Isolated yield is depicted in the parenthesis. ^b-20 °C to 80 °C. ^c Under air.

Table S4. Comparing the dehydroxyfluorination of 1a with CF₃SO₂OCF₃ (2) to those with other "F" sources.

Ph 1a (0.2 mmol)	F" source (0.3 mmol) BTMG (0.2 mmol) THF (2 mL) -20 °C to rt, N ₂ , 12 h	F-1 Ph	o o o o o o Ph
Entry ^a	"F" source	Yield (F-1 , %)	Yield (3 , %)
1	CF ₃ SO ₂ OCF ₃	71 (67)	18
2	CsOCF ₃	28	34
3	AgOCF ₃	26	39
4	4-Me-C ₆ H ₄ SO ₂ OCF ₃	14	46
5	$CF_3CF_2CF_2CF_2SO_2F$	40	0

^{*a*} Reaction conditions: **1a** (0.2 mmol), "F" source (0.3 mmol), BTMG (0.2 mmol), THF (2 mL), -20 °C to r.t., N₂, 12 h. Yields were determined by HPLC (λ = 249 nm, water /methanol = 10/90 (v/v)) using **F-1** (t_R = 5.26 min) and **3** (t_R = 11.96 min) as external standards. Isolated yield is depicted in the parenthesis.

3. Screening the optimal reaction conditions for asymmetric carbonation of 4-biphenylmethanol (1a) and 1,1,1,3,3,3-hexafluoro-2-propanol (4a) with CF₃SO₂OCF₃ (2).

Ph- 1a (0.2 mmol)	$\begin{array}{c} OH \\ F_3C \\ \hline CF_3 \\ \hline CF_3 \\ \hline equiv \\ 1 equiv \\ \hline CF_3 \\ $	Ph	CF_3 + Ph F
Entry ^a	Base	Yield (CO-1 , %)	Yield (F-1 , %)
1	DMAP	63	0
2 ^{<i>b</i>}	DMAP	54	7
3 ^c	DMAP	70	8
4 ^{<i>b</i>, <i>c</i>}	DMAP	50	5
5^{d}	DMAP	85	trace

Table S5. Carbonation of 1a and 4a with 2 in the presence of different bases.

6	DABCO	60	trace
7	Et ₃ N	80	4
8	BTMG	60	trace
9	1-methyl-1H-imidazole	72	3
10	pyridine	47	1
11	CsF	4	24
12	DBU	trace	0
13	none	0	0

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (0.2 mmol), base (0.2 mmol), DCM (2 mL), -20 °C to r.t., N₂, 12 h. Yields were determined by HPLC (λ = 243 nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Abbreviations: DMAP = 4-dimethylaminopyridine, DABCO = 1,4-diazabicyclo[2.2.2]octane, BTMG = 2-(*tert*-butyl)-1,1,3,3-tetramethylguanidine, DBU = 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-*a*]azepine. ^b -20 °C to 80 °C. ^c 24 h. ^d -20 °C to 40 °C.

Ph- 1a (0.2 mmol)	 OH + F₃C CF₃ CF₃SO₂OCF₃ 2 (1 equiv) Et₃N (1 equiv) DCM (2 mL) temp., N₂, 12 h 	→ Ph-, 0-, 0-, 0-, 0-, 0-, 0-, 0-, 0-, 0-, 0	$\begin{array}{c} CF_3 \\ CF_3 \end{array} + Ph - \begin{array}{c} & F \\ & F-1 \end{array} $
Entry ^a	Temp.	Yield (CO-1 , %)	Yield (F-1 , %)
1	-20 °C to r.t.	80	4
2	-20 °C to 40 °C	95 (87)	trace
3	-20 °C to 60 °C	75	11
4	-20 °C to 80 °C	71	5
5	-20 °C to 100 °C	54	trace

Table S6. Carbonation of 1a and 4a with 2/Et₃N at different temperatures.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (0.2 mmol), Et₃N (0.2 mmol), DCM (2 mL), N₂, 12 h. Yields were determined by HPLC (λ = 243 nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Isolated yield is depicted in the parenthesis.

Table S7. Carbonation of **1a** and **4a** with different equivalents of Et_3N at -20 °C to room temperature.

Ph- H + 1a (0.2 mmol)	$\begin{array}{c} OH \\ F_3C \\ \hline \\ F_3C \\ \hline \\ CF_3 \\ \hline \\ F_3C \\ \hline \\ CF_3 \\ \hline \\ CF_3 \\ \hline \\ Et_3N \\ \hline \\ DCM \\ (2 \\ -20 \ ^\circ C \ t_3) \\ \hline \\ CF_3SC \\ \hline \\ \hline \\ CF_3SC \\ \hline \\ CF_3SC$	$\begin{array}{c} D_2 \text{OCF}_3 \\ \hline \text{equiv}) \\ \hline \text{x equiv}) \\ 2 \text{ mL}), \text{ N}_2 \\ \text{o r.t., 12 h} \end{array} \qquad $	$\begin{array}{c} O \\ O \\ O \\ CF_3 \end{array} + Ph \\ F-1 \end{array} $
Entry ^a	x (equiv)	Yield (CO-1, %)	Yield (F-1 , %)
1	0.5	51	10
2	1	80	4
3	1.5	86	4
4	2	86	3
5	2.5	87	4
6	3	89	2

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (1 equiv), Et₃N (x equiv), DCM (2 mL), -20 °C to r.t., N₂, 12 h. Yields were determined by HPLC (λ = 243 nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards.

Table S8. Carbonation of **1a** and **4a** with different equivalents of Et_3N at -20 °C to 40 °C.

Ph— ((OH + 1a 0.2 mmol)	$\begin{array}{c} OH \\ F_{3}C \\ \hline CF_{3} \\ 4a \\ (1 \text{ equiv}) \\ -20 \end{array}$	CF ₃ SO ₂ OCF ₃ <u>2 (1 equiv)</u> Et ₃ N (x equiv) DCM (2 mL), N ₂ °C to 40 °C, 12 h	$ \begin{array}{c} O \\ O \\ CF_3 \end{array} + Ph - F \\ F-1 \end{array} $
]	Entry ^a	x (equiv)	Yield (CO-1 , %)	Yield (F-1 , %)
	1	0.5	70	9
	2	1	95 (87)	trace
	3	1.5	87	4
	4	2	87	5
	5	2.5	89	3
	6	3	90	2

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (1 equiv), Et₃N (x equiv), DCM (2 mL), -20 °C to 40 °C, N₂, 12 h. Yields were determined by HPLC ($\lambda = 243$ nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Isolated yield is depicted in the parenthesis.

Ph- Ha (0.2 mmol)	$\begin{array}{c} OH \\ F_3C \\ CF_3 $	D ₂ OCF ₃ equiv) 1 equiv) 2 mL), N ₂ 40 °C, 12 h	$O \\ O \\ CF_3 + Ph $ F-1
Entry ^a	x (equiv)	Yield (CO-1, %)	Yield (F-1 , %)
1	1	95 (87)	trace
2	0.8	73	8
3	0.6	57	6
4	0.4	40	10
5	0.2	19	2
6	0.1	10	trace

Table S9. Carbonation of 1a and 4a with different equivalents of CF₃SO₂OCF₃.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (x equiv), Et₃N (0.2 mmol), DCM (2 mL), -20 °C to 40 °C, N₂, 12 h. Yields were determined by HPLC (λ = 243 nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Isolated yield is depicted in the parenthesis.

Ph- 1a (0.2 mmol)	$\begin{array}{c} OH \\ F_3C & CF_3 & CF_3SO \\ F_3C & CF_3 & Et_3N \ (1 \\ 4a \\ (1 \ equiv) & -20 \ ^\circC \ to \ A \end{array}$	020CF3 equiv) I equiv) 2 mL), N2 40 °C, 12 h	$ \begin{array}{c} $
Entry ^a	Solvent	Yield (CO-1 , %)	Yield (F-1 , %)
1	DCE	94	trace
2	DCM	95 (87)	trace
3 ^b	DCM	91	trace
4	THF	67	4
5	toluene	77	2
6	CH ₃ CN	36	trace
7	1,4-dioxane	81	15
8	DMSO	trace	0
9	DMF	trace	0

Table S10. Carbonation of 1a and 4a with 2/Et₃N in different solvents.

^a Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (0.2 mmol), Et₃N (0.2 mmol),

solvent (2 mL), -20 °C to 40 °C, N₂, 12 h. Yields were determined by HPLC ($\lambda = 243$ nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Isolated yield is depicted in the parenthesis. ^b Under air.

Ph- 1a (0.2 mmol)	OH F ₃ C CF ₃ SO ₂ 2 (1 eq Et ₃ N (1 eq CF ₃ N (1 eq DCE (2 temp., N)	OCF ₃ <u>juiv)</u> equiv) Ph	$ \begin{array}{c} $
Entry ^a	Temp. (°C)	Yield (CO-1 , %)	Yield (F-1 , %)
1	r.t.	70	2
2	40	94	trace
3	60	75	7
4	80	62	13
5	100	59	8

Table S11. Carbonation of 1a and 4a with 2/Et₃N in DCE at different temperatures.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2** (0.2 mmol), Et₃N (0.2 mmol), DCE (2 mL), N₂, 12 h. Yields were determined by HPLC (λ = 243 nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards.

Table S12. Comparing the carbonation of **1a** and **4a** with $CF_3SO_2OCF_3$ (**2**) to those with other "CO" sources.

Ph- 1a (0.2 mmol)	$\begin{array}{c} OH \\ F_3C \ CF_3 \\ 4a \\ (1 \ equiv) \end{array} \begin{array}{c} "CO" \ sources \ (1 \ equiv) \\ Et_3N \ (1 \ equiv) \\ -20 \ ^\circ C \ to \ 40 \ ^\circ C, \end{array}$	$\begin{array}{c} equiv) \\ \downarrow \\ \downarrow \\ Ph \\ Ph \\ Ph \\ Ph \\ CO-1 \\ 12 h \end{array}$	$D \xrightarrow{CF_3}_{CF_3} + Ph \xrightarrow{F}_{F-1}$
Entry ^a	"CO" source	Yield (CO-1 , %)	Yield (F-1 , %)
1	CF ₃ SO ₂ OCF ₃	95 (87)	trace
2	Cl ₃ COCO ₂ CCl ₃	50, 38 ^b	0, 0 ^b
3	CDI	37	0
4	CsOCF ₃	92	trace
5	AgOCF ₃	89	trace
6	4-Me-C ₆ H ₄ SO ₂ OCF ₃	80	trace
7	CF ₃ SO ₂ Na	0	0

^{*a*} Reaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), "CO" source (0.2 mmol), Et₃N (0.2 mmol), DCM (2 mL), -20 °C to 40 °C, N₂, 12 h. Yields were determined by HPLC ($\lambda = 243$ nm, water/methanol (v/v) = 10:90)) using **F-1** (t_R = 5.26 min) and **CO-1** (t_R = 6.56 min) as external standards. Isolated yield is depicted in the parenthesis. ^b Cl₃COCO₂CCl₃ (1/3 equiv) was used.

4. General procedure for dehydroxyfluorination of alcohols (1) with 2.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with alcohol (1, 0.2 mmol), BTMG (34.3 mg, 0.2 mmol, 1 equiv), and THF (1.5 mL) with vigorous stirring and cooled to -20 °C. A solution of $CF_3SO_2OCF_3$ (65.4 mg, 0.3 mmol, 1.5 equiv) in THF (0.5 mL) was quickly introduced. The mixture was reacted at room temperature for 12 h and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether or a mixture of petroleum ether and ethyl acetate as eluents to give the dehydroxyfluorinated product.

4-(Fluoromethyl)-1,1'-biphenyl ($\mathbf{F-1}$)³

White solid, 24.9 mg, 67% yield. Petroleum ether as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.60 (m, 4H), 7.47-7.44 (m, 4H), 7.37 (t, J = 7.3 Hz, 1H), 5.44 (d, J = 47.9 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -206.2 (t, J = 48.4 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 141.8 (d, J = 3.2 Hz), 140.6, 135.2 (d, J = 17.0 Hz), 128.8, 128.1 (d, J = 5.7 Hz), 127.6, 127.4 (d, J = 1.3 Hz), 127.2, 84.4 (d, J = 166.0 Hz).

1-(Fluoromethyl)-4-methoxybenzene $(\mathbf{F-2})^4$

-O-F

Ph-

Due to the low boiling point of the product, the yield (41%) was determined by ¹⁹F NMR analysis of the reaction mixture using PhF (0.2 mmol) as an internal standard. ¹⁹F NMR (471 MHz) δ -199.9 (t, *J* = 48.6 Hz, 1F).

2-(Fluoromethyl)-1,3-dimethylbenzene (**F-3**)⁵

F

Due to the low boiling point of the product, the yield (40%) was determined by ¹⁹F NMR analysis of the reaction mixture using PhF (0.2 mmol) as an internal standard. ¹⁹F NMR (471 MHz) δ -209.1 (t, *J* = 49.5 Hz, 1F).

1-(Fluoromethyl)-4-iodobenzene $(\mathbf{F-4})^6$

White solid, 29.3 mg, 62% yield. Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.32 (d, *J* = 47.4 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -208.9 (t, *J* = 48.2 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 137.8 (d, *J* = 0.5 Hz), 135.8 (d, *J* = 17.5 Hz), 129.1 (d, *J* = 6.0 Hz), 94.5 (d, *J* = 3.8 Hz), 83.4 (d, *J* = 167.5 Hz).

4-(Fluoromethyl)benzonitrile $(\mathbf{F-5})^7$

NC

F

Yellow oil, 8.6 mg, 32% yield or 9.5 mg, 35% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.47 (d, *J* = 7.9 Hz, 2H), 5.45 (d, *J* = 46.9 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -215.1 (t, *J* = 47.1 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 141.5 (d, *J* = 17.7 Hz), 132.4, 127.9 (d, *J* = 7.0 Hz), 118.5, 112.4, (d, *J* = 2.3 Hz), 83.1 (d, *J* = 170.1 Hz).

1-(Fluoromethyl)-4-nitrobenzene (**F-6**)⁶

Yellow solid, 12.4 mg, 40% yield or 14.9 mg, 48% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 5.51 (d, *J* = 46.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -215.7 (t, *J* = 47.1 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 143.4 (d, *J* = 17.6 Hz), 127.0 (d, *J* = 7.2 Hz), 123.9, 82.9 (d, *J* = 170.8 Hz).

1-(Fluoromethyl)-2-nitrobenzene (**F-7**)⁸

Yellow solid, 13.0 mg, 42% yield or 15.5 mg, 50% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 8.3 Hz, 1H), 7.82-7.73 (m, 2H), 7.52 (t, *J* = 7.8 Hz, 1H), 5.87 (d, *J* = 47.9 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -219.1 (t, *J* = 48.2 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 134.4, 134.4, 134.3 (d, *J* = 19.2 Hz), 128.5 (d, *J* = 1.0 Hz), 126.9 (d, *J* = 17.6 Hz), 124.9, 81.3 (d, *J* = 172.9 Hz).

1-(Fluoromethyl)naphthalene (**F-8**)⁹

White solid, 17.9 mg, 56% yield. Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1H), 7.92-7.89 (m, 2H), 7.59 (tm, *J* = 7.5 Hz, 1H), 7.56-7.53 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 5.87 (d, *J* = 48.0 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -206.2 (t, *J* = 48.9 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 133.7, 131.8 (d, *J* = 15.4 Hz), 131.4 (d, *J* = 1.9 Hz), 129.9 (d, *J* = 3.3 Hz), 128.7, 126.8 (d, *J* = 8.4 Hz), 126.7 (d, *J* = 0.8 Hz), 126.1, 125.2 (d, *J* = 1.8 Hz), 123.6, 83.3 (d, *J* = 165.7 Hz).

N-(5-(fluoromethyl)-4-(4-fluorophenyl)-6-isopropylpyrimidin-2-yl)-N-methylmethane sulfonamide (**F-9**)¹⁰

White solid, 35.6 mg, 50% yield. Petroleum ether / EtOAc = 5 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (m, 2H), 7.20 (t, *J* = 8.7 Hz, 2H), 5.36 (d, *J* = 48.8 Hz, 2H), 3.60 (s, 3H), 3.52 (s, 3H), 3.49 (m, 1H), 1.36 (d, *J* = 6.7 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.5 (m, 1F), -195.4 (t, *J* = 48.8 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 167.3 (d, *J* = 3.9 Hz), 164.0 (d, *J* = 251.5

Hz), 158.7, 133.4 (d, *J* = 3.6 Hz), 131.7 (dd, *J* = 8.6, 2.6 Hz), 116.7 (d, *J* = 17.7 Hz), 115.6 (d, *J* = 21.8 Hz), 77.6 (d, *J* = 165.7 Hz), 42.5, 33.1, 31.8, 22.1.

(3-Fluoroprop-1-yn-1-yl)benzene $(F-10)^{10}$

Colorless oil, 7.2 mg, 27% yield or 8.0 mg, 30% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.2 Hz, 2H), 7.38-7.32 (m, 3H), 5.19 (d, *J* = 47.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -213.5 (t, *J* = 47.7 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 131.9 (d, *J* = 3.1 Hz), 129.1, 128.4, 121.8 (d, *J* = 4.3 Hz), 89.5 (d, *J* = 11.9 Hz), 82.6 (d, *J* = 21.7 Hz), 71.2 (d, *J* = 165.3 Hz).

1-Chloro-4-(2-fluoroethoxy)benzene (F-11)¹¹

Colorless oil, 10.5 mg, 30% yield or 17.5 mg, 50% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive) or 25.9 mg, 74% yield (using 0.5 equivalent of Me₄NF (9.3 mg, 0.1 mmol) as an additive). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.9 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 4.78 (dt, *J* = 47.4, 4.0 Hz, 2H), 4.22 (dt, *J* = 27.7, 4.0 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -223.9 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 157.1, 129.4, 126.3, 116.0, 81.8 (d, *J* = 170.6 Hz), 67.5 (d, *J* = 20.5 Hz).

1-(2-Fluoroethyl)-2-methyl-5-nitro-1H-imidazole (F-12)¹²

Colorless oil, 17.3 mg, 50% yield. Petroleum ether / EtOAc = 4 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 4.77 (dt, *J* = 47.2, 4.1 Hz, 2H), 4.63 (dt, *J* = 26.0, 4.2 Hz, 2H), 2.51 (s, 3H). ¹⁹F NMR (471 MHz,

CDCl₃) δ -224.0 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 151.7, 138.3 (brs), 133.3, 82.2 (d, *J* = 171.9 Hz), 46.8 (d, *J* = 20.0 Hz), 14.4 (d, *J* = 3.4 Hz).

1-(2-Fluoroethyl)naphthalene (**F-13**)¹³

Colorless oil, 18.1 mg, 52% yield. Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.57-7.50 (m, 2H), 7.46-7.41 (m, 2H), 4.79 (dt, *J* = 47.1, 6.9 Hz, 2H), 3.53 (dt, *J* = 20.3, 6.9 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -213.4 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 133.9, 132.8 (d, *J* = 7.5 Hz), 132.1, 128.9, 127.6, 127.2, 126.2, 125.7, 125.6, 123.4, 83.5 (d, *J* = 169.2 Hz), 33.9 (d, *J* = 20.8 Hz).

2-(2-Fluoroethyl)isoindoline-1,3-dione (F-14)¹⁴

White solid, 25.1 mg, 65% yield. Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.86 (m, 2H), 7.74-7.73 (m, 2H), 4.65 (dt, *J* = 46.9, 5.2 Hz, 2H), 4.02 (dt, *J* = 23.9, 5.3 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -224.7 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 134.1, 132.0, 123.4, 80.4 (d, *J* = 172.3 Hz), 38.2 (d, *J* = 22.0 Hz).

2-(3-Fluoropropyl)isoindoline-1,3-dione (F-15)¹⁴

White solid, 16.6 mg, 40% yield or 21.5 mg, 52% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.83 (m, 2H), 7.73-7.70 (m, 2H), 4.52 (dt, *J* = 47.0, 5.8 Hz, 2H), 3.84 (t, *J* = 6.9 Hz, 2H), 2.09 (dm, *J* = 26.2 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -220.8 (m, 1F). ¹³C NMR (126 MHz,

CDCl₃) δ 168.3, 134.0, 132.1, 123.3, 81.7 (d, *J* = 166.0 Hz), 34.6 (d, *J* = 5.3 Hz), 29.5 (d, *J* = 19.9 Hz).

2-(10-Fluorodecyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione (F-16)¹³

$$H_3CO$$

 H_3CO
 H_3CO
 O
 F

Orange solid, 28.6 mg, 42% yield or 30.6 mg, 45% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 4.43 (dt, *J* = 47.4, 6.3 Hz, 2H), 3.98 (s, 3H), 3.98 (s, 3H), 2.44 (t, *J* = 7.0 Hz, 2H), 2.00 (s, 3H), 1.72-1.64 (m, 2H), 1.39-1.28 (m, 14H). ¹⁹F NMR (471 MHz, CDCl₃) δ -218.0 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 184.7, 184.1, 144.3, 144.3, 143.1, 138.7, 84.2 (d, *J* = 164.3 Hz), 61.1, 30.4 (d, *J* = 19.3 Hz), 29.8, 29.4, 29.4, 29.3, 29.2, 28.7, 26.4, 25.1 (d, *J* = 5.5 Hz), 11.9.

1-(Fluoro(phenyl)methyl)-3-(trifluoromethyl)benzene (**F-17**)¹⁵

Colorless oil, 16.3 mg, 32% yield or 17.8 mg, 35% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.61 (d, *J* = 6.9 Hz, 1H), 7.53-7.48 (m, 2H), 7.42-7.37 (m, 3H), 7.34 (d, *J* = 7.4 Hz, 2H), 6.52 (d, *J* = 47.1 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.7 (s, 3F), -167.7 (d, *J* = 47.3 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 140.9 (d, *J* = 22.7 Hz), 138.9 (d, *J* = 20.9 Hz), 131.0 (q, *J* = 32.5 Hz), 129.7 (d, *J* = 6.3 Hz), 129.0, 128.9 (d, *J* = 1.8 Hz), 128.8, 126.8 (d, *J* = 6.0 Hz), 125.2 (m), 124.0 (q, J = 273.2 Hz), 123.2 (m), 93.8 (d, *J* = 174.5 Hz).

(3-Fluorobutyl)benzene (**F-18**)⁶

Colorless oil, 15.2 mg, 50% yield. Petroleum ether / EtOAc = 80 : 1 (v/v) as eluents

for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.6 Hz, 2H), 7.21-7.18 (m, 3H), 4.67 (dm, *J* = 48.9, 1H), 2.76 (m, 2H), 2.02-1.75 (m, 2H), 1.35 (dd, *J* = 23.9, 6.1 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -174.2 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 128.4, 126.0, 90.1 (d, *J* = 164.8 Hz), 38.7 (d, *J* = 20.8 Hz), 31.4 (d, *J* = 4.8 Hz), 21.0 (d, *J* = 22.7 Hz).

1-Benzhydryl-3-fluoroazetidine (**F-19**)¹¹

White solid, 19.3 mg, 40% yield or 24.1 mg, 50% yield (using 0.1 equivalent of Me₄NF (1.9 mg, 0.02 mmol) as an additive) or 31.3 mg, 65% yield (using 0.5 equivalent of Me₄NF (9.3 mg, 0.1 mmol) as an additive). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 4H), 7.30 (t, *J* = 7.4 Hz, 4H), 7.22 (t, *J* = 7.4 Hz, 2H), 5.17 (dm, J = 57.5 Hz, 1H), 4.42 (s, 1H), 3.57 (m, 2H), 3.16 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -178.6 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 140.8, 127.5, 126.3, 126.3, 80.9 (d, *J* = 204.2 Hz), 77.3, 59.7 (d, *J* = 20.5 Hz).

5. General procedure for asymmetric carbonation of two different alcohols (1 and 4) with 2.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with two different alcohols (0.2 mmol each), Et₃N (20.2 mg, 0.2 mmol, 1 equiv), and CH₂Cl₂ (1 mL) with vigorous stirring. A solution of CF₃SO₂OCF₃ (43.6 mg, 0.2 mmol, 1 equiv) in CH₂Cl₂ (1 mL) was quickly introduced. The mixture was reacted at 40 °C or 80 °C for 12 h or 24 h and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate as eluents to give the carbonated product.

[1,1'-Biphenyl]-4-ylmethyl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (CO-1)

White solid, 65.8 mg, 87% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 68.5-69.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.7 Hz, 2H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.48-7.45 (m, 4H), 7.38 (t, *J* = 7.6 Hz, 1H), 5.59 (m, 1H), 5.34 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 142.2, 140.4, 132.5, 129.0, 128.9, 127.7, 127.6, 127.2, 120.2 (q, *J* = 285.5 Hz), 71.8, 70.4 (m). IR (KBr): 3064, 3034, 2973, 1774, 1490, 1461, 1389, 1364, 1308, 1266, 1244, 1198, 1132, 1110, 1020, 972, 909, 847, 821, 761, 732, 693 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₃F₆O₃]⁺ ([M + H]⁺): 379.0763; found: 379.0764.

Benzyl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (CO-2)

Colorless oil, 37.5 mg, 62% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (m, 5H), 5.59 (m, 1H), 5.30 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.3 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 133.6, 129.2, 128.8, 128.5, 120.2 (q, *J* = 283.0 Hz), 72.0, 70.4 (m). IR (KBr): 3068, 3039, 2972, 1778, 1458, 1385, 1362, 1302, 1251, 1201, 1140, 1112, 1019, 935, 909, 781, 751, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₁H₉F₆O₃]⁺ ([M + H]⁺): 303.0450; found: 303.0457.

1,1,1,3,3,3-Hexafluoropropan-2-yl (4-methylbenzyl) carbonate (CO-3)

Colorless oil, 19.0 mg, 30% yield (at 40 °C for 12 h) or 43.6 mg, 69% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.58 (m, 1H), 5.26 (s, 2H), 2.38 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 6.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 139.2, 130.6, 129.5, 128.7, 120.2 (q, *J* = 284.5 Hz), 72.1, 70.3 (m), 21.3. IR (KBr): 3032, 2964, 2928, 2856, 1778, 1519, 1457, 1384, 1363, 1302, 1265, 1202, 1140, 1112, 1021, 927, 907, 807, 782, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₂H₁₁F₆O₃]⁺ ([M + H]⁺): 317.0607; found: 317.0613.

1,1,1,3,3,3-Hexafluoropropan-2-yl (2-methylbenzyl) carbonate (CO-4)

White solid, 32.3 mg, 51% yield (at 40 °C for 12 h) or 38.6 mg, 61% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 50.1-51.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.25-7.22 (m, 2H), 5.59 (m, 1H), 5.34 (s, 2H), 2.39 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 6.5 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 137.3, 131.7, 130.7, 129.7, 129.5, 126.2, 120.2 (q, *J* = 283.0 Hz), 70.5, 70.4 (m), 18.8. IR (KBr): 2994, 2962, 2925, 2854, 1773, 1497, 1468, 1395, 1370, 1299, 1262, 1201, 1134, 1110, 1016, 927, 908, 886, 802, 756, 741, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₂H₁₀F₆NaO₃]⁺ ([M + Na]⁺): 339.0426; found: 339.0423.

2,6-Dimethylbenzyl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (CO-5)

White solid, 23.1 mg, 35% yield (at 40 °C for 12 h) or 31.0 mg, 47% yield (at 80 °C for 24 h, DCE) or 31.7 mg, 48% yield (at 80 °C for 12 h) or 39.6 mg, 60% yield (at 40 °C for 12 h using 2 equivalents of Et₃N as the base). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 92.5-94.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.20 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 2H), 5.59 (m, 1H), 5.44 (s, 2H), 2.41 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 153.0, 138.6, 129.9, 129.6, 128.5, 120.2 (q, *J* = 284.7 Hz), 70.7 (m), 67.0, 19.5. IR (KBr): 3032, 2996, 2958, 2921, 2860, 1769, 1599, 1475, 1396, 1384, 1297, 1261, 1224, 1199, 1135, 1112, 1011, 977, 921, 887, 840, 776, 759, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₁₃F₆O₃]⁺ ([M + H]⁺): 331.0763; found: 331.0764.

4-Chlorobenzyl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (CO-6)

White solid, 44.4 mg, 66% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 65.8-67.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 5.57 (m, 1H), 5.26 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.6 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 135.3, 132.1, 129.9, 129.1, 120.2 (q, *J* = 283.0 Hz), 71.1, 70.4 (m). IR (KBr): 2989, 2966, 1778, 1601, 1496, 1469, 1411, 1388, 1368, 1298, 1248, 1202, 1137, 1107, 1092, 1015, 959, 938, 904, 886, 842, 820, 779, 724, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₁H₈ClF₆O₃]⁺ ([M + H]⁺): 337.0061; found: 337.0060.

1,1,1,3,3,3-Hexafluoropropan-2-yl (4-nitrobenzyl) carbonate (CO-7)

Colorless oil, 35.4 mg, 51% yield (at 40 °C for 12 h) or 48.6 mg, 70% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.6 Hz, 2H), 5.57 (m, 1H), 5.39 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.7, 148.3, 140.6, 128.6, 124.1, 120.1 (q, *J* = 283.0 Hz), 70.6 (m), 70.1. IR (KBr): 3087, 2976, 2865, 1780, 1610, 1528, 1458, 1384, 1352, 1301, 1250, 1201, 1142, 1112, 1026, 980, 943, 906, 874, 850, 807, 779, 739, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₁H₇F₆NNaO₅]⁺ ([M + Na]⁺): 370.0121; found: 370.0126.

1,1,1,3,3,3-Hexafluoropropan-2-yl (naphthalen-2-ylmethyl) carbonate (CO-8)

White solid, 54.9 mg, 78% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 76.8-78.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.83 (m, 4H), 7.55-7.53 (m, 2H), 7.49 (d, *J* = 7.5 Hz, 1H), 5.62 (m, 1H), 5.47 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.7 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 133.5, 133.1, 131.0, 128.8, 128.1, 128.0, 127.8, 126.8, 126.6, 125.5, 120.2 (q, *J* = 282.6 Hz), 72.2, 70.4 (m). IR (KBr): 3077, 2993, 2967, 2924, 2853, 2786, 1769, 1603, 1514, 1466, 1396, 1371, 1298, 1265, 1205, 1112, 1015, 990, 938, 902, 858, 817, 780, 750, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for

 $[C_{15}H_{10}F_6NaO_3]^+$ ($[M + Na]^+$): 375.0426; found: 375.0436.

Benzo[b]thiophen-2-ylmethyl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (CO-9)

White solid, 21.5 mg, 30% yield (at 40 °C for 12 h) or 41.6 mg, 58% yield (at 80 °C for 24 h) or 41.6 mg, 58% yield (at 40 °C for 12 h using 2 equivalents of Et₃N as the base). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. M.p.: 65.5-66.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (m, 1H), 7.80 (m, 1H), 7.41 (s, 1H), 7.39-7.36 (m, 2H), 5.59 (m, 1H), 5.53 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.4 (d, *J* = 6.7 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 140.8, 138.9, 135.8, 126.0, 125.3, 124.7, 124.2, 122.5, 120.1 (q, *J* = 282.6 Hz), 70.5 (m), 66.8. IR (KBr): 3068, 2996, 2964, 2925, 2854, 1769, 1460, 1436, 1397, 1381, 1296, 1259, 1203, 1111, 1010, 974, 928, 909, 884, 836, 803, 779, 751, 722, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₈F₆NaO₃S]⁺ ([M + Na]⁺): 380.9991; found: 380.9999.

(4-(4-Fluorophenyl)-6-isopropyl-2-(*N*-methylmethylsulfonamido)pyrimidin-5-yl)meth yl (1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (**CO-10**)

White solid, 78.8 mg, 72% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. M.p.: 114.0-115.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 8.3, 5.5 Hz, 2H), 7.18 (t, *J* = 8.5 Hz, 2H), 5.60 (m, 1H), 5.29 (s, 2H), 3.58 (s, 3H), 3.51 (s, 3H), 3.27 (m, 1H), 1.34 (d, *J* = 6.7 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 6.8 Hz, 6F), -110.3 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 178.4, 167.9, 163.9 (d, *J* = 251.7 Hz), 158.8, 152.4, 133.4 (d, *J* = 3.4 Hz), 131.1 (d, *J* = 8.6 Hz), 120.1 (q, *J* = 282.6 Hz), 115.8 (d, *J* = 21.7 Hz), 114.9, 70.5 (m), 65.5, 42.5, 33.1, 32.1, 22.0. IR (KBr): 3084, 3015, 2985, 2935, 2878, 1775, 1607, 1557, 1511, 1475, 1440, 1393, 1365, 1332, 1287, 1201, 1160, 1140, 1111, 1066, 1021, 967, 948, 847, 816, 777, 757, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₀H₂₁F₇N₃O₅S]⁺ ([M + H]⁺): 548.1085; found: 548.1088.

1,1,1,3,3,3-Hexafluoropropan-2-yl (1-phenylallyl) carbonate (CO-11)

White solid, 31.5 mg, 48% yield (at 40 °C for 12 h) or 21.7 mg, 33% yield (at 40 °C for 12 h using 2 equivalents of Et₃N as the base). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 37.7-39.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.0 Hz, 2H), 7.31 (t, *J* = 7.1 Hz, 1H), 6.76 (d, *J* = 15.8 Hz, 1H), 6.31 (dt, *J* = 15.8, 6.7 Hz, 1H), 5.60 (m, 1H), 4.94 (d, *J* = 6.7 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 136.6, 135.6, 128.7, 128.7, 126.9, 120.6, 120.2 (q, *J* = 283.0 Hz), 70.9, 70.3 (m). IR (KBr): 3085, 3072, 3025, 2978, 2921, 2856, 1774, 1656, 1497, 1451, 1387, 1366, 1298, 1246, 1199, 1130, 1111, 1019, 968, 908, 831, 780, 742, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₁₀F₆NaO₃]⁺ ([M + Na]⁺): 351.0426; found: 351.0433.

1,1,1,3,3,3-Hexafluoropropan-2-yl (3-phenylprop-2-yn-1-yl) carbonate (CO-12)

Colorless oil, 44.4 mg, 68% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.7 Hz, 2H), 7.39-7.32 (m, 3H), 5.60 (m, 1H), 5.11 (s, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, J = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 151.5, 130.9, 128.2, 127.4, 120.5, 119.1 (q, J = 283.5 Hz), 87.7, 79.5, 69.5 (m), 57.5. IR (KBr): 2974, 2925, 2848, 2228, 1781, 1492, 1444, 1384, 1363, 1302, 1250, 1202, 1141, 1113, 1038, 994, 929, 906, 757, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₉F₆O₃]⁺ ([M + H]⁺): 327.0450; found: 327.0450.

1,1,1,3,3,3-Hexafluoropropan-2-yl phenethyl carbonate (CO-13)

Colorless oil, 39.2 mg, 62% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.1 Hz, 2H), 7.28 (t, *J* = 7.1 Hz, 1H), 7.24 (d, *J* = 7.1 Hz, 2H), 5.55 (m, 1H), 4.50

(t, J = 7.1 Hz, 2H), 3.06 (t, J = 7.0 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.6 (d, J = 5.5 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 136.3, 128.9, 128.7, 127.0, 120.2 (q, J = 283.3 Hz), 70.7, 70.3 (m), 34.9. IR (KBr): 3070, 3034, 2974, 2929, 2844, 1778, 1499, 1456, 1387, 1364, 1305, 1261, 1202, 1143, 1112, 1010, 949, 908, 782, 749, 700 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{12}H_{11}F_6O_3]^+$ ([M + H]⁺): 317.0607; found: 317.0619.

1,1,1,3,3,3-Hexafluoropropan-2-yl (3-phenylpropyl) carbonate (CO-14)

Colorless oil, 39.6 mg, 60% yield (at 40 °C for 12 h) or 48.2 mg, 73% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 6.8 Hz, 2H), 7.24-7.18 (m, 3H), 5.57 (m, 1H), 4.30 (t, *J* = 6.3 Hz, 2H), 2.74 (t, *J* = 6.8 Hz, 2H), 2.07 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.3 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 140.4, 128.6, 128.4, 126.3, 120.3 (q, *J* = 282.3 Hz), 70.2 (m), 69.8, 31.6, 29.9. IR (KBr): 3031, 2966, 2925, 2856, 1779, 1498, 1456, 1386, 1364, 1304, 1263, 1202, 1143, 1112, 1018, 950, 908, 804, 748, 700 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₃H₁₃F₆O₃]⁺ ([M + H]⁺): 331.0763; found: 331.0775.

1,1,1,3,3,3-Hexafluoropropan-2-yl (2-phenoxyethyl) carbonate (CO-15)

$$Ph^{O} O O CF_3$$

Colorless oil, 49.8 mg, 75% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 7.8 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.9 Hz, 2H), 5.61 (m, 1H), 4.65 (t, J = 4.6 Hz, 2H), 4.25 (t, J = 4.5 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, J = 5.3 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 158.1, 152.9, 129.6, 121.6, 120.2 (q, J = 282.3 Hz), 114.6, 70.5 (m), 68.4, 65.2. IR (KBr): 3031, 2966, 2938, 2856, 1779, 1498, 1456, 1387, 1364, 1304, 1263, 1202, 1143, 1112, 1018, 950, 908, 804, 748, 700 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₂H₁₀F₆NaO₄]⁺ ([M + Na]⁺): 355.0375; found: 355.0379.

10-(4,5-Dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl

(1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (**CO-16**)

Yellow oil, 98.1 mg, 92% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 5 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 5.56 (m, 1H), 4.28 (t, *J* = 6.7 Hz, 2H), 3.98 (s, 3H), 3.98 (s, 3H), 2.44 (t, *J* = 6.9 Hz, 2H), 2.00 (s, 3H), 1.71 (m, 2H), 1.38-1.28 (m, 14H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.6 (d, *J* = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 184.7, 184.2, 152.9, 144.3, 144.3, 143.0, 138.7, 120.2 (q, *J* = 283.1 Hz), 70.8, 70.1 (m), 61.1, 29.8, 29.3, 29.3, 29.3, 29.0, 28.7, 28.3, 26.4, 25.4, 11.9. IR (KBr): 2931, 2857, 1779, 1652, 1613, 1456, 1386, 1363, 1301, 1263, 1200, 1143, 1111, 1069, 1012, 948, 907, 782, 746, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₃H₃₁F₆O₇]⁺ ([M + H]⁺): 533.1968; found: 533.1973.

1,1,1,3,3,3-Hexafluoropropan-2-yl (2-(2-methyl-5-nitro-1*H*-imidazol-1-yl)ethyl) carbonate (**CO-17**)

White solid, 48.9 mg, 67% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 1 : 1 (v/v) as eluents for column chromatography. M.p.: 100.8-102.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 5.49 (m, 1H), 4.68-4.65 (m, 4H), 2.49 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, *J* = 5.7 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.5, 151.0, 138.4, 133.4, 120.0 (q, *J* = 283.0 Hz), 70.6 (m), 68.2, 45.0, 14.1. IR (KBr): 3126, 2974, 2924, 2848, 1776, 1524, 1483, 1462, 1433, 1369, 1310, 1268, 1201, 1155, 1109, 1039, 988, 949, 912, 888, 825, 770, 747, 688 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₀H₁₀F₆N₃O₅]⁺ ([M + H]⁺): 366.0519; found: 366.0529.

1,1,1,3,3,3-Hexafluoropropan-2-yl

(1-(2-methyl-5-nitro-1*H*-imidazol-1-yl)propan-2-yl) carbonate (CO-18)

$$\sim N \rightarrow 0$$
 CF₃
 $O_2N \rightarrow 0$ CF₃

Yellow solid, 53.1 mg, 70% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 1 : 1 (v/v) as eluents for column chromatography. M.p.: 58.7-61.0 °C. ¹H NMR (500 MHz,

CDCl₃) δ 7.95 (s, 1H), 5.39 (m, 1H), 5.29 (m, 1H), 4.70 (dd, J = 14.8, 1.5 Hz, 1H), 4.24 (dd, J = 14.8, 9.5 Hz, 1H), 2.49 (s, 3H), 1.52 (d, J = 6.4 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.7 (dm, J = 31.5 Hz, 6F). ¹³C NMR (126 MHz, CD₃CN) δ 151.8, 151.5, 139.0, 132.9, 120.4 (q, J = 283.0 Hz), 76.9, 69.8 (m), 49.6, 16.4, 13.5. IR (KBr): 3138, 2978, 2942, 1778, 1533, 1481, 1429, 1367, 1300, 1258, 1195, 1131, 1112, 1066, 1010, 926, 908, 888, 827, 777, 744, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₁H₁₂F₆N₃O₅]⁺ ([M + H]⁺): 380.0676; found: 380.0683.

1,1,1,3,3,3-Hexafluoropropan-2-yl (4-phenylbutan-2-yl) carbonate (CO-19)

$$\mathsf{Ph} \overset{\mathsf{O}}{\longrightarrow} \mathsf{CF}_3 \\ \mathsf{CF}_3$$

Colorless oil, 20.6 mg, 30% yield (at 40 °C for 12 h) or 54.4 mg, 79% yield (at 80 °C for 12 h). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.17 (d, *J* = 7.4 Hz, 2H), 5.58 (m, 1H), 4.87 (m, 1H), 2.71 (m, 2H), 2.07 (m, 1H), 1.91 (m, 1H), 1.39 (d, *J* = 6.3 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.6 (d, *J* = 4.2 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 152.4, 140.7, 128.6, 128.3, 126.2, 120.3 (q, *J* = 283.0 Hz), 78.2, 70.1 (m), 37.2, 31.4, 19.6. IR (KBr): 3030, 2984, 2933, 2868, 1773, 1497, 1456, 1386, 1365, 1302, 1265, 1230, 1201, 1126, 1112, 1047, 1006, 907, 782, 754, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₄H₁₅F₆O₃]⁺ ([M + H]⁺): 345.0920; found: 345.0917.

1,1,1,3,3,3-Hexafluoropropan-2-yl (2-methyl-4-phenylbutan-2-yl) carbonate (**CO-20**)

$$Ph \xrightarrow{O} \xrightarrow{CF_3} \xrightarrow{CF_3} \xrightarrow{CF_3}$$

Colorless oil, 34.4 mg, 48% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, J = 7.4 Hz, 2H), 7.22-7.18 (m, 3H), 5.55 (m, 1H), 2.67 (m, 2H), 2.14 (m, 2H), 1.59 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -73.5 (d, J = 5.8 Hz, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 150.7, 141.3, 128.5, 128.3, 126.1, 120.4 (q, J = 283.3 Hz), 87.8, 69.5 (m), 42.1, 30.2, 25.6. IR (KBr): 3030, 2969, 2929, 2868, 1772, 1497, 1456, 1387, 1361, 1305, 1265, 1230, 1198, 1111, 1003, 908, 893, 802, 744, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₇F₆O₃]⁺ ([M + H]⁺): 359.1076; found: 359.1079. [1,1'-Biphenyl]-4-ylmethyl (2,2,2-trifluoroethyl) carbonate (CO-21)

White solid, 32.9 mg, 53% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. M.p.: 53.4-54.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.49-7.45 (m, 4H), 7.38 (t, *J* = 7.4 Hz, 1H), 5.28 (s, 2H), 4.54 (q, *J* = 8.2 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -74.2 (t, *J* = 8.8 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 152.9, 140.9, 139.5, 132.3, 128.0, 127.8, 126.6, 126.4, 126.1, 121.5 (q, *J* = 277.6 Hz), 69.5, 62.5 (q, *J* = 37.0 Hz). IR (KBr): 3084, 3035, 2985, 2954, 2897, 1755, 1568, 1491, 1449, 1421, 1386, 1321, 1297, 1256, 1195, 1175, 1159, 1134, 975, 839, 826, 788, 761, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₃F₃NaO₃]⁺ ([M + Na]⁺): 333.0709; found: 333.0717.

[1,1'-Biphenyl]-4-ylmethyl (2,2,3,3,3-pentafluoropropyl) carbonate (CO-22)

White solid, 34.6 mg, 48% yield (at 40 °C for 12 h) or 38.9 mg, 54% yield (at 80 °C for 12 h). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. M.p.: 42.0-43.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.59 (m, 4H), 7.48-7.45 (m, 4H), 7.38 (t, *J* = 7.3 Hz, 1H), 5.28 (s, 2H), 4.62 (t, *J* = 12.6 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -83.8 (s, 3F), -123.9 (t, *J* = 13.4 Hz, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 142.0, 140.5, 133.3, 129.0, 128.9, 127.6, 127.5, 127.2, 118.4 (m), 111.7 (m), 70.7, 62.4 (t, *J* = 27.8 Hz). IR (KBr): 3034, 2987, 2897, 1761, 1568, 1491, 1465, 1446, 1412, 1387, 1357, 1315, 1282, 1238, 1205, 1171, 1123, 1106, 1046, 969, 845, 826, 803, 786, 761, 731, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₃F₅NaO₃]⁺ ([M + Na]⁺): 383.0677; found: 383.0688.

[1,1'-Biphenyl]-4-ylmethyl (2,2,3,3,4,4,4-heptafluorobutyl) carbonate (CO-23)

White solid, 33.6 mg, 41% yield (at 40 °C for 12 h) or 36.9 mg, 45% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column

chromatography. M.p.: 42.2-43.9 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.59 (m, 4H), 7.48-7.44 (m, 4H), 7.38 (t, J = 7.3 Hz, 1H), 5.28 (s, 2H), 4.66 (t, J = 13.2 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -80.8 (t, J = 9.9 Hz, 3F), -121.0 (m, 2F), -127.7 (m, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 141.9, 140.5, 133.3, 129.0, 128.9, 127.6, 127.5, 127.2, 117.6 (m), 113.6 (m), 108.9 (m), 70.7, 62.6 (t, J = 27.2 Hz). IR (KBr): 3035, 2988, 2964, 2925, 2897, 2852, 1767, 1489, 1448, 1409, 1383, 1347, 1258, 1185, 1145, 1124, 1031, 963, 940, 904, 853, 792, 769, 739, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₈H₁₄F₇O₃]⁺ ([M + H]⁺): 411.0826; found: 411.0827.

[1,1'-Biphenyl]-4-ylmethyl (2,2-difluoroethyl) carbonate (CO-24)

White solid, 33.3 mg, 57% yield (at 40 °C for 12 h) or 34.5 mg, 59% yield (at 80 °C for 12 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 52.6-54.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.59 (m, 4H), 7.49-7.45 (m, 4H), 7.38 (t, *J* = 7.3 Hz, 1H), 5.99 (tt, *J* = 54.9, 4.0 Hz, 1H), 5.26 (s, 2H), 4.36 (td, *J* = 13.3, 4.0 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -126.0 (dt, *J* = 54.8, 13.3 Hz, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 141.8, 140.5, 133.6, 129.0, 128.9, 127.6, 127.5, 127.2, 112.4 (t, *J* = 214.5 Hz), 70.2, 65.6 (t, *J* = 30.4 Hz). IR (KBr): 3085, 3034, 2970, 2905, 2852, 1759, 1567, 1489, 1469, 1427, 1409, 1386, 1332, 1263, 1105, 1071, 1006, 931, 890, 850, 829, 784, 765, 738, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₄F₂NaO₃]⁺ ([M + Na]⁺): 315.0803; found: 315.0814.

[1,1'-Biphenyl]-4-ylmethyl (2,2,3,3-tetrafluoropropyl) carbonate (CO-25)

White solid, 27.4 mg, 40% yield (at 40 °C for 12 h) or 28.1 mg, 41% yield (at 80 °C for 24 h) or 26.7 mg, 39% yield (at 40 °C for 12 h using 2 equivalents of Et₃N as the base). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 56.0-57.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.59 (m, 4H), 7.48-7.44 (m, 4H), 7.37 (t, *J* = 7.4 Hz, 1H), 5.91 (tt, *J* = 53.1, 3.8 Hz, 1H), 5.27 (s, 2H), 4.55 (t, *J* = 12.5 Hz, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -124.4 (m, 2F), -138.0 (d, *J* = 53.6 Hz,

2F). ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 141.9, 140.5, 133.3, 129.0, 128.9, 127.6, 127.5, 127.2, 115.7 (m), 109.1 (m), 70.5, 63.0 (t, *J* = 29.9 Hz). IR (KBr): 3034, 2973, 2925, 2855, 1752, 1568, 1490, 1457, 1409, 1379, 1267, 1201, 1134, 1112, 1099, 1011, 967, 915, 835, 786, 766, 734, 696 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₄F₄NaO₃]⁺ ([M + Na]⁺): 365.0771; found: 365.0776.

[1,1'-Biphenyl]-4-ylmethyl ethyl carbonate (CO-26)

White solid, 17.9 mg, 35% yield (at 40 °C for 12 h) or 23.1 mg, 45% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. M.p.: 39.0-39.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.59 (m, 4H), 7.48-7.44 (m, 4H), 7.36 (t, *J* = 7.3 Hz, 1H), 5.21 (s, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 141.5, 140.7, 134.4, 128.8, 127.5, 127.4, 127.2, 69.2, 64.2, 14.3. IR (KBr): 3027, 2984, 2921, 2897, 2848, 1738, 1488, 1465, 1450, 1400, 1384, 1367, 1275, 1174, 1105, 1077, 996, 966, 946, 875, 853, 827, 793, 765, 743, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇O₃]⁺ ([M + H]⁺): 257.1172; found: 257.1178.

[1,1'-Biphenyl]-4-ylmethyl cyclohexyl carbonate (CO-27)

White solid, 21.1 mg, 34% yield (at 40 °C for 12 h) or 32.3 mg, 52% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 10 : 1 (v/v) as eluents for column chromatography. M.p.: 55.7-56.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.59 (m, 4H), 7.48-7.44 (m, 4H), 7.36 (t, *J* = 7.3 Hz, 1H), 5.20 (s, 2H), 4.66 (m, 1H), 1.95 (m, 2H), 1.77 (m, 2H), 1.59-1.28 (m, 6H). ¹³C NMR (126 MHz, CD₃CN) δ 154.5, 140.9, 140.4, 135.3, 128.9, 128.7, 127.6, 127.1, 127.0, 76.6, 68.5, 31.2, 25.0, 23.3. IR (KBr): 3075, 3030, 2949, 2919, 2855, 2845, 1737, 1485, 1461, 1390, 1256, 1094, 1072, 1033, 1009, 931, 847, 815, 791, 764, 742, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₀H₂₃O₃]⁺ ([M + H]⁺): 311.1642; found: 311.1652.

Colorless oil, 33.5 mg, 46% yield (at 40 °C for 12 h). Petroleum ether / EtOAc = 40 : 1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.59 (m, 4H), 7.48-7.43 (m, 4H), 7.36 (t, *J* = 7.4 Hz, 1H), 5.40 (t, *J* = 7.0 Hz, 1H), 5.21 (s, 2H), 5.09 (t, *J* = 6.4 Hz, 1H), 4.70 (d, *J* = 7.1 Hz, 2H), 2.12-2.06 (m, 4H), 1.73 (s, 3H), 1.69 (s, 3H), 1.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 143.3, 141.5, 140.7, 134.4, 131.9, 128.8, 128.8, 127.5, 127.3, 127.2, 123.7, 117.7, 69.2, 64.9, 39.5, 26.3, 25.7, 17.7, 16.6. IR (KBr): 3056, 3031, 2964, 2927, 2856, 1741, 1670, 1488, 1449, 1386, 1339, 1256, 1115, 1076, 1008, 925, 851, 823, 790, 762, 697 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₄H₂₈NaO₃]⁺ ([M + Na]⁺): 387.1931; found: 387.1935.

[1,1'-Biphenyl]-4-ylmethyl but-3-yn-1-yl carbonate (CO-29)

White solid, 19.6 mg, 35% yield (at 40 °C for 12 h) or 28.6 mg, 51% yield (at 80 °C for 24 h). Petroleum ether / EtOAc = 20 : 1 (v/v) as eluents for column chromatography. M.p.: 34.1-35.4 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.58 (m, 4H), 7.48-7.44 (m, 4H), 7.36 (t, *J* = 7.3 Hz, 1H), 5.22 (s, 2H), 4.28 (t, *J* = 7.0 Hz, 2H), 2.60 (td, *J* = 6.8, 2.4 Hz, 2H), 2.02 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 141.6, 140.6, 134.1, 128.9, 128.8, 127.5, 127.4, 127.2, 79.4, 70.3, 69.5, 65.6, 19.1. IR (KBr): 3293, 3057, 3031, 2963, 2922, 2851, 1744, 1601, 1488, 1453, 1396, 1372, 1260, 1108, 1075, 1009, 968, 940, 851, 820, 790, 763, 643 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₈H₁₇O₃]⁺ ([M + H]⁺): 281.1172; found: 281.1172.

6. ¹⁹F NMR and HPLC measurement for the mechanistic insights

6.1. ¹⁹F NMR analysis of the reaction mixture of (4-methoxyphenyl)methanol, 2 and BTMG at room temperature for 12 hours.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with (4-methoxyphenyl)methanol (0.2 mmol), BTMG (0.2 mmol, 1

equiv), and THF (1.5 mL) with vigorous stirring and cooled to -20 °C. A solution of $CF_3SO_2OCF_3$ (0.3 mmol, 1.5 equiv) in THF (0.5 mL) was quickly introduced. The mixture was reacted at room temperature for 12 h. PhF (0.2 mmol) was added as an internal standard. Then, the resulting mixture was measured by ¹⁹F NMR (see the spectrum below). *Note*: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

6.2. ¹⁹F NMR and HPLC analysis of the reaction mixture of 1a, 2 and Et₃N without 4a at room temperature for 2 hours.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with **1a** (0.2 mmol), Et₃N (0.2 mmol, 1 equiv), and CH₂Cl₂ (1 mL) with vigorous stirring. A solution of CF₃SO₂OCF₃ (0.2 mmol, 1 equiv) in CH₂Cl₂ (1 mL) was quickly introduced. The mixture was reacted at room temperature for 2 h. PhCF₃ (0.2 mmol) was added as an internal standard. Then, the resulting mixture was measured by ¹⁹F NMR (see the spectrum below).

Note: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

HPLC ($\lambda = 243$ nm, water/methanol (v/v) = 10:90)) analysis of the above reaction mixture before adding PhCF₃ (see the spectrum below).

6.3. ¹⁹F NMR analysis of the reaction mixture of 4a, 2 and Et₃N without 1a at room temperature for 2 hours.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with **4a** (0.2 mmol), Et₃N (0.2 mmol, 1 equiv), and CH₂Cl₂ (1 mL) with vigorous stirring. A solution of CF₃SO₂OCF₃ (0.2 mmol, 1 equiv) in CH₂Cl₂ (1 mL) was quickly introduced. The mixture was reacted at room temperature for 2 h. PhCF₃ (0.2 mmol) was added as an internal standard. Then, the resulting mixture was measured by ¹⁹F NMR (see the spectrum below). *Note*: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

6.4. ¹⁹F NMR and HPLC analysis of the reaction mixture of 1a, 4a, 2 and Et₃N at room temperature for 2 hours.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with **1a** (0.2 mmol), **4a** (0.2 mmol), Et₃N (0.2 mmol, 1 equiv), and

CH₂Cl₂ (1 mL) with vigorous stirring. A solution of CF₃SO₂OCF₃ (0.2 mmol, 1 equiv) in CH₂Cl₂ (1 mL) was quickly introduced. The mixture was reacted at room temperature for 2 h. PhCF₃ (0.2 mmol) was added as an internal standard. Then, the resulting mixture was measured by ¹⁹F NMR (see the spectrum below). *Note*: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

HPLC analysis of the above reaction mixture before adding PhCF₃ ($\lambda = 243$ nm, water/methanol (v/v) = 10:90))

6.5. ¹⁹F NMR and HPLC analysis of the reaction mixture of 1a, 4a, 2 and Et₃N at 40 °C for 12 hours.

Procedure: Under a nitrogen atmosphere, a sealed Schlenk tube (25 mL) was charged with **1a** (0.2 mmol), **4a** (0.2 mmol), Et₃N (0.2 mmol, 1 equiv), and CH₂Cl₂ (1 mL) with vigorous stirring. A solution of CF₃SO₂OCF₃ (0.2 mmol, 1 equiv) in CH₂Cl₂ (1 mL) was quickly introduced. The mixture was reacted at 40 $^{\circ}$ C for 12 h. PhCF₃ (0.2 mmol) was added as an internal standard. Then, the resulting mixture was measured by ¹⁹F NMR (see the spectrum below). *Note*: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

HPLC analysis of the above reaction mixture before adding PhCF₃ ($\lambda = 243$ nm, water/methanol (v/v) = 10:90))

6.6. ¹⁹F NMR spectrum of a solution of 4a (0.2 mmol) in CH₂Cl₂ (1 ml) that was maintained at room temperature for 2 hours using PhCF₃ (0.2 mmol) as an internal standard.

Note: The signals in the ¹⁹F NMR spectrum were assigned according to the data reported in the literature.¹⁶

6.7. ¹⁹F NMR spectrum of a solution of CF₃SO₃CF₃ (0.2 mmol) and Et₃N (0.2 mmol) in CH₂Cl₂ (1 mL) that was maintained at room temperature for 2 hours using PhCF₃ (0.2 mmol) as an internal standard.

References

[1] H.-X. Song, Z.-Y. Tian, J.-C. Xiao, C.-P. Zhang, Chem. Eur. J. 2020, 26, 16261.

[2] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed.; Butterworth Heinemann: Oxford, **2003**.

[3] J. Sheng, H.-Q. Ni, H.-R. Zhang, K.-F. Zhang, Y.-N. Wang, X.-S. Wang, *Angew. Chem. Int. Ed.* **2018**, *57*, 7634.

[4] Y. Su, G. Feng, Z.-Y. Wang, Q. Lan, X.-S. Wang, *Angew. Chem. Int. Ed.* **2015**, *54*, 6003.

[5] S. Stavber, M. Zupan, J. Org. Chem. 1991, 56, 7347.

[6] J. Chen, J.-H. Lin, J.-C. Xiao, Org. Lett. 2018, 20, 3061.

[7] L. An, Y.-L. Xiao, Q.-Q. Min, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 9079.

[8] K. G. Kulkarni, B. Miokovic, M. Sauder, G. K. Murphy, *Org. Biomol. Chem.* **2016**, *14*, 9907.

[9] G. Blessley, P. Holden, M. Walker, J. M. Brown, V. Gouverneur, Org. Lett. 2012, 14, 2754.

[10] S. Zhao, Y. Guo, Z. Su, W. Cao, C. Wu, Q.-Y. Chen, Org. Lett. 2020, 22, 8634.

[11] J. Xu, C. Peng, B. Yao, H.-J. Xu, Q. Xie, J. Org. Chem. 2022, 87, 6471.

[12] N. W. Goldberg, X. Shen, J. Li, T. Ritter, Org. Lett. 2016, 18, 6102.

[13] J. Guo, C. Kuang, J. Rong, L. Li, C. Ni, J. Hu, Chem. Eur. J. 2019, 25, 7259.

[14] M. K. Nielsen, C. R. Ugaz, W. Li, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 9571.

[15] H. Wang, C.-F. Liu, Z. Song, M. Yuan, Y. A. Ho, O. Gutierrez, M. J. Koh, ACS Catal. 2020, 10, 4451.

[16] (a) P. Švec, A. Eisner, L. Kolářová, T. Weidlich, V. Pejchal, A. Růžička, *Tetrahedron Lett.* 2008, 49, 6320. (b) M. A. Cismesia, S. J. Ryan, D. C. Bland, M. S. Sanford, *J. Org. Chem.* 2017, 82, 5020. (c) X. Jiang, Z. Deng, P. Tang, *Angew. Chem. Int. Ed.* 2018, 57, 292. (d) Y. Hashimoto, S. Hosokawa, F. Liang, Y. Suzuki, N. Dai, G. Tana, K. Eda, T. Kakiuchi, T. Okazoe, H. Harada, A. Tsuda, *J. Org. Chem.* 2021, 86, 9811.
7. NMR spectra of the products.

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

S40

S43

-213.4 -213.5 -213.6

-223.7 -223.8 -223.8 -223.9 -223.9 -223.9 -224.0 -224.0

.0 `F Cl^ F-11 $^{19}\mathsf{F}~\mathsf{NMR}$ (471 MHz, $\mathsf{CDCI}_3)$

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

-223.8 -223.9 -223.9 -224.0 -224.0 -224.1 -224.1

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -280 -280 fl (ppm)

-220.6 -220.7 -220.7 -220.8 -220.8 -220.8 -220.8

S59

174.0 174.1 174.1 174.1 174.1 174.1 174.1 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.3 174.2 174.3 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.1 174.2 174.1 174.2 174.1 174.2 174.1

178.5 178.6 178.6 178.6 178.6 178.6 178.6 178.7 178.6 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 178.6 178.7 179.7 179.7 179.7 179.7 179.7 179.7 179.7 179.7 179.7 179.7 179.7

73.5

 73.5

 73.5

о

CO-2 ¹⁹F NMR (471 MHz, CDCl₃)

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

-73.5 -73.5 -73.5

F3 CF₃ C \cap CO-4 $^{19}\mathrm{F}$ NMR (471 MHz, $\mathrm{CDCI}_3)$ -80 -100 fl (ppm) 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -160 -120 -140 -180 -200 -220 -240 -260 -280

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

73.5
73.5

ÇF₃ 0 CF3 // Ph′ CO-12 ¹⁹F NMR (471 MHz, CDCI₃) -100 fl (ppm) 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 **---**-80 -260 -280 -120 -140 -160 -180 -200 -220 -240

CF3 Ph CF₃ O.

CO-20 ¹⁹F NMR (471 MHz, CDCI₃)

90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

-154.0 140.5 140.5 127.6 127.6 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 1117.5 62.6 62.6

125.9 126.0 126.0 -126.1 -126.1

0 HF₂C² CO-24 `Ph $^{19}\mathsf{F}~\mathsf{NMR}$ (471 MHz, $\mathsf{CDCI}_3)$ 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 fl (ppm)

154.9 141.6 134.1 128.9 128.8 128.8 128.8 127.5 127.4 127.4 79.4 77.3 76.8 69.5 65.5

