## Supporting Information

# Ni-catalyzed C-F activation to construct C-P bond with P-P(O) and

## **P(O)OR** mediation

Jia Yang, \*<sup>a,†</sup> Lei Fan, <sup>a,†</sup> Chen Chen,<sup>b</sup> Mingyue Wang,<sup>a</sup> Bingqian Sun,<sup>a</sup> Shuai Wang,<sup>a</sup> Hong Zhong,<sup>a</sup> and Yongbo Zhou<sup>b</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China

<sup>b</sup> State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

<sup>†</sup>These authors contributed equally to this work..

E-mail: yangjia90@csu.edu.cn

## **Table of Contents**

| 1. General Information                                                                                    | S2      |
|-----------------------------------------------------------------------------------------------------------|---------|
| 2. Synthesis of Starting Materials                                                                        | S2–S3   |
| 3. Experimental Procedures                                                                                | S3–S4   |
| 4. Mechanistic Studies                                                                                    | S5–S21  |
| 5. Reaction Optimization                                                                                  | S22–S23 |
| 6. Characterization and Analytical Data of Products 3                                                     | S24–S31 |
| 7. References                                                                                             | S31     |
| 8. Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>19</sup> F NMR and <sup>31</sup> P NMR spectra | S32–S68 |

## 1. General Information

All reactions were carried out in oven-dried Schlenk tubes under N<sub>2</sub> atmosphere. Dry solvents were obtained by purification according to standard methods or purchased from commercial suppliers. Reagents were used as received unless otherwise noted. All solvents and bases were stored inside a N<sub>2</sub>-filled glove box. Column chromatography was performed using Silica Gel 60 (particle size 38–75  $\mu$ m). The pure products were obtained by means of column chromatography. <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>31</sup>P NMR and <sup>19</sup>F NMR data were acquired on a 400 MHz spectrometer (400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C, 162 MHz for <sup>31</sup>P NMR spectroscopy and 377 MHz for <sup>19</sup>F NMR spectroscopy). Chemical shifts for <sup>1</sup>H NMR are referred to internal Me<sub>4</sub>Si (0 ppm) and reported as follows: chemical shift ( $\delta$  ppm), multiplicity, coupling constant (Hz) and integration. Data for <sup>31</sup>P NMR were relative to H<sub>3</sub>PO<sub>4</sub> (85% solution in D<sub>2</sub>O, 0 ppm). Gas chromatography monitoring was performed using Shimadzu GC-2014C spectrometer (FID). Mass spectra were measured on a Shimadzu GCMS-QP2010 plus spectrometer (EI). The high resolution ESI mass spectra were recorded on a Waters Xevo G2-XS.

### 2. Synthesis of the Starting Materials

P(O)-H compounds **1a-1g** are commercially available. Aryl fluorides **2a-2e**, **2g-2n** and **2o** are commercially available. **2f**<sup>1</sup> and **2p**<sup>2</sup> were known compounds which were synthesized according to the reported method. Aryl fluoride **2f** was prepared by the  $Pd(OAc)_2$ -catalyzed Mizoroki-Heck arylation using styrene and 4-fluoroiodobenzene.

*N*-Bn-protected paroxetine **20** was prepared through the reaction of Paroxetine hydrochloride hemihydrate (1 mmol, 365.5 mg), benzyl bromide (1.5 equiv.) and  $K_2CO_3$  (4.0 equiv.) in MeCN. The reaction mixture in pressure vessel was placed in an oil bath at 100 °C and was allowed to stir for 12 hours. Upon completion (monitored by TLC), the solution was cooled to 22 °C. H<sub>2</sub>O was then added and the organic material was extracted with EtOAc. The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The unpurified product mixture was subjected to flash silica gel column chromatography (EtOAc:hexane = 1:4) to afford **20** as a white solid.<sup>2</sup>



Figure S1. List of substrates for catalytic reactions

(3S, 4R)-3-((benzo[d][1, 3]dioxol-5-yloxy)methyl)-1-benzyl-4-(4-fluorophenyl)piperidine (2o). White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.35 (s, 4H), 7.28–7.25 (m, 1H), 7.17–7.14 (m, 2H), 6.98–6.93 (m, 2H), 6.61 (d, *J* = 9.2 Hz, 1H), 6.31 (s, 1H), 6.11–6.09 (m, 1H), 5.87 (d, *J* = 1.0 Hz, 2H), 3.65–3.42 (m, 4H), 3.24 (d, *J* = 10.8 Hz, 1H), 2.99 (d, *J* = 10.8 Hz, 1H), 2.50–2.45 (m, 1H), 2.22 (s, 1H), 2.12–2.04 (m,2H), 1.90–1.77 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.5 (d, *J*<sub>C-F</sub> = 246.2 Hz), 154.4, 148.1, 141.6, 139.9 (d, *J*<sub>C-F</sub> = 2.9 Hz), 138.2, 129.3, 128.8 (d, *J*<sub>C-F</sub> = 7.6 Hz), 128.3, 127.1, 115.3 (d, *J*<sub>C-F</sub> = 20.9 Hz), 107.8, 105.6, 101.1, 98.0, 69.7, 63.4, 57.6, 53.9, 44.1, 42.2, 34.4. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -116.7.

## 3. Experimental Procedures

Typical procedure for C-F phosphorylation of aryl fluorides



Under N<sub>2</sub> atmosphere, 0.2 mmol diphenylphosphine oxide **1a**, 0.4 mmol 4-fluoroanisole **2c**, 5 mol% Ni(COD)<sub>2</sub>, 0.3 mmol *t*-BuOK and 2.0 mL toluene were charged into a 10 mL schlenk tube, and

the mixture was stirred at 130 °C for 18 h. After removal of the volatile, the residues were passed through a short silica chromatography (particle size  $38-75 \mu m$ , pether/ethyl acetate as eluent) to afford analytically pure organophosphorus compounds **3ac**.

#### Preparation of 3ac at 5 mmol scale

Under N<sub>2</sub> atmosphere, 10 mmol (1.261 g) 4-fluoroanisole **2c**, 5 mmol (1.011 g) diphenylphosphine oxide **1a**, 5 mol% (68.8 mg) Ni(COD)<sub>2</sub>, 7.5 mmol (0.841 g) *t*-BuOK and 20 mL toluene were heated at 130 °C for 18 h. After removal of the volatile, the crude product was passed through a short SiO<sub>2</sub> column using EtOAc as an eluent to give the spectroscopically pure **3ac** in 75% yield (1.156 g).

#### Preparation of tetraphenyldiphosphine monoxide

To a 50 mL round bottom schlenk flask, 20 mmol (4.320g) methoxydiphenylphosphine and 20 mmol (4.400g) chlorodiphenylphosphine dissolved in degassed benzene (10 mL) was added under an argon atmosphere, and the mixture was refluxed for 3 h. The reaction mixture was filtered and washed with benzene under an argon atmosphere to give the product in 86% yield.<sup>3</sup>

### Preparation of Ph<sub>2</sub>P(O)OBu-t

Potassium tert-butoxide (5.5 mL, 1.0 M in THF) was added dropwise to diphenylphosphine chloride (1.0 mL, 1.22 g, 5.5 mmol) at 0 °C, the ice bath was removed and stirring continued at room temperature After 2 hours, the reaction solution was separated by filtration and then added with 30% hydrogen peroxide solution for oxidation. The mixture was extracted with  $CH_2Cl_2$ . After removing the volatiles, the crude product was passed through a short  $SiO_2$  column using EtOAc/PE as an eluent to give the spectroscopically pure  $Ph_2P(O)OBu$ -*t* in 75% yield (0.452g).<sup>4</sup>

## 4. Mechanistic Studies

## <sup>31</sup>P NMR spectra of intermediate and product 3 in toluene/ C<sub>7</sub>D<sub>8</sub>



Figure S3. <sup>31</sup>P NMR spectra of naphthalen-1-yldiphenylphosphine oxide 3aa and (4-

#### Methoxyphenyl)diphenylphosphine oxide 3ac in toluene/C7D8



Figure S4. <sup>31</sup>P NMR spectra of diphenylphosphine (Ph<sub>2</sub>PH) and diphenylphosphine potassium salt (Ph<sub>2</sub>PK) in THF/C<sub>7</sub>D<sub>8</sub>

#### <sup>31</sup>P NMR spectra of the reaction mixture in toluene/ C<sub>7</sub>D<sub>8</sub>

General procedure: Under N<sub>2</sub> atmosphere, 0.1 mmol 1, 0.15 mmol 2, 5 mol% Ni(COD)<sub>2</sub>, 0.15 mmol *t*-BuOK and 1.0 mL toluene were charged into a 10 mL schlenk tube, and part of the reaction solution was added to the NMR tube with the adjunction of appropriate amount of deuterated toluene in the glove box for NMR monitor experiment.



Figure S5. (a) 1a; (b) 1a with *t*-BuOK; (c) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK; (d) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at RT; (e) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at RT for 2 h; (f) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at 50 °C for 3 min; (g) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at 100 °C for 3 min; (h) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at 120 °C for 3 min; (i) 1a, 5 mol% Ni(COD)<sub>2</sub> with *t*-BuOK and 2a at 130 °C for 2 h.



Figure S6. <sup>31</sup>P NMR spectra of the control experiments in toluene/C<sub>7</sub>D<sub>8</sub>

Several control experiments were conducted, and the reactions were monitored by <sup>31</sup>P NMR spectroscopy (Figure S7–S9). As shown in Figure S5b, the treatment of **1a** (0.1 mmol,  $\delta$  16.8 ppm) with *t*-BuOK (1.5 equiv) caused the formation of white precipitates in toluene at room temperature. The <sup>31</sup>P NMR analysis of the suspension was clearly indicative of the formation of potassium phosphinite ( $\delta$  87.5 ppm) (Figure S6).<sup>5</sup> The addition of Ni catalyst (5 mol% Ni(COD)<sub>2</sub>) causes the decomposition of potassium phosphinite back to **1a**, with the gradual disappearance of solids in the reaction solution and the color from colorless transparent to orange (Figure S5,S6).



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

**Figure S7.** <sup>31</sup>P NMR spectra of the reaction mixture in toluene/ $C_7D_8$  at room temperature Further addition of 1-fluoronaphthalene **2a** to the reaction solution resulted in the rapidly formation of tetraphenyldiphosphine monoxide **A** with two doublets at 33.4 and -24.1 ppm appearing in the <sup>31</sup>P NMR spectrum (Figure S7). When the reaction time was extended to 2 hours at room temperature, intermediate **A** remained stable and the peak of **1a** decreased. Heating the reaction mixture at 50 °C for 3 min lead to the decomposition of **A**, with the signals of Ph<sub>2</sub>POK and Ph<sub>2</sub>PK appeared in <sup>31</sup>P NMR spectrum (Figure S8). When the temperature was raised to 100 °C, the C–F phosphorylation products **3aa** of appeared on the phosphorus spectrum, and a new peak at 24.3 ppm was observed which could be Ph<sub>2</sub>P(O)OBu-*t*.



**Figure S8.** <sup>31</sup>P NMR spectra of the reaction mixture at different temperature for 3min When the reaction temperature is above 120 °C, the main signal peak in the <sup>31</sup>P NMR spectra is the product **3aa** (Figure S9).



Figure S9. <sup>31</sup>P NMR spectra of the reaction mixture at 120 °C and 130 °C



**Figure S10.** Effects of different fluorobenzene dosage on the formation of intermediates (0.25-0.5-1.0 equiv 1-Nap-F)

**Effect of the amount of aryl fluoride on the formation of intermediate A**. As can be seen from Figure S10, when the dosage of fluorobenzene is less than 1 equivalent, no signals of intermediate **A** were appeared even if the reaction time is prolonged to 3 h.

Effect of different aryl fluorides on the formation of intermediate. When 2a was replaced by 4-fluorobenzonitrile 2b, intermediate A can also be produced smoothly, accompanied with the signals of  $Ph_2P(O)OBu$ -*t* appeared in the <sup>31</sup>P NMR spectrum (Figure S11).



1.5 equiv 4-CN-Ph-F, RT-3 min



Figure S11. The formation of intermediates A promoted by 4-F-PhCN

Effect of different P(O)H compounds on the formation of intermediate. When 1a was replaced by 1b or 1c, kinds of tetraarylphosphine monoxide were produced in the promotion of 2a, *t*-BuOK and Ni(COD)<sub>2</sub>. Furthermore, dicyclohexylphosphine oxide 1d transformed to tetracyclohexylphosphine monoxide smoothly in similar conditions (Figure S12).

$$\begin{array}{ccc}
 & 1-\text{Nap-F} (1.5 \text{ equiv}) \\
 & O \\
 & R-P-H + t-BuOK \xrightarrow{\text{Ni(COD)}_2 (5 \text{ mol}\%)} & O \\
 & R-P-H + t-BuOK \xrightarrow{\text{Ni(COD)}_2 (5 \text{ mol}\%)} & R-P-P-R + t-BuO-P-R + ? \\
 & R \\$$



Figure S12. The production of phosphine monoxide through different secondary phosphine oxide The formation of intermediate B from inactive aryl fluorides. For the inactive monocyclic aryl fluoride, 4-fluoroanisole 2c, only one peak of the signals of Ph<sub>2</sub>P(O)OBu-t B was detected by prolonging the reaction time to 2h at room temperature (Figure S13, S14).



Figure S13. (a) 1a; (b) 1a with 1.5 equiv *t*-BuOK; (c) 1a, 5 mol% Ni(COD)<sub>2</sub> with 1.5 equiv *t*-BuOK; (d) 1a, 5 mol% Ni(COD)<sub>2</sub> with 1.5 equiv *t*-BuOK and 2c at RT; (e) 1a, 5 mol% Ni(COD)<sub>2</sub> with 1.5 equiv *t*-BuOK and 2c at 50 °C for 3 min; (f) 1a, 5 mol% Ni(COD)<sub>2</sub> with 1.5 equiv *t*-BuOK and 2c at 100 °C for 3 min; (g) 1a, 5 mol% Ni(COD)<sub>2</sub> with 1.5 equiv *t*-BuOK and 2c at 130 °C for 10 h.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{A-MeO-Ph-F (1.5 equiv)} \\ \text{Ph-P-H} & + & t\text{-BuOK} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ni(COD)}_2 (5 \text{ mol\%}) \\ \hline \text{bl} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph-P-OBu-t} \\ \text{Ph} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph-P-OBu-t} \\ \begin{array}{c} \text{Ph} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph-P-OBu-t} \\ \text{Ph} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph-P-OBu-t} \\ \text{Ph} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph-P-OBu-t} \\ \begin{array}{c} \text{Ph} \end{array} \xrightarrow[]{} \begin{array}{c} \text{Ph} \end{array}$$



Figure S15. Reaction mixture of 1a, 2c, *t*-BuOK with Ni catalyst at different temperature (4-Methoxyphenyl)diphenyl-phosphine oxide **3ac** was afforded at 130 °C via the catalytic C-F/P-H cross-coupling reactions (Figure S15).



Figure S16. The formation of Ph<sub>2</sub>P(O)OBu-*t* through 4-F-biphenyl

Similar to 2c, 4-F-biphenyl 2d could promote the formation of  $Ph_2P(O)OBu$ -*t* at room temperature or 50 °C (Figure S16). In addition, the formation of  $(EtO)_2P(O)OBu$ -*t* took place in the presence of 1e, 2a, *t*-BuOK and Ni(COD)<sub>2</sub> (Figure S17).<sup>5</sup>



Figure S17. The formation of phosphate through diethyl phosphite at RT for 1h

#### Decomposition and formation of A

**Coordination experiments between intermediate and Ni catalyst**. When the catalytic amount  $Ni(COD)_2$  of is used, the <sup>31</sup>P NMR spectrum is almost unchanged compared with that of pure intermediate **A**. A new signal peak appeared at 124.3 ppm through the addition of 1 equivalent catalyst. Further increasing the temperature to 60 °C could enhance the coordination between **A** and Ni catalyst (Figure S18).



Figure S18. The reaction of A with catalyst

**Decomposition of A.** At room temperature, tetraphenyldiphosphine monoxide decomposed rapidly in the promotion of *t*-BuOK, forming Ph<sub>2</sub>POK, Ph<sub>2</sub>P(O)OBu-*t*, Ph<sub>2</sub>PK and Ph<sub>2</sub>P(O)Bu-*t*. When **2a**, and catalytic amount of Ni(COD)<sub>2</sub> was added, a slight change was observed in the <sup>31</sup>P NMR spectroscopy. Signals of Ph<sub>2</sub>P(O)Bu-*t* disappeared and a new peak at -22.2 ppm was appeared which may be the coordinative complex of Ni(COD)<sub>2</sub> with Ph<sub>2</sub>PK (Figure S19).



Figure S19. The decomposition of A

Formation of A.  $Ph_2PK$  reacted with 1a could produce trace amount of tetraphenyldiphosphine monoxide A, while when  $Ni(COD)_2$  was added, the reaction efficiency was improved, demonstrating Ni catalyst performed crucial impact in the production of A (Figure S20).

$$\begin{array}{c} O \\ Ph-P-H + Ph-P-K \\ Ph \end{array} \xrightarrow{h} \begin{array}{c} Ni(COD)_2 (5 \text{ mol}\%) \\ toluene (1 \text{ mL}), \text{ RT} \end{array} \xrightarrow{h} \begin{array}{c} O \\ Ph-P-P-P-P \\ Ph \end{array}$$

$$\begin{array}{c} O \\ H \\ Ph \end{array}$$

$$\begin{array}{c} O \\ H \\ Ph \end{array}$$

$$\begin{array}{c} O \\ H \\ Ph \end{array}$$

$$\begin{array}{c} O \\ Ph \\ Ph \end{array}$$

$$\begin{array}{c} Ph \\ Ph \\ Ph \end{array}$$

$$\begin{array}{c} O \\ Ph \\ Ph \\ Ph \end{array}$$

$$\begin{array}{c} O \\ Ph \\ Ph \\ Ph \end{array}$$

$$\begin{array}{c} O \\ Ph \\ Ph \\ Ph \end{array}$$



Figure S20. The formation of intermediate A through 1a and Ph<sub>2</sub>PK



Figure S21. The reaction of H<sub>2</sub>O and Ph<sub>2</sub>PK

The reaction of  $Ph_2PK$  with  $H_2O$  was monitored by <sup>31</sup>P NMR spectroscopy,  $Ph_2POK$ ,  $Ph_2P(O)H$  and  $Ph_2PH$  were observed (Figure S21).

Intermediate A can be formed when  $Ph_2PK$  and  $Ph_2P(O)OBu$ -*t* was mixed in toluene for a few minutes, which decomposed with the prolongation of reaction time (Figure S22).



Figure S22. The reaction of Ph<sub>2</sub>P(O)OBu-*t* with Ph<sub>2</sub>PK

### Reaction of A with 2a.

A decomposed rapidly in the presence of *t*-BuOK, and the cross-coupling reaction took place between **A** and **2a** with trace amount of the C–F phosphorylation product were detected at room temperature for 15 min. When the temperature was improved to 130 °C, both pentavalent and trivalent phosphorus product peaks appear in the <sup>31</sup>P NMR spectrum. In addition to the corresponding C–F functionalization products, a small amount of triphenyl phosphine was detected under the conditions of Ni catalysis (Figure S23).



Figure S23. The reaction of A, 2a and t-BuOK with or without catalyst

Performing the reaction of **A** (0.05 mmol), **2a** (0.15 mmol), and *t*-BuOK (0.15 mmol) in toluene at room temperature, trace amount of C–F activation products were prepared. Raising the temperature to 130 °C delivered product **3aa** in 42% yield, **3aa'** in 9% yield, respectively. Similar results were obtained in the presence of Ni(COD)<sub>2</sub>, indicating that Ni catalyst presented unconspicuous promotion in the C–F phosphorylation between **A** and **2a** (Table S1).

| Table S1 Reaction of A with aryl fluc | orides |
|---------------------------------------|--------|
|---------------------------------------|--------|

| O<br>Ph-P-<br>Ph | -P-Ph + 1-N<br>Ph 2a | lap-F <u>toluene</u> | <sup>12</sup> (5 mol%)<br>(1.5 equiv)<br>(1 mL), 15h ► Ph- | O<br>-P-A<br>Ph | vr + Pi | Ar<br>⊐−Ṕ<br>Ph |
|------------------|----------------------|----------------------|------------------------------------------------------------|-----------------|---------|-----------------|
|                  | <b>A</b> (0.15 r     | mmol) $Ar = 1$       | -мар                                                       | 3aa             |         | 3aa'            |
| ontru            | Niloot               | ۸                    | <b>-</b>                                                   |                 | yield   | d (%)           |
| entry            | INI Cal.             | A                    | Temp.                                                      |                 | 3aa     | 3aa'            |
| 1                |                      | 0.1 mmol             | RT                                                         |                 | trace   | trace           |
| 2                | Ni(COD) <sub>2</sub> | 0.1 mmol             | 130°C                                                      |                 | 39%     | 19%             |
| 3 <sup>a</sup>   |                      | 0.05 mmol            | 130°C                                                      |                 | 41%     | 12%             |
| 4 <sup>a</sup>   | Ni(COD) <sub>2</sub> | 0.05 mmol            | 130°C                                                      |                 | 42%     | 9%              |

<sup>a</sup> 3.0 equiv *t*-BuOK.

In addition, intermediate **B** reacted with **2a** smoothly in the promotion of *t*-BuOK and NaH with Ni(COD)<sub>2</sub>, afforded **3aa** in 75% yield (Table S2, entry 1). However, 48% yield of C-F phosphorylation product **3ac** was prepared via the reaction of **1a** with 4-fluoroanisole **2c**, which exhibited a significant decrease of the reactivity without the use of Ni(COD)<sub>2</sub>, indicating that Ni catalyst could reduce the activation energy of the inactive C-F bond (Table S2).

Table S2 Reaction of B with aryl fluorides

| t Bul       | $O_{\mu}$                   | Ni(COD)<br><i>t</i> -BuOK                | ) <sub>2</sub> (5 mol%)<br>(1.5 equiv) | O<br><sup>II</sup><br>Ph—P–Ar |  |
|-------------|-----------------------------|------------------------------------------|----------------------------------------|-------------------------------|--|
| <b>B</b> (0 | Ph<br>D.1 mmol) <b>2</b> (0 | NaH (1<br>.15 mmol) <sup>toluene (</sup> | 1.0 equiv)<br>(1 mL), 18h              | Ph<br>3                       |  |
| entry       | Ni cat.                     | Ar                                       | Temp.                                  | 3                             |  |
| 1           | Ni(COD) <sub>2</sub>        | 1-Nap                                    | 130°C                                  | 75%                           |  |
| 2           |                             | 1-Nap                                    | 130°C                                  | 72%                           |  |
| 3           | Ni(COD) <sub>2</sub>        | 1-Nap                                    | 30°C                                   | trace                         |  |
| 4           | Ni(COD) <sub>2</sub>        | 4-MeO-Ph                                 | 130°C                                  | 48%                           |  |
| 5           |                             | 4-MeO-Ph                                 | 130°C                                  | 9%                            |  |
| 6           | Ni(COD) <sub>2</sub>        | 4-MeO-Ph                                 | 30°C                                   | n.d.                          |  |
|             |                             |                                          |                                        |                               |  |

Through gas chromatography monitoring, it was found that tert butyl alcohol could be detected in the reaction solution at room temperature or 120 °C (Table S3).

#### Table S3 Detection of B, B' and t-BuOH

| <b>1a</b><br>(0.1 mm | Ni(C0<br>+ Ar-F <u>t-Bur</u><br>nol) (0.15 mmol) | DD) <sub>2</sub> (5 mol%<br>OK (1.5 equiv<br>toluene | %)<br>′) O<br>→ t-BuO-P-F<br>Ph<br>B | νh + <i>t</i> -Βι | uOH <sup>-</sup> | OBu- <i>t</i><br>Ph <sup>- P</sup> - Ph<br><b>B'</b> |
|----------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------|-------------------|------------------|------------------------------------------------------|
| entry                | Ni cat. (5 mol%)                                 | Ar                                                   | Temp.                                | В                 | В'               | t-BuOH                                               |
| 1                    | Ni(COD) <sub>2</sub>                             | 1-Nap                                                | RT, 10min                            | trace             |                  | 1                                                    |
| 2                    | Ni(COD) <sub>2</sub>                             | 1-Nap                                                | 120ºC, 2h                            | trace             | V                | √                                                    |
| 3                    | Ni(COD) <sub>2</sub>                             | 4-MeO-Ph                                             | RT, 10min                            | V                 |                  | √                                                    |
| 4                    | Ni(COD) <sub>2</sub>                             | 4-MeO-Ph                                             | 120ºC, 2h                            | $\checkmark$      |                  | √                                                    |

## Competitive experiment.

The mixture of 0.1 mmol **1a**, 0.1 mmol **1e**, 0.3 mmol **2a**, 10 mol% Ni(COD)<sub>2</sub>, 0.3 mmol *t*-BuOK in 2 mL toluene was heated in 130 °C for 18 h, and the yield of the two corresponding products decreased significantly (**3aa** in 25% GC yield, **3aa**' in 8% GC yield, **3ea** in 3% GC yield). The presence of the two P(O)–H compounds is not conductive to the formation of the intermediate and

the activation of C–F bond. <sup>31</sup>P NMR detection of the competitive reaction showed that the signals of Ph<sub>2</sub>POK is dominant when the reaction mixture was heated in 130°C for 2 h or 18 h, while trace amount of Ph<sub>2</sub>POK was presented in NMR spectra without the addition of  $(EtO)_2P(O)H$  (Figure S9). In terms of the effect of competitive reaction, the reaction between diphenyl phosphine oxide and 1-Nap-F is dominant in this competitive system, and the role of diethyl phosphite in the mixed system will continue to be explored.



Figure S24. <sup>31</sup>P NMR spectra of competitive reactions

## 5. Reaction Optimization

|                 | F<br>+<br>2a<br>(0.15 mmol) | Ph <sub>2</sub> P(O)H -<br><b>1a</b><br>(0.1 mmol) | Ni(COD)₂ (5 mol%)<br>t-BuOK (1.5 equiv)<br>toluene (1 mL) | P(O)Ph <sub>2</sub> |          |
|-----------------|-----------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------|----------|
| Entry           | Catalyst                    | Base                                               | Time                                                      | Temp(°C)            | Yield(%) |
| 1               |                             | t-BuOK                                             | 18                                                        | 140                 | 77       |
| 2               |                             | t-BuOK                                             | 18                                                        | 130                 | 78       |
| 3               |                             | t-BuOK                                             | 18                                                        | 110                 | 67       |
| 4               |                             | t-BuOK                                             | 18                                                        | 90                  | 26       |
| 5               |                             | t-BuOK                                             | 18                                                        | 60                  | n.d.     |
| 6               |                             | t-BuOK                                             | 12                                                        | 130                 | 51       |
| 7               |                             | t-BuOK                                             | 6                                                         | 130                 | 17       |
| 8               |                             | t-BuOK                                             | 2                                                         | 130                 | 6        |
| 9               |                             | t-BuONa                                            | u 18                                                      | 130                 | n.d.     |
| 10              | Ni(COD) <sub>2</sub>        |                                                    | 18                                                        | 130                 | n.d.     |
| 11              | Ni(COD) <sub>2</sub>        | <i>t</i> -BuOK                                     | 18                                                        | 130                 | 91       |
| 12              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 110                 | 85       |
| 13              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 100                 | 83       |
| 14              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 80                  | 65       |
| 15              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 40                  | trace    |
| 16              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 12                                                        | 130                 | 83       |
| 17              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 10                                                        | 130                 | 71       |
| 18              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 6                                                         | 130                 | 58       |
| 19              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 2                                                         | 130                 | 37       |
| 20              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 1                                                         | 130                 | 27       |
| 21              | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 15min                                                     | 130                 | 13       |
| 22ª             | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 130                 | 80       |
| 23 <sup>b</sup> | Ni(COD) <sub>2</sub>        | t-BuOK                                             | 18                                                        | 130                 | 35       |

Table S4 Ni-catalyzed cross-coupling reactions of 1a with 2a

<sup>*a*</sup> 1.0 equiv base. <sup>*b*</sup> 0.5 equiv base.

|                        | F                                      |                                 | <b>Ni(COD)₂</b> (5 mol%)<br><i>t</i> -BuOK (1.5 equiv) | Q<br>P<br>P |                       |
|------------------------|----------------------------------------|---------------------------------|--------------------------------------------------------|-------------|-----------------------|
|                        | MeO +                                  | Ph <sub>2</sub> P(O)H           | toluene (1 mL), 18h                                    | MeO Ph      |                       |
|                        | 2c                                     | 1a                              |                                                        | 3ac         |                       |
|                        | (0.1 mmol)                             | (0.1 mmol)                      |                                                        |             |                       |
| Entry                  | Catalyst                               | Base                            | Solvent                                                | Temp(°C)    | Yield(%) <sup>b</sup> |
| 1                      | Ni(COD) <sub>2</sub>                   | t-BuON                          | a toluene                                              | 120         | 46                    |
| 2                      | Ni(COD) <sub>2</sub> /PPh <sub>3</sub> | t-BuON                          | a toluene                                              | 120         | 46                    |
| 3                      | Ni(COD) <sub>2</sub> /dppp             | t-BuON                          | a toluene                                              | 120         | 33                    |
| 4                      | Ni(COD) <sub>2</sub> /dppf             | t-BuON                          | a toluene                                              | 120         | 40                    |
| 5                      |                                        | t-BuON                          | a toluene                                              | 120         | n.d.                  |
| 6                      | Ni(COD) <sub>2</sub>                   |                                 | toluene                                                | 120         | n.d.                  |
| 7                      | Ni(COD) <sub>2</sub>                   | t-BuOK                          | toluene                                                | 120         | 65                    |
| 8                      | Ni(COD) <sub>2</sub>                   | t-BuOL                          | i toluene                                              | 120         | 14                    |
| 9                      | Ni(COD) <sub>2</sub>                   | Cs <sub>2</sub> CO <sub>3</sub> | toluene                                                | 120         | n.d.                  |
| 10                     | Ni(COD) <sub>2</sub>                   | K <sub>3</sub> PO <sub>4</sub>  | toluene                                                | 120         | n.d.                  |
| 11                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | dioxane                                                | 120         | 57                    |
| 12                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | THF                                                    | 120         | 46                    |
| 13                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | DMA                                                    | 120         | n.d.                  |
| 14                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | DMF                                                    | 120         | n.d.                  |
| 15                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | toluene                                                | 100         | 18                    |
| 16                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | toluene                                                | 130         | 70                    |
| 17                     | Ni(COD) <sub>2</sub>                   | t-BuOK                          | toluene                                                | 140         | 66                    |
| $18^{a}$               | Ni(COD) <sub>2</sub>                   | t-BuOK                          | toluene                                                | 130         | 76                    |
| <b>19</b> <sup>b</sup> | Ni(COD) <sub>2</sub>                   | t-BuOk                          | toluene                                                | 130         | 81                    |
| 20                     |                                        | t-BuOK                          | toluene                                                | 150         | n.d.                  |

Table S5 Ni-catalyzed cross-coupling reactions of 4-fluoroanisole with 1a

<sup>*a*</sup> 0.15 mmol of **2a**. <sup>*b*</sup> 0.2 mmol of **2a**.

### 6. Characterization and Analytical Data of Products 3



Naphthalen-1-yldiphenylphosphine oxide (3aa).<sup>6</sup> Yield: 91%, 60 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  8.58 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.71–7.66 (m, 4H), 7.57–7.44 (m, 8H), 7.42–7.36 (m, 1H), 7.337.27 (m, 1H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  132.9 (d,  $J_{C-P}$  = 10.2 Hz), 132.8 (d,  $J_{C-P}$  = 11.9 Hz), 132.7 (d,  $J_{C-P}$  = 8.0 Hz), 132.3 (d,  $J_{C-P}$  = 3.0 Hz), 131.7 (d,  $J_{C-P}$  = 104.3 Hz), 131.1 (d,  $J_{C-P}$  = 9.8 Hz), 130.9 (d,  $J_{C-P}$  = 2.7 Hz), 127.84 (d,  $J_{C-P}$  = 101.6 Hz), 127.75 (d,  $J_{C-P}$  = 0.9 Hz), 127.6 (d,  $J_{C-P}$  = 12.1 Hz), 126.6 (d,  $J_{C-P}$  = 5.7 Hz), 126.3, 125.5, 123.1 (d,  $J_{C-P}$  = 14.2 Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  32.49. MS (EI): 328.



**4-(Diphenylphosphoryl)benzonitrile (3ab)**.<sup>7</sup> Yield: 50%, 30 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$ 7.75–7.66 (m, 4H), 7.59–7.49 (m, 6H), 7.43–7.39 (m, 4H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  138.4 (d,  $J_{C-P} = 98.7$  Hz), 132.63 (d,  $J_{C-P} = 9.0$  Hz), 132.60 (d,  $J_{C-P} = 3.1$  Hz), 132.03 (d,  $J_{C-P} = 12.0$  Hz), 131.99 (d,  $J_{C-P} = 9.9$  Hz), 131.1 (d,  $J_{C-P} = 104.9$  Hz), 128.9 (d,  $J_{C-P} = 12.2$  Hz), 117.9, 115.6 (d,  $J_{C-P} = 1.9$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  28.00. MS (EI): 302.



**Diphenyl(4-(trifluoromethyl)phenyl)phosphine oxide (3ae)**.<sup>6</sup> Yield: 26%, 18 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.85–7.80 (m, 2H), 7.74–7.64 (m, 6H), 7.60–7.56 (m, 2H), 7.51– 7.47 (m, 4H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  137.2 (d,  $J_{C-P} = 100.5$  Hz), 133.7 (dq,  $J_{C-P} = 2.8$  Hz,  $J_{C-F} = 32.6$  Hz), 132.6 (d,  $J_{C-P} = 10.0$  Hz), 132.4 (d,  $J_{C-P} = 2.7$  Hz), 132.0 (d,  $J_{C-P} = 9.9$  Hz), 131.6 (d,  $J_{C-P} = 104.5$  Hz), 128.7 (d,  $J_{C-P} = 12.3$  Hz), 125.3 (dq,  $J_{C-P} = 11.5$  Hz,  $J_{C-F} = 3.7$  Hz), 123.6 (q,  $J_{C-F} = 271.4$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  28.08. MS (EI): 345.



(1,1'-Biphenyl)-4-yldiphenylphosphine oxide (3ad).<sup>6</sup> Yield: 76%, 54 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.77–7.64 (m, 8H), 7.61–7.52 (m, 4H), 7.50–7.43 (m, 6H), 7.40–7.36 (m, 1H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  144.8 (d,  $J_{C-P} = 2.9$  Hz), 139.9 (d,  $J_{C-P} = 0.9$  Hz), 132.6 (d,  $J_{C}$ . <sub>P</sub> = 10.1 Hz), 132.6 (d,  $J_{C-P} = 105.4$  Hz), 132.1 (d,  $J_{C-P} = 9.8$  Hz), 132.0 (d,  $J_{C-P} = 2.8$  Hz), 131.1 (d,  $J_{C-P} = 104.6$  Hz), 129.0, 128.6 (d,  $J_{C-P} = 12.1$  Hz), 128.5 (d,  $J_{C-P} = 12.0$  Hz), 127.7 (d,  $J_{C-P} = 104.8$  Hz), 127.3 (d,  $J_{C-P} = 13.7$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.05. MS (EI): 354.



(E)-diphenyl(4-styrylphenyl)phosphine oxide (3af).<sup>8</sup> Yield: 67%, 51 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.61–7.52 (m, 6H), 7.47–7.32 (m, 10H), 7.23 (d, J = 7.6 Hz, 2H), 7.17–7.13 (m, 1H), 7.10–6.96 (m, 2H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  141.0 (d,  $J_{C-P}$  = 2.8 Hz), 136.7, 132.6 (d,  $J_{C-P}$  = 103.7 Hz), 132.5 (d,  $J_{C-P}$  = 10.0 Hz), 132.1 (d,  $J_{C-P}$  = 9.9 Hz), 132.0 (d,  $J_{C-P}$  = 2.8 Hz), 131.4, 131.2 (d,  $J_{C-P}$  = 105.1 Hz), 128.8, 128.6 (d,  $J_{C-P}$  = 12.0 Hz), 128.3, 127.4 (d,  $J_{C-P}$  = 1.4 Hz), 126.8, 126.5 (d,  $J_{C-P}$  = 12.4 Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  28.99. MS (EI): 380.



Methyl 4-(diphenylphosphoryl)benzoate (3ag).<sup>9</sup> Yield: 63%, 42 mg. Yellow liquid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>): δ 8.13–8.11 (m, 2H), 7.77 (dd, J = 8.4 Hz, J = 11.2 Hz, 2H), 7.69–7.64 (m, 4H), 7.59–7.55 (m, 2H), 7.50–7.47 (m, 4H), 3.94 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>): δ 166.2, 137.6 (d,  $J_{C-P} = 100.4$  Hz), 133.2 (d,  $J_{C-P} = 2.7$  Hz), 132.3 (d,  $J_{C-P} = 2.5$  Hz), 132.2, 132.0 (d,  $J_{C-P} = 10.0$  Hz), 131.8 (d,  $J_{C-P} = 105.5$  Hz), 129.4 (d,  $J_{C-P} = 12.0$  Hz), 128.7 (d,  $J_{C-P} = 12.2$  Hz), 52.5. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>): δ 28.43. MS (EI): 336.



(4-Methoxyphenyl)diphenylphosphine oxide (3ac).<sup>6</sup> Yield: 81%, 50 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.60–7.55 (m, 4H), 7.52–7.48 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.34 (m, 4H), 6.88 (dd, J = 2.0 Hz, J = 8.8 Hz, 2H), 3.74 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  162.5 (d,  $J_{C-P} = 2.8$  Hz), 134.0 (d,  $J_{C-P} = 11.2$  Hz), 132.8 (d,  $J_{C-P} = 103.9$  Hz), 132.0 (d,  $J_{C-P} = 9.8$  Hz), 131.9 (d,  $J_{C-P} = 2.7$  Hz), 128.5 (d,  $J_{C-P} = 12.0$  Hz), 123.4 (d,  $J_{C-P} = 109.9$  Hz), 114.1 (d,  $J_{C-P} = 13.1$  Hz), 55.4. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.33. MS (EI): 307.



**Triphenylphosphine oxide (3ah).**<sup>6</sup> Yield: 75%, 42 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.70–7.65 (m, 6H), 7.53–7.49 (m, 3H), 7.45–7.41 (m, 6H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  132.5 (d,  $J_{C-P} = 103.5$  Hz), 132.1 (d,  $J_{C-P} = 9.9$  Hz), 131.9, 128.5 (d,  $J_{C-P} = 12.0$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  28.97. MS (EI): 277.



**Diphenyl(p-tolyl)phosphine oxide (3ai)**.<sup>6</sup> Yield: 77%, 45 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.69–7.64 (m, 4H), 7.58–7.51 (m, 4H), 7.47–7.43 (m, 4H), 7.28–7.26 (m, 2H) , 2.40 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  142.5 (d,  $J_{C-P} = 2.7$  Hz), 132.9 (d,  $J_{C-P} = 103.4$  Hz), 132.1 (d,  $J_{C-P} = 10.1$  Hz), 132.1 (d,  $J_{C-P} = 9.8$  Hz), 131.8 (d,  $J_{C-P} = 2.7$  Hz), 129.3 (d,  $J_{C-P} = 12.5$  Hz), 129.2 (d,  $J_{C-P} = 105.9$  Hz), 128.5 (d,  $J_{C-P} = 12.0$  Hz), 21.6 (d,  $J_{C-P} = 1.2$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.10. MS (EI): 291.



**Diphenyl(o-tolyl)phosphine oxide (3aj)**.<sup>6</sup> Yield: 60%, 35 mg.White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.69–7.65 (m, 4H), 7.59–7.52 (m, 3H), 7.48–7.43 (m, 4H), 7.40–7.32 (m, 3H), 2.36 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  138.5 (d,  $J_{C-P} = 11.9$  Hz), 132.8 (d,  $J_{C-P} = 2.7$  Hz), 132.7 (d,

 $J_{\text{C-P}} = 105.1 \text{ Hz}$ ), 132.5 (d,  $J_{\text{C-P}} = 9.4 \text{ Hz}$ ), 132.3 (d,  $J_{\text{C-P}} = 103.1 \text{ Hz}$ ), 132.1 (d,  $J_{\text{C-P}} = 9.8 \text{ Hz}$ ), 131.9 (d,  $J_{\text{C-P}} = 2.6 \text{ Hz}$ ), 129.2 (d,  $J_{\text{C-P}} = 10.2 \text{ Hz}$ ), 128.5 (d,  $J_{\text{C-P}} = 12.0 \text{ Hz}$ ), 128.3 (d,  $J_{\text{C-P}} = 12.9 \text{ Hz}$ ), 21.4. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.36. MS (EI): 291.



**Diphenyl(o-tolyl)phosphine oxide (3ak).**<sup>6</sup> Yield: 78%, 45 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.57 (dd, J = 6.8 Hz, J = 12.0 Hz, 4H), 7.48–7.45 (m, 2H), 7.41–7.37 (m, 4H), 7.36–7.32 (m, 1H), 7.20 (dd, J = 4.8 Hz, J = 7.2 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 6.94 (dd, J = 7.6 Hz, J = 14.0 Hz, 1H), 2.37 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  143.3 (d,  $J_{C-P} = 8.1$  Hz), 133.5 (d,  $J_{C-P} = 12.8$  Hz), 132.6 (d,  $J_{C-P} = 103.0$  Hz), 132.2 (d,  $J_{C-P} = 2.6$  Hz), 132.0 (d,  $J_{C-P} = 2.3$  Hz), 131.9 (d,  $J_{C-P} = 9.7$  Hz), 131.8 (d,  $J_{C-P} = 2.7$  Hz), 130.7 (d,  $J_{C-P} = 102.5$  Hz), 128.6 (d,  $J_{C-P} = 12.1$  Hz), 125.2 (d,  $J_{C-P} = 12.8$  Hz), 21.7 (d,  $J_{C-P} = 4.7$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  31.84. MS (EI): 291.



**Diphenyl(pyridin-2-yl)phosphine oxide (3al)**.<sup>10</sup> Yield: 93%, 52 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  8.78–8.77 (m, 2H), 8.08–8.03 (m, 1H), 7.71–7.66 (m, 4H), 7.59–7.56 (m, 2H), 7.52–7.47 (m, 4H), 7.44–7.41 (m, 1H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  152.6 (d,  $J_{C-P} = 1.8$  Hz), 152.5 (d,  $J_{C-P} = 11.9$  Hz), 139.7 (d,  $J_{C-P} = 7.8$  Hz), 132.4 (d,  $J_{C-P} = 2.7$  Hz), 131.9 (d,  $J_{C-P} = 10.0$  Hz), 131.5 (d,  $J_{C-P} = 105.1$  Hz), 129.1 (d,  $J_{C-P} = 100.3$  Hz), 128.8 (d,  $J_{C-P} = 12.3$  Hz), 123.5 (d,  $J_{C-P} = 9.0$  Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  26.61. MS (EI): 278.



**Diphenyl(pyridin-2-yl)phosphine oxide (3am)**.<sup>7</sup> Yield: 90%, 50 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  8.75 (d, J = 4.4 Hz, 1H), 8.29 (t, J = 6.8 Hz, 1H), 7.91–7.86 (m, 4H), 7.84–7.80 (m, 1H), 7.52–7.41 (m, 6H), 7.37–7.34 (m, 1H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  156.4 (d,  $J_{C-P} = 131.1$  Hz), 150.1 (d,  $J_{C-P} = 19.1$  Hz), 136.2 (d,  $J_{C-P} = 9.2$  Hz), 132.2 (d,  $J_{C-P} = 103.5$  Hz), 132.1 (d,  $J_{C-P} = 9.4$  Hz), 131.9 (d,  $J_{C-P} = 2.8$  Hz), 128.35 (d,  $J_{C-P} = 12.1$  Hz), 128.31 (d,  $J_{C-P} = 18.7$  Hz),

125.3 (d,  $J_{C-P}$  = 3.1 Hz). <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  20.97. MS (EI): 278.



**Diphenyl(quinolin-3-yl)phosphine oxide (3an)**.<sup>11</sup> Yield: 65%, 45 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  8.23 (d, J = 13.2 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.74–7.69 (m, 1H), 7.65–7.60 (m, 4H), 7.49–7.44 (m, 2H), 7.41–7.37 (m, 4H), 7.27 (d, J = 8.4 Hz, 1H), 2.69 (s, 3H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  161.6, 148.7 (d,  $J_{C-P} = 1.9$  Hz), 137.2, 133.8 (d,  $J_{C-P} = 9.5$  Hz), 132.2 (d,  $J_{C-P} = 104.0$  Hz), 132.18 (d,  $J_{C-P} = 2.7$  Hz), 132.1 (d,  $J_{C-P} = 9.9$  Hz), 130.8 (d,  $J_{C-P} = 11.0$  Hz), 129.5, 129.8 (d,  $J_{C-P} = 103.0$  Hz), 128.8 (d,  $J_{C-P} = 14.2$  Hz), 128.7 (d,  $J_{C-P} = 12.1$  Hz), 125.8 (d,  $J_{C-P} = 13.6$  Hz), 123.2, 25.4. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  28.58. MS (EI): 343.



**Bis(4-methoxyphenyl)(naphthalen-1-yl)phosphine oxide (3ba).**<sup>12</sup> Yield: 70%, 54 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  8.61 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.61–7.56 (m, 4H), 7.50–7.29 (m, 4H), 6.96–6.94 (m, 4H), 3.82 (s, 6H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  162.4 (d,  $J_{C-P}$  = 2.9 Hz), 133.93, 133.87 (d,  $J_{C-P}$  = 11.2 Hz), 133.8 (d,  $J_{C-P}$  = 13.4 Hz), 133.6 (d,  $J_{C-P}$  = 11.7 Hz), 133.1 (d,  $J_{C-P}$  = 2.8 Hz), 129.8 (d,  $J_{C-P}$  = 101.9 Hz), 128.7 (d,  $J_{C-P}$  = 0.8 Hz), 127.7 (d,  $J_{C-P}$  = 5.6 Hz), 127.2, 126.4, 124.4 (d,  $J_{C-P}$  = 110.5 Hz), 124.2 (d,  $J_{C-P}$  = 14.1 Hz), 114.2 (d,  $J_{C-P}$  = 13.2 Hz), 55.3. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  32.21. MS (EI): 388.



(4-Mehoxyphenyl)di-p-tolylphosphine oxide (3fc). Yield: 50%, 34 mg. White solid; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  7.59–7.51 (m, 6H), 7.27–7.24 (m, 4H), 6.96–6.93 (m, 2H), 3.83 (s, 3H), 2.39 (s, 6H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  162.4 (d,  $J_{C-P} = 1.0$  Hz), 142.2 (d,  $J_{C-P} = 0.9$  Hz), 133.9 (d,  $J_{C-P} = 11.2$  Hz), 132.1 (d,  $J_{C-P} = 9.5$  Hz), 129.9 (d,  $J_{C-P} = 106.3$  Hz), 129.2 (d,  $J_{C-P} = 12.5$  Hz), 124.2

(d,  $J_{C-P} = 109.7$  Hz), 114.0 (d,  $J_{C-P} = 13.0$  Hz), 55.3 (d,  $J_{C-P} = 0.9$  Hz), 21.6. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.19. MS (EI): 336.



**Tris(4-methoxyphenyl)phosphine oxide (3bc).**<sup>13</sup> Yield: 65%, 48 mg. White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (dd, J = 8.8 Hz, J = 11.2 Hz, 6H), 6.95–6.93 (m, 6H), 3.81 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.3 (d,  $J_{C-P}$  = 2.7 Hz), 133.8 (d,  $J_{C-P}$  = 11.2 Hz), 124.3 (d,  $J_{C-P}$  = 110.5 Hz), 114.0 (d,  $J_{C-P}$  = 13.1 Hz), 55.3. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  29.27. MS (EI): 368.



(4-Methoxyphenyl)di(naphthalen-1-yl)phosphine oxide (3cc). Yield: 51%, 41 mg. White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.81 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 7.62 (dd, J = 8.4 Hz, J = 11.2 Hz, 2H), 7.51–7.43 (m, 4H), 7.33–7.23 (m, 4H), 6.96–6.93 (m, 2H), 3.81 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.5 (d,  $J_{C-P}$  = 2.8 Hz), 134.2 (d,  $J_{C-P}$  = 11.1 Hz), 134.07 (d,  $J_{C-P}$  = 3.0 Hz), 133.98 (d,  $J_{C-P}$  = 4.0 Hz), 133.4 (d,  $J_{C-P}$  = 11.9 Hz), 133.1 (d,  $J_{C-P}$  = 2.8 Hz), 129.5 (d,  $J_{C-P}$  = 102.0 Hz), 128.7, 128.0 (d,  $J_{C-P}$  = 5.4 Hz), 127.4, 126.5, 124.3 (d,  $J_{C-P}$  = 14.3 Hz), 123.8 (d,  $J_{C-P}$  = 110.2 Hz), 114.3 (d,  $J_{C-P}$  = 13.2 Hz), 55.3. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  36.07.



**Diethyl naphthalen-1-ylphosphonate (3ea).**<sup>12</sup> Yield: 82%, 43 mg. White solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.53 (d, J = 8.4 Hz, 1H), 8.26 (dd, J = 16.4, 7.2 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.60 (dd, J = 8.0Hz, J = 7.2Hz, 1H), 7.55-7.49 (m, 2H), 4.27-4.16 (m, 2H), 4.13–4.03 (m,2H) 1.30 (t, J = 7.2 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  134.7 (d,  $J_{C-P}$  =

9.1 Hz), 133.6 (d,  $J_{C-P} = 3.5$  Hz), 133.5, 132.7 (d,  $J_{C-P} = 10.8$  Hz), 128.8 (d,  $J_{C-P} = 1.8$  Hz), 127.4 (d,  $J_{C-P}=5.2$  Hz), 126.6 (d,  $J_{C-P} = 4.1$  Hz), 126.4, 124.6 (d,  $J_{C-P} = 181.5$  Hz), 124.5 (d,  $J_{C-P} = 16.5$  Hz), 62.2 (d,  $J_{C-P} = 5.2$  Hz), 16.3 (d,  $J_{C-P} = 6.5$  Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  19.13. MS (EI): 264.



**Dibutyl naphthalen-1-ylphosphonate (3ga).**<sup>12</sup> Yield: 85%, 55 mg. White solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.51 (d, J = 8.4 Hz, 1H), 8.24 (dd, J = 7.2, J = 16.4Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.62–7.50 (m, 3H), 4.18–4.10 (m, 2H), 4.04–3.96 (m, 2H), 1.67–1.60 (m, 4H), 1.41–1.32 (m, 4H), 0.86 (t, J = 7.8 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  134.6 (d,  $J_{C-P} = 9.2$ Hz), 133.7, 133.6 (d,  $J_{C-P} = 3.5$  Hz), 132.7 (d,  $J_{C-P} = 10.8$  Hz), 128.7 (d,  $J_{C-P} = 1.7$  Hz), 127.3, 126.7 (d,  $J_{C-P} = 4.1$  Hz), 126.3, 124.7 (d,  $J_{C-P} = 181.7$  Hz), 124.5 (d,  $J_{C-P} = 16.5$  Hz), 65.8 (d,  $J_{C-P} = 5.5$  Hz), 32.4 (d,  $J_{C-P} = 6.6$  Hz), 18.8, 13.5. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  19.32. MS (EI): 321.



#### (4-((3S,4R)-3-((benzo[d][1,3]dioxol-5-yloxy)methyl)-1-benzylpiperidin-4-

yl)phenyl)diphenylphosphine oxide (3ao). Yield: 55%, 33 mg. White solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.68–7.63 (m, 4H), 7.58–7.44 (m, 9H), 7.35–7.29 (m, 6H), 6.60 (d, *J* = 8.4 Hz, 1H), 6.29 (d, *J* = 2.4 Hz, 1H), 6.08 (dd, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H), 5.87 (s, 2H), 3.69–3.53 (m, 3H), 3.44 (dd, *J* = 6.4 Hz, *J* = 8.8 Hz, 1H), 3.26 (d, *J* = 10.0 Hz, 1H), 3.04 (d, *J* = 10.4 Hz, 1H), 2.60–2.55 (m, 1H), 2.30 (br, 1H), 2.23–2.09 (m, 2H), 1.93–1.80 (m, 2H). <sup>13</sup>C NMR (100 MHz CDCl<sub>3</sub>):  $\delta$  154.3, 148.2, 141.6, 132.6 (d, *J*<sub>C-P</sub> = 5.3 Hz), 132.5 (d, *J*<sub>C-P</sub> = 105.0 Hz), 132.1 (d, *J*<sub>C-P</sub> = 9.9 Hz), 131.9 (d, *J*<sub>C-P</sub> = 2.5 Hz), 130.6, 130.0 (d, *J*<sub>C-P</sub> = 102.5 Hz), 130.0, 129.4, 128.7 (d, *J*<sub>C-P</sub> = 12.0 Hz), 128.5 (d, *J*<sub>C-P</sub> = 12.0 Hz), 128.3, 127.9 (d, *J*<sub>C-P</sub> = 12.3 Hz), 127.3 (d, *J*<sub>C-P</sub> = 4.0 Hz), 107.8, 105.5, 101.1, 98.0, 69.5, 63.2, 57.3, 53.6, 44.8, 41.6, 33.8. <sup>31</sup>P NMR (162 MHz CDCl<sub>3</sub>):  $\delta$  29.07. HRMS

(ESI): Cal. for C<sub>38</sub>H<sub>36</sub>N<sub>1</sub>O<sub>4</sub>P<sub>1</sub> ([M+H]<sup>+</sup>): 602.2382. Found: 602.2350.



#### Ethyl-10-(diphenylphosphoryl)-9-fluoro-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-

iJ]quinoline-5-carboxylate (3ap). Yield: 50%, 24 mg. Yellow solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.33 (s, 1H), 7.78–7.69 (m, 4H), 7.61–7.45 (m, 7H), 4.36 (d, *J* = 6.8 Hz, 2H). 4.11–3.99 (m, 2H), 1.46 (d, *J* = 8.0 Hz, 2H), 1.39 (t, *J* = 6.8 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  172.2 (d, *J*<sub>C-P</sub> = 2.3 Hz), 165.1, 160.0 (d, *J*<sub>C-F</sub> = 251.9 Hz), 149.8 (d, *J*<sub>C-P</sub> = 7.0 Hz), 145.5, 133.4 (d, *J*<sub>C-P</sub> = 110.2 Hz), 133.1 (d, *J*<sub>C-P</sub> = 9.5 Hz), 132.0 (d, *J*<sub>C-P</sub> = 2.8 Hz), 131.6 (dd, *J*<sub>C-P</sub> = 10.3 Hz, *J*<sub>C-F</sub> = 11.5 Hz), 131.0 (t, *J*<sub>C-P</sub> = 10.2 Hz), 128.6 (dd, *J*<sub>C-F</sub> = 4.1 Hz, *J*<sub>C-F</sub> = 12.8 Hz), 123.1 (dd, *J*<sub>C-F</sub> = 2.1 Hz, *J*<sub>C-F</sub> = 7.9 Hz), 113.0 (dd, *J*<sub>C-F</sub> = 21.6 Hz, *J*<sub>C-P</sub> = 92.1 Hz), 111.1, 105.7 (dd, *J*<sub>C-P</sub> = 5.2 Hz, *J*<sub>C-F</sub> = 26.7 Hz), 68.3, 61.1, 54.5, 18.2, 14.4. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  20.96. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>):  $\delta$ -101.31. HRMS (ESI): Cal. for C<sub>26</sub>H<sub>22</sub>F<sub>1</sub>N<sub>1</sub>O<sub>5</sub>P<sub>1</sub> ([M+H]<sup>+</sup>) : 478.1214. Found: 478.1208.

## 7. Rerferences

(1) Flatt, A. K.; Dirk, S. M.; Henderson, J. C.; Shen, D. E.; Su, J.; Reed, M. A.; Tour, J. M. *Tetrahedron* 2003, *59*, 8555–8570

(2) Chang, Y.; Cao, M.; Chan, J. Z.; Zhao, C.; Wang, Y.; Yang, R.; Wasa, M. J. Am. Chem. Soc. 2021, 143, 2441–2455.

- (3) Sato, Y.; Kawaguchi, S.-i.; Nomoto, A.; Ogawa, Angew. Chem., Int. Ed. 2016, 55, 9700-9703.
- (4) Williams, D. B. G.; Netshiozwi, T. E. Tetrahedron 2009, 65, 9773–9982.

(5) Jones, S.; Smanmoo, C. Org. Lett. 2005, 7, 3271-3274.

- (6) Zhang, J.-S.; Chen, T.; Yang, J.; Han, L.-B. Chem. Commun. 2015, 51, 7540-7542.
- (7) Yang, J.; Xiao, J.; Chen, T.; Yin, S.-F.; Han, L.-B. Chem. Commun. 2016, 52, 12233-12236.
- (8) Kubicki, A. A. Chem. Phys. Lett. 2003, 373, 471-474.
- (9) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 18325-18329.
- (10) Zhao, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.; Han, F.-S. Chem. Eur. J. 2012, 18, 9622–9627.
- (11) Zhu, C.; Yue, H.; Nikolaienko, P.; Rueping, M. CCS Chemistry. 2020, 2, 179–190.

(12) Yang, B.; Wang, Z.-X. Ni-catalyzed C–P coupling of aryl, benzyl, or allyl ammonium salts with P(O)H compounds. J. Org. Chem. 2019, 84, 1500–1509.

(13) Yamagiwa, N.; Tian, J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 3413-3422.



<sup>13</sup>C NMR spectrum of **20** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of tetraphenyldiphosphine monoxide A in Toluene- $d_8$ 







<sup>31</sup>P NMR spectrum of Ph<sub>2</sub>P(O)OBu-t **B** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3aa** in CDCl<sub>3</sub>







 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{3ab}$  in CDCl\_3



<sup>13</sup>C NMR spectrum of **3ab** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3ab** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ac** in  $CDCl_3$ 



 $^{13}\text{C}$  NMR spectrum of **3ac** in CDCl\_3



 $^{31}$ P NMR spectrum of **3ac** in CDCl<sub>3</sub>



 $^1\mathrm{H}$  NMR spectrum of **3ad** in CDCl\_3



<sup>13</sup>C NMR spectrum of **3ad** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3ad** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ae** in  $CDCl_3$ 



 $^{13}\text{C}$  NMR spectrum of **3ae** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3ae** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of 3af in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3af** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of 3ag in CDCl<sub>3</sub>



















210 200 190

10 0 -10



 $^{31}P$  NMR spectrum of **3aj** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of 3ak in CDCl<sub>3</sub>



 $^{13}\text{C}$  NMR spectrum of **3ak** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3ak** in CDCl<sub>3</sub>



 $^1\mathrm{H}$  NMR spectrum of  $\boldsymbol{3al}$  in  $\mathrm{CDCl}_3$ 



<sup>13</sup>C NMR spectrum of **3al** in CDCl<sub>3</sub>



 $^{31}P$  NMR spectrum of **3al** in CDCl<sub>3</sub>



 $^1\mathrm{H}$  NMR spectrum of 3am in CDCl\_3



 $^{13}\text{C}$  NMR spectrum of **3am** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3am** in CDCl<sub>3</sub>



 $^1\mathrm{H}$  NMR spectrum of 3an in CDCl\_3



<sup>13</sup>C NMR spectrum of **3an** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ba** in CDCl<sub>3</sub>







<sup>13</sup>C NMR spectrum of **3bc** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3cc** in CDCl<sub>3</sub>











<sup>1</sup>H NMR spectrum of **3fc** in CDCl<sub>3</sub>



<sup>31</sup>P NMR spectrum of **3fc** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3ga** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ao** in CDCl<sub>3</sub>











