Supporting information

Towards Understanding Oxygen Heterocycle-Forming Cyclases: A Selectivity Study of The Pyran Synthase PedPS7

${ }^{a}$ Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
*E-mail: frank.hahn@uni-bayreuth.de
Contents
Methods and materials 2
Chemistry \& Analytics 2
Biochemistry 2
Chemical synthesis 3
Cloning, gene expression and enzyme purification 10
Substrate tolerance of PedPS7 and AmbDH3 12
Small-scale conversions and UPLC-MS analysis 12
Semipreparative-scale conversions and NMR analysis 16
Stereoisomer discrimination and stereoselectivity of PedPS7 34
UPLC-MS analysis of crude reaction products 34
NMR analysis of crude reaction products 35
Compound purification and configurational analysis 40
References 60

Methods and materials

Chemistry \& Analytics

UPLC-MS analysis was performed on a WATERS Acquity Ultra Perfomance LC (column: HSS C18, pore size $100 \AA$ A, particle size $1.8 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$; PDA detector; SQ detector). Mode of ionisation was ESI+ and found mass is given. Reversed phase-UPLC-applications were performed with membrane-filtrated and double distilled water as well as commercially available UPLC-grade methanol or acetonitrile.

NMR spectra were recorded with BRUKER Avance III HD 500 or an Avance 300 with the residual solvent signal as internal standard ($\left.\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: 77.2 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6},{ }^{1} \mathrm{H}: 7.16 \mathrm{ppm}\right)$. Multiplicities are described using the following abbreviations: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $m=$ multiplet, $b=$ broad. The multiplicities are elucidated using the distortionless enhancement by polarization transfer (DEPT) spectral editing technique, with secondary pulses at 90° and 135°. Multiplicities are reported using the following abbreviations: q (quarternary carbon), t (tertiary carbon $=$ methine), s (secondary carbon $=$ methylene), p (primary carbon $=$ methyl).

High resolution mass spectra are obtained with a Q Exactive (Thermo Scientific) via loop-mode injection. Ionization is achieved by ESI. Semi-preparative HPLC was performed with a WATERS HPLC (600 controller, 2487 Dual wavelength absorbance detector) using a C18-SP stationary phase. Chiral HPLC analysis was performed using a WATERS Alliance 2695 Separations Module (column: OJ-H, particle size $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{mmL}$) with a WATERS 2487 Dual Wavelength Absorbance Detector and using an isocratic gradient with hexane:iso-propanole 90:10.

Solvents, columns, operating procedures and retention times (t_{R}) are given with the corresponding experimental and analytical data. (Abbreviations: DCM = dichloromethane, DMF = dimethylformamide, EtOAc = ethyl acetate).

Biochemistry

All chemicals and antibiotics were purchased from SIgMA-ALDRICH and Roth. Cell disruption was conducted by sonication (Sonoplus Typ UW3100 and Sonoplus HD3100 with probe MS-73 or KE-76) from BANDELIN. Protein purification was performed on an ÄKTA pure system (GE Healthcare). His-bind Ni chelate chromatography resin was purchased from Novagen. PD-10 desalting columns from GE Healthcare were used for buffer exchange. Protein concentration was measured on a Varioskan LUX multimode microplate reader (Thermo Scientific).

Chemical synthesis

The synthesis of all compounds was described in reference ${ }^{1,2}$, except for the synthetic racemic mixture syn-rac-35, which is shown below.

1-(4-Methoxyphenyl)hex-5-en-1-ol (rac-37)

To a suspension of magnesium ($219 \mathrm{mg}, 9.00 \mathrm{mmol}, 3.0 \mathrm{eq}$.) in THF (12.0 mL) was slowly added 5-bromo-1-pentene ($710 \mu \mathrm{~L}, 6.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and the suspension was stirred for 1 h under reflux. After cooling to room temperature, the supernatant was carefully dropped into a $0{ }^{\circ} \mathrm{C}$ cold solution of anisaldehyde (36) ($365 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF ($28.0 \mathrm{~mL}, 0.11 \mathrm{~m}$) and stirred at this temperature for 3 h . To terminate the reaction, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20.0 \mathrm{~mL})$ was added carefully. The resulting phases were separated and the aqueous one extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10.0 \mathrm{~mL})$. The combined organic phases were washed with saturated NaCl solution ($1 \times 50.0 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removing the solvent in vacuo and flash chromatography (SiO_{2}, cyclohexane:EtOAc / 10:1 $\rightarrow 8: 1$), the product rac-37 ($616 \mathrm{mg}, 2.99 \mathrm{mmol}$, quantitative) was obtained as colourless oil.
$\mathbf{R}_{\boldsymbol{f}}:($ cyclohexane:EtOAc $/ 10: 1)=0.28$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product rac-37 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27$ ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}$), 6.88 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}$), 5.78 (ddt, $J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}$), 4.99 (ddt, $J=17.0,2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}$), 4.94 (ddt, $J=10.2,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}$), $4.63(\mathrm{dt}, J=7.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.11-\mathrm{CH}_{3}\right), 2.09-2.05\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 1.85-1.78\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}\right), 1.73-1.66\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}\right.$ and $\mathrm{OH}), 1.54-1.46\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 3-\mathrm{CH}_{2}\right), 1.40-1.31\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 3-\mathrm{CH}_{2}\right) \mathrm{ppm}$.

The analytical data correspond to those in the literature ${ }^{3}$.
Ethyl-(E)-7-hydroxy-7-(4-methoxyphenyl)hept-2-enoate (rac-38)

rac-38
To a solution of alcohol rac- 37 ($515 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and ethyl acrylate ($633 \mu \mathrm{~L}$, $7.5 \mathrm{mmol}, 3.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 0.1 \mathrm{~m}$) was added Hoveyda-Grubbs-II catalyst (39.0 mg , $62.5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$) and the solution was stirred under reflux. After 2 h , the same amount of catalyst was added again and the solution was stirred for another 2 h . After cooling to room temperature and removing of the solvent in vacuo, the residue was purified by flash chromatography (SiO_{2}, cyclohexane:EtOAc / 3:1). The product rac-38 ($677 \mathrm{mg}, 2.43 \mathrm{mmol}$, 97\%) was obtained as brown oil.
\mathbf{R}_{f} : (cyclohexane:EtOAc / 3:1) $=0.32$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product rac-38 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR analysis of the purified product rac- $\mathbf{3 8}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.25(\mathrm{~m}, 2 \mathrm{H}, 2 \times 9-\mathrm{CH}), 6.92(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH})$, $6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 10-\mathrm{CH}), 5.79(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{CH}$), $4.17\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CH}_{3}\right), 2.21(\mathrm{ddt}, J=7.4,6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.4-\mathrm{CH}_{2}\right), 1.86-1.79\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}_{2}\right), 1.77-1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 1.73-1.67\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}_{2}\right)$, $1.62-1.54\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 5-\mathrm{CH}_{2}\right), 1.46-1.38\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 5-\mathrm{CH}_{2}\right), 1.28\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.8(\mathrm{q}, \mathrm{C}-1), 159.3(\mathrm{q}, \mathrm{C}-11), 148.9(\mathrm{t}, \mathrm{C}-3), 136.8(\mathrm{q}, \mathrm{C}-8)$, 127.2 (t, $2 \times \mathrm{C}-9$), 121.7 ($\mathrm{t}, \mathrm{C}-2$), 114.0 (t, $2 \times \mathrm{C}-10$), 74.2 (t, C-7), 60.3 ($\mathrm{s}, \mathrm{C}-13$), 55.4 (p, C-12), 38.4 (s, C-6), 32.1 ($\mathrm{s}, \mathrm{C}-4$), 24.5 ($\mathrm{s}, \mathrm{C}-5$), 14.4 (p, C-14) ppm.

HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: calculated 261.14852, found 261.14816.

Ethyl-2-(6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)-acetate (syn-rac-39)

To a solution of ethyl ester rac- $\mathbf{3 8}$ ($540 \mathrm{mg}, 1.95 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}, 0.1 \mathrm{~m}\right.$) at $0^{\circ} \mathrm{C}$ KOtBu ($241 \mathrm{mg}, 2.15 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added slowly and the solution was stirred at this temperature for 1 h . To stop the reaction, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15.0 mL) was added. The resulting phases were separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. The combined organic phases were washed with saturated NaCl solution ($1 \times 40.0 \mathrm{~mL}$), dried over MgSO_{4} and filtered. After removing the solvent in vacuo, the product syn-rac-39 (513 mg , $1.84 \mathrm{mmol}, 95 \%$) was obtained without further purification as yellow-orange oil.
\mathbf{R}_{f} : (cyclohexane:EtOAc / 3:1) $=0.45$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product syn-rac-39 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

1															
210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0
-10															

Figure S5. ${ }^{13} \mathrm{C}$ NMR analysis of the purified product syn-rac- $\mathbf{3 9}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.25(\mathrm{~m}, 2 \mathrm{H}, 2 \times 9-\mathrm{CH}), 6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 10-\mathrm{CH})$, 4.36 (dd, $J=11.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), $4.14\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CH})$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CH}_{3}\right), 2.64\left(\mathrm{dd}, \mathrm{J}=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}\right), 2.46(\mathrm{dd}, \mathrm{J}=15.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.1 \times 2-\mathrm{CH}_{2}\right), 1.97-1.92\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 5-\mathrm{CH}_{2}\right), 1.84-1.80\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}_{2}\right), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}, 1 \times 4-$ CH_{2} and $1 \times 5-\mathrm{CH}_{2}$), $1.52-1.46\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 6-\mathrm{CH}_{2}\right), 1.38-1.30\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 4-\mathrm{CH}_{2}\right), 1.24(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6(\mathrm{q}, \mathrm{C}-1), 158.9(\mathrm{q}, \mathrm{C}-11), 135.5(\mathrm{q}, \mathrm{C}-8), 127.2(\mathrm{t}, 2 \times \mathrm{C}-9)$, 113.7 (t, 2× C-10), 79.4 (t, C-7), 75.0 (t, C-3), 60.5 ($\mathrm{s}, \mathrm{C}-13$), 55.4 (p, C-12), 41.9 (s, C-2), 33.0 (s , C-6), 31.0 (s, C-4), 23.9 (s, C-5), 14.4 (p, C-14) ppm.
HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 279.15909, found 279.15873.

2-(6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)acetic acid (syn-rac-40)

The ethyl ester syn-rac-39 ($420 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0$ eq.) was placed in a methanol:water mixture ($3: 1,15 \mathrm{~mL}, 0.1 \mathrm{~m}$). After addition of $\mathrm{LiOH}(108 \mathrm{mg}, 4.50 \mathrm{mmol}, 3.0 \mathrm{eq}$.), the solution was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. After concentration in vacuo, the residue was taken up in aqueous HCl solution ($10.0 \mathrm{~mL}, 1 \mathrm{~m}$) and extracted with EtOAc ($3 \times 10.0 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The product syn-rac-40 (382 mg , crude) was used directly without further purification. Only a small amount was recrystallised for analytical purposes (cyclohexane) and obtained from this as white solid.

Figure S6. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product syn-rac-40 $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR analysis of the purified product syn-rac-40 (CDCl3, 125 MHz).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.25(\mathrm{~m}, 2 \mathrm{H}, 2 \times 9-\mathrm{CH}), 6.88-6.87(\mathrm{~m}, 2 \mathrm{H}, 2 \times 10-\mathrm{CH}), 4.42$ (dd, J = 11.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), 3.99-3.94 (m, 1H, $3-\mathrm{CH}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CH}_{3}\right), 2.66(\mathrm{dd}, \mathrm{J}=15.9$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}$), $2.58\left(\mathrm{dd}, J=15.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}\right), 2.00-1.95\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 5-\mathrm{CH}_{2}\right)$, 1.86-1.82 (m, $\left.1 \mathrm{H}, 1 \times 6-\mathrm{CH}_{2}\right), 1.76-1.67\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times 4-\mathrm{CH}_{2}\right.$ and $\left.1 \times 5-\mathrm{CH}_{2}\right), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \times 6-\mathrm{CH}_{2}\right), 1.45-1.36\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 4-\mathrm{CH}_{2}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.8$ ($\mathrm{q}, \mathrm{C}-1$), 159.3 ($\mathrm{q}, \mathrm{C}-11$), 134.4 ($\mathrm{q}, \mathrm{C}-8$), 127.3 (t, $2 \times \mathrm{C}-9$), 113.9 ($\mathrm{t}, 2 \times \mathrm{C}-10$), 80.3 (t, C-7), 74.7 (t, C-3), 55.4 (p, C-12), 41.2 (s, C-2), 32.9 (s, C-6), 30.9 (s , $\mathrm{C}-4), 23.5$ ($\mathrm{s}, \mathrm{C}-5$) ppm.
HRMS (ESI ${ }^{+}$: m / z for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 251.12779, found 251.12775.
Melting point: $123^{\circ} \mathrm{C}$.

S-(2-acetamidoethyl)-2-(6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)ethanethioate (syn-

 rac-35)
syn-rac-35
The carboxylic acid syn-rac-40 ($382 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was placed together with HSNAC$ ($268 \mathrm{mg}, 2.25 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7.50 \mathrm{~mL}, 0.2 \mathrm{M}\right.$) and the solution was cooled to $0^{\circ} \mathrm{C}$. To this were added DMAP ($18.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.1 \mathrm{eq}$.$) and \mathrm{EDC} \times \mathrm{HCl}$ ($431 \mathrm{mg}, 2.25 \mathrm{mmol}$, 1.5 eq.). After warming to room temperature, the solution was stirred for 2 h . To terminate the reaction, saturated $\mathrm{NH}_{4} \mathrm{Cl}(10.0 \mathrm{~mL})$ solution was added. The resulting phases were separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8.00 \mathrm{~mL})$. The combined organic
phases were dried over MgSO_{4} and filtered. After removing the solvent in vacuo and flash chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$), the product syn-rac-35 ($448 \mathrm{mg}, 1.27 \mathrm{mmol}, 85 \%$, two steps) was obtained as orange oil.
$\mathbf{R}_{f}:(E t O A c)=0.43$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product syn-rac- $35\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.25(\mathrm{~m}, 2 \mathrm{H}, 2 \times 9-\mathrm{CH}), 6.83-6.81(\mathrm{~m}, 2 \mathrm{H}, 2 \times 10-\mathrm{CH}), 4.70$ (br, 1H, NH), 4.15 (dd, J = 10.7, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), $3.99-3.88$ (m, 1H, 3-CH), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CH}_{3}\right.$), 3.17 (ddd, $\left.J=12.6,6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right), 2.86-2.72\left(\mathrm{~m}, 3 \mathrm{H}, 13-\mathrm{CH}_{2}\right.$ and $\left.1 \times 2-\mathrm{CH}_{2}\right), 2.41(\mathrm{dd}$, $\left.J=14.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \times 2-\mathrm{CH}_{2}\right), 1.56-1.52\left(\mathrm{~m}, 2 \mathrm{H}, 1 \times 5-\mathrm{CH}_{2}\right.$ and $\left.1 \times 6-\mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right)$, $1.35-1.35\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times 4-\mathrm{CH}_{2}\right.$ and $1 \times 5-\mathrm{CH}_{2}$ and $\left.1 \times 6-\mathrm{CH}_{2}\right), 1.10-1.02\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times 4-\mathrm{CH}_{2}\right) \mathrm{ppm}$. The analytical data correspond to those in the literature ${ }^{2}$.

Transesterification of assay products

The compound mixtures 3-L,7-L-34+3-D,7-D-34 (reference and after enzymatic reaction with AmbDH3) and $3-\mathrm{L}, 7-\mathrm{L}-\mathbf{3 4 + 3}-\mathrm{D} / \mathrm{L}, 7-\mathrm{D} / \mathrm{L}-34$ (after enzymatic reaction with PedPS7) are transesterified to the corresponding SEt thioester. The SNAC thioester ($4.0 \mathrm{mg}, 11.4 \mu \mathrm{~mol}$, 1.0 eq) is dissolved in DMF ($570 \mu \mathrm{~L}$). Ethanethiol ($7.7 \mu \mathrm{~L}, 107 \mu \mathrm{~mol}, 9.4 \mathrm{eq}$) and DIPEA ($9.2 \mu \mathrm{~L}$, $52.4 \mu \mathrm{~mol}, 4.6 \mathrm{eq}$) are added. After stirring for 2 d at room temperature saturated $\mathrm{NaCl}-$ solution is added and three times extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with 5% LiCl-Solution and concentrated under reduced pressure. The crude product is purified by flash chromatography on silica gel (cyclohexane:EtOAc / 19:1) and analysed via NMR spectroscopy and chiral HPLC.

Cloning, gene expression and enzyme purification

Sequence of the pedPS7 gene

Abstract

CATATGAGCACCCTGGTTAGCACCGAAGGTGTTAGCCGTTTCAAGGGCGAAGAGTTTTTCCTGCGTGACCACAGC GGTATGCTGCCGGCGGCGGTGTACCTGGAAATGGTTCGTGCGTTCGCGGAGGGCAAGCACGAACGTAAAATCACC GGCCTGAGCCACGTGGTTTGGCCGAAGGTGCTGCTGGTTAGCGGCGAGGGCCGTGAAGTGCGTACCTGCCTGACC AACGTTGACCGTAGCGCGTTTCTGATTAGCGCGTGCGAGCAGAGCAGCGAAGGTCCGCAAGAGGTGACCTACTGC CAGGGCAACCTGCTGCTGCCGGAAGTGATGGAAGAACCGGGTGCGGCGCTGGCGATTGAAGCGATTGCGTATCGT TGCCCGAGCGTGCTGGAGGCGAAACAATGCGATCGTCTGCTGCAAAGCACCCATGGTCCGGCGCTGATGAGCGTT CAGCAACTGCGTTACAGCGACCGTGAAGCGCTGGCGCTGCTGCAACTGCCGGATGAGCTGCAGATGGGTTGGGAC GATTATGGTTGGCACCCGAGCCTGCTGAACGGTGCGATTCTGGCGAGCGTGGTTTGGTGCCTGGCGCGTGCGCCG CGTAGCCGTGCGGGTCTGCCGATGCCGTTCAGCCTGGACCGTCTGCGTGTGTTCCAACCGTTTGAACGTCAGATG CAAGCGTATGTTCGTCGTCATGGTAGCGCGCGTAGCCTGGGCGAGAACCTGGAAAAGGTGGACATTGATCTGCTG GATAGCCAGGGTCGTTGCCTGGCGAGCCTGGAAGGTTTCACCCTGGTTTTTGCGCCGGATGCGAATCGTCTGGTI TAAGAATTC

The expression plasmid pedPS7_pET28a(+) was used for expression of pedPS7 in E. coli BL21(DE3) under analogous conditions as for ambDH3 in ${ }^{2} .1 \mathrm{~g}$ of E. coli BL21(DE3) cells carrying pedPS7_pET28a(+) were suspended in 10 mL HEPES buffer (25 mm HEPES, 100 mm $\mathrm{NaCl}, \mathrm{pH} 6.8$ if not otherwise stated). Cell disruption was performed on ice by sonication (45% amplitude, 10 cycles, 30 s sonication, 30 s pause). After centrifugation ($10000 \mathrm{~g}, 4^{\circ} \mathrm{C}, 30 \mathrm{~min}$), the obtained crude lysate was filtered (cellulose acetate, $0.45 \mu \mathrm{~m}$) and either used for enzymatic conversions or purified via Ni-NTA affinity chromatography.

The lysate was passed through a HisTrap ${ }^{\text {TM }}$ FF Ni-NTA column (in combination with a FPLC Äkta Pure System). The column was washed with wash buffer until the absorption was under 50 mAU . Elution of the target protein could be observed during a linear gradient elution with elution buffer (30 mm Tris, $500 \mathrm{~mm} \mathrm{NaCl}, 500 \mathrm{~mm}$ imidazole, 10% glycerol, pH 7.5) from 0 to 100% in 25 mL . The protein-containing fractions were united and the elution buffer replaced by HEPES buffer (25 mM HEPES, $100 \mathrm{~mm} \mathrm{NaCl}, \mathrm{pH} 7.2$) using PD-10 desalting column. If necessary the purified enzyme was concentrated and immediately used for activity assays. The identity of PedPS7 was confirmed by ESI-MS/MS analysis.

Gene expression of $a m b D H 3$ and purification of the enzyme were performed according to reference ${ }^{1}$.

Figure S9. Purification of His6-PedPS7 fusion protein (33 kDa). M: marker (kDa), P: pellet, L: lysate, FT: flowthrough, E: elution fractions with imidazole, PedPS7: purified and concentrated enzyme solution.

Substrate tolerance of PedPS7 and AmbDH3

Small-scale conversions and UPLC-MS analysis

All reactions were performed in a 2 mL tube containing substrate (0.1 mg , concentration 2 or 4 mm) and enzyme in HEPES buffer at $30^{\circ} \mathrm{C}$ and 300 rpm . After 16 h the assays were extracted with $500 \mu \mathrm{~L}$ EtOAc. The organic solvent was evaporated, the remaining solid dissolved in MeOH and analysed by UPLC-MS. The conversion values were calculated using calibration straights recorded for 8 and 18. Multiple rounds of conversion were conducted for 28, 29 and 30 to maximise the amount of material for further ${ }^{1} \mathrm{H}$ NMR analysis. Incubation experiments with the $2-D, 3-D, 7-D-s e l e c t i v e ~ A m b D H 3$ served as additional reference experiments to assign the cis-THPs.

Figure S10. UPLC-MS analysis of (A) the conversion of $\mathbf{8}$ by PedPS7 and (B) spiking with cis-15. $\mathbf{M}(\mathbf{8})=324$, $\mathrm{M}(\mathbf{1 8})=324, t_{\mathrm{R}}(\mathbf{8})=3.78 \mathrm{~min}$ in \mathbf{A} and 3.17 min in $\mathbf{B}, t_{\mathrm{R}}(\operatorname{trans}-\mathbf{1 8})=4.04 \mathrm{~min}$ in \mathbf{A} and 3.38 min in $\mathbf{B}, t_{\mathrm{R}}($ cis18) $=3.59 \mathrm{~min}$ in \mathbf{B}. Conditions of enzyme assay: $0.1 \mathrm{mg}(332 \mathrm{nmol})$ of $\mathbf{8}$ in HEPES buffer (substrate concentration 4 mm) and $10.0 \mathrm{mg} / \mathrm{mL} \mathrm{His}_{6}-\mathrm{PedPS}^{2}$. The differences in the retention times are caused by a column exchange.

Figure S11. UPLC-MS analysis of (A) substrate ent-8, (B) negative control (incubation without enzyme) and (C) conversion of ent-8 by PedPS7. $\mathrm{M}($ ent -8$)=324, \mathrm{M}(15)=324, t_{\mathrm{R}}($ ent-8 $)=3.78 \mathrm{~min}, t_{\mathrm{R}}(\operatorname{cis}-15)=4.27 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(332 \mathrm{nmol})$ of ent-8 in HEPES buffer (substrate concentration 2 mM (B) and 4 mM (C)) and $10.0 \mathrm{mg} / \mathrm{mL}$ His ${ }_{6}$-PedPS7 (C).

Figure S12. UPLC-MS analysis of (A) substrate 9, (B) negative control (incubation without enzyme), (C) conversion of 9 by PedPS7. $\mathrm{M}(9)=310, \mathrm{M}(19)=310, t_{\mathrm{R}}(9)=3.51 \mathrm{~min}, t_{\mathrm{R}}($ trans -19$)=3.87 \mathrm{~min}, t_{\mathrm{R}}($ cis -19$)=4.08 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(348 \mathrm{nmol})$ substrate 9 in HEPES buffer (substrate concentration $2 \mathrm{~mm}(\mathbf{B})$ and $4 \mathrm{~mm}(\mathbf{C})$) and $10.0 \mathrm{mg} / \mathrm{mL} \mathrm{His} 6$-PedPS7 (C).

Figure S13. UPLC-MS analysis of (A) substrate 10, (B) negative control (incubation without enzyme), (C) conversion of 10 by PedPS7. $\mathrm{M}(\mathbf{1 0})=338, \mathrm{M}(\mathbf{2 0})=338, t_{R}(\mathbf{1 0})=3.99 \mathrm{~min}, t_{\mathrm{R}}($ trans -20$)=4.20 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(317 \mathrm{nmol})$ substrate $\mathbf{1 0}$ in HEPES buffer (substrate concentration $2 \mathrm{~mm}(\mathbf{B})$ and $\mathbf{4} \mathrm{mm}(\mathbf{D})$) and $10.0 \mathrm{mg} / \mathrm{mL}$ His6-PedPS7 (C).

Figure S14. UPLC-MS analysis of (A) substrate 11, (B) conversion of $\mathbf{1 1}$ by PedPS7. $\mathrm{M}(\mathbf{1 1})=338, \mathrm{M}(\mathbf{2 1})=338$, $t_{\mathrm{R}}(\mathbf{1 1})=3.53 \mathrm{~min}, t_{\mathrm{R}}($ trans -21$)=3.76 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(317 \mathrm{nmol})$ substrate $\mathbf{1 1}$ in HEPES buffer (substrate concentration 2 mm) and $2.7 \mathrm{mg} / \mathrm{mL}$ His6-PedPS7 (C).

Figure S15. UPLC-MS analysis of conversion of 11 by PedPS7 after one ($\mathbf{A + B}$) and two ($\mathbf{C + D}$) reaction cycles. $\mathrm{M}(\mathbf{1 1})=338, \mathrm{M}(\mathbf{2 1})=338, t_{\mathrm{R}}(\mathbf{1 1})=3.53 \mathrm{~min}, t_{\mathrm{R}}($ trans -21$)=3.77 \mathrm{~min}$. Conditions of enzyme assay: $5 \times 0.1 \mathrm{mg}$ (317 nmol) substrate 11 in HEPES buffer 6.8 (A), HEPES glycerol buffer pH 7.2 (B) and HEPES buffer pH 7.2 (C+D) (substrate concentration 2 mM) and $1.6-7.0 \mathrm{mg} / \mathrm{mL}$ His6-PedPS7.

Figure S16. UPLC-MS analysis of (A) substrate 12, (B) negative control (incubation without enzyme), (C) conversion of 12 by PedPS7. $\mathrm{M}\left(\mathbf{1 2)}=366, \mathrm{M}(\mathbf{2 2})=366, t_{\mathrm{R}}(\mathbf{1 2})=4.49 \mathrm{~min}, t_{\mathrm{R}}(\right.$ trans $-\mathbf{2 2})=4.72 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(292 \mathrm{nmol})$ substrate 12 in HEPES buffer (substrate concentration $2 \mathrm{~mm}(\mathbf{B})$ and $4 \mathrm{~mm}(\mathbf{C})$) and $10.0 \mathrm{mg} / \mathrm{mL} \mathrm{His} 6$-PedPS7 (C).

Figure S17. UPLC-MS analysis of (A) substrate 13, (B) negative control (incubation without enzyme), (C) conversion of 13 by PedPS7. $\mathrm{M}(13)=372, \mathrm{M}(23)=372, t_{\mathrm{R}}(\mathbf{1 3})=4.02 \mathrm{~min}, t_{\mathrm{R}}($ trans -23$)=4.24 \mathrm{~min}$. Conditions of enzyme assay: $0.1 \mathrm{mg}(287 \mathrm{nmol})$ substrate 13 in HEPES buffer (substrate concentration $2 \mathrm{~mm}(\mathbf{B})$ and $4 \mathrm{~mm}(\mathbf{C})$) and $10.0 \mathrm{mg} / \mathrm{mL}$ His6-PedPS7 (C).

Figure S18. UPLC-MS analysis of (A) substrate 16, (B) negative control (incubation without enzyme), (C) conversion of 16 by PedPS7. $\mathrm{M}(\mathbf{1 6})=291, \mathrm{M}(\mathbf{2 6})=291, t_{\mathrm{R}}(\mathbf{1 6})=2.62 \mathrm{~min}, t_{\mathrm{R}}(\mathbf{2 6})=2.90 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (408 nmol) substrate 16 in HEPES buffer (substrate concentration 2 mm (B) and 4 mm (C)) and $10.0 \mathrm{mg} / \mathrm{mL}$ His ${ }_{6}$-PedPS7 (C).

Figure S19. UPLC-MS analysis of (A) substrate 17, (B) negative control (incubation without enzyme), (C) conversion of $\mathbf{1 7}$ by PedPS7. $\mathrm{M}(\mathbf{1 7})=282, \mathrm{M}(\mathbf{2 7})=282, t_{\mathrm{R}}(\mathbf{1 7})=2.96 \mathrm{~min}, t_{\mathrm{R}}(\mathbf{2 7})=3.80 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (386 nmol) substrate 17 in HEPES buffer (substrate concentration 2 mm (B) and 4 mm (C)) and $10.0 \mathrm{mg} / \mathrm{mL}$ His ${ }_{6}$-PedPS7 (C).

Figure S20. UPLC-MS analysis of the conversion of $\mathbf{8}$ by $\mathrm{AmbDH} 3 . \mathrm{M}(\mathbf{8})=324, \mathrm{M}(\mathbf{1 8})=324, t_{\mathrm{R}}(\mathbf{8})=3.72 \mathrm{~min}, t_{\mathrm{R}}($ cis18) $=4.19 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (332 nmol) substrate 8 in HEPES buffer (substrate concentration 2 mM) and $5.0 \mathrm{mg} / \mathrm{mL}$ His6-AmbDH3. This reaction has been reported various times with reliable quantitative conversion. ${ }^{1,2}$

Figure S21. UPLC-MS analysis of (A) substrate 9, (B) negative control (incubation without enzyme), (C) conversion of 9 by $\mathrm{AmbDH} 3 . \mathrm{M}(9)=310, \mathrm{M}(19)=310, t_{\mathrm{R}}(9)=3.51 \mathrm{~min}, t_{\mathrm{R}}(c i s-19)=4.03 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (348 nmol) substrate 9 in HEPES buffer (substrate concentration 2 mm) and $10.0 \mathrm{mg} / \mathrm{mL}$ His $6-A m b D H 3$.

Figure S22. UPLC-MS analysis of (A) substrate 13, (B) negative control (incubation without enzyme), (C) conversion of 13 by $\mathrm{AmbDH} 3 . \mathrm{M}(13)=372, \mathrm{M}(23)=372, t_{\mathrm{R}}(13)=4.01 \mathrm{~min}, t_{\mathrm{R}}(c i s-23)=4.41 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (287 nmol) substrate 13 in HEPES buffer (Conditions of enzyme assay: 2 mm) and $10.0 \mathrm{mg} / \mathrm{mL} \mathrm{His}_{6}-\mathrm{AmbDH} 3$.

Semipreparative-scale conversions and NMR analysis

For semipreparative scale conversions, substrates $\mathbf{8}, \mathbf{1 1}, \mathbf{1 4}, \mathbf{1 5}, \mathbf{2 8}, \mathbf{2 9}, \mathbf{3 0}$ and $\mathbf{3 1}(5 \mathrm{mg}$, final concentration 1 or 2 mm) were incubated with the PedPS7 solution (purified enzyme or filtered lysate) at 300 rpm and $30^{\circ} \mathrm{C}$ in a 50 mL flask. After 16 h , the solution was transferred to a 50 mL tube and the flask was washed with EtOAc. After extraction with EtOAc (3x), the organic layers were combined. The solvent was evaporated, the remaining solids dissolved in MeOH and analysed via UPLC-MS or NMR spectroscopy. The synthesis and analytical data of all starting materials are reported in reference ${ }^{2}$. The ${ }^{1} \mathrm{H}$ NMR spectra of the crude products were used to assign the configuration of the formed THPs and to estimate the conversion.

Figure S23. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. It shows the 2,6 -trans-THP characteristic shift of $\delta(3-\mathrm{H})=3.96$ and $\delta(7-\mathrm{H})=3.35 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} /_{2 \mathrm{H}-3 \mathrm{H}}$ of $9.7-9.9 \mathrm{~Hz}$ confirms the relative syn-configuration at $\mathrm{C}-2-\mathrm{C}-3 .{ }^{4}$ An anti-configuration would give a vicinal coupling constant ${ }^{3} J_{2 H-3 H}$ of $10.8-11.2 \mathrm{~Hz} .^{5,6}$ The conversion can only be estimated due to overlapping signals.

Figure S24. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{1 4}$ after one reaction cycle $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. The signals for determination of the conversion are annotated.

Figure S25. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate 14 after two reaction cycles shows nearly full conversion ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$). The signals for determination of the conversion are annotated.

Figure S26. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{1 5}$ after one reaction cycle $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. The signals for determination of the conversion are annotated.

Figure S27. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{1 5}$ after two reaction cycles shows a conversion of ${ }^{\sim} 85 \%\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. The signals for determination of the conversion are annotated.

Compound purification and configurational analysis

The obtained crude materials after enzymatic reaction were purified by flash chromatography on silica gel (EtOAc (for 18 and 28); EtOAc:dichloromethane / 2:1 (for 29 and 30); hexane:EtOAc / 20:1 (for $\mathbf{2 4}$ and 35)) or by RP-HPLC (for 25). The pooled product fractions were obtained as a colourless solid and analysed via NMR spectroscopy and chiral HPLC. The ${ }^{1} \mathrm{H}$ NMR spectra of the purified products were used to assign the configuration of the formed THPs.

Figure S28. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product 2-L,3-L,6-D, 7-D-18 from incubation of $\mathbf{8}$ with PedPS7 (CDCl 3 , $500 \mathrm{MHz})$. It shows the 2,6 -trans-THP characteristic shift of $\delta(3-\mathbf{H})=3.96$ and $\delta(7-\mathrm{H})=3.29 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} /_{2 H-3 H}=10.0 \mathrm{~Hz}$ confirms the shown configuration at C-2. ${ }^{4}$ Traces of EtOAc are visible.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=5.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.96(\mathrm{ddd}, \mathrm{J}=10.0,5.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH} \mathrm{CH}_{2}\right), 3.54-3.47\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{NHCH}_{2}\right), 3.42-3.36\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{NHCH}_{2}\right), 3.31-3.27(\mathrm{td}, \mathrm{J}=$ $\left.6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right), 3.10-3.07$ (dq, $\left.J=10.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 3.07-2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.71-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 1.55-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.47-1.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 1.32-1.24 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$), $1.09\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCHCH}_{3}\right.$), $0.95(\mathrm{~d}, \mathrm{~J}=$ $\left.6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 0.85\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10

Figure S29. ${ }^{13} \mathrm{C}$ NMR analysis of the product 2-L,3-L,6-D,7-D-18 after conversion of 8 by PedPS7 (CDCl, 125 MHz).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=203.2(\mathrm{q}, \mathrm{SCO}), 170.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 78.6(\mathrm{t}, \mathrm{C}(\mathrm{O}) \mathrm{CHCHO})$, 73.6 ($\mathrm{t}, \mathrm{CHCHOCH}_{2}$), 50.3 ($\mathrm{t}, \mathrm{COCHCH}_{3}$), 39.9 ($\mathrm{s}, \mathrm{NHCH}_{2}$), 33.0 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 29.9 (s , $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 28.5 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}$), 26.4 ($\mathrm{s}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}$), $25.4\left(\mathrm{~s}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right.$), $23.4\left(\mathrm{p}, \mathrm{CH}_{3} \mathrm{CO}\right), 18.5$ (p, $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 14.3 ($\mathrm{p}, \mathrm{COCHCH}_{3}$), $10.0\left(\mathrm{p}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR analysis of the product 2-L,3-L,6-D,7-D-18 after incubation of PedPS7 and substrate 8 (C62 D_{6}, $500 \mathrm{MHz})$. It shows the 2,6-trans-THP characteristic shift of $\delta(3-H)=3.96$ and $\delta(7-H)=3.30 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} J_{2 \mathrm{H}-3 \mathrm{H}}=10.0 \mathrm{~Hz}$ confirms the shown configuration at $\mathrm{C}-2 .{ }^{4}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH} 2), 3.98-3.94$ (ddd, J=10.1, 5.9, 4.6 Hz, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), $3.31\left(\mathrm{td}, \mathrm{J}=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right.$), $3.28-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.93$ (dq, J = 9.8, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}$), 2.87-2.77 (m, 2H, CH ${ }_{2} \mathrm{~S}$), 1.60-1.54 (m, 1H, CH CHCH_{3}), 1.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}$), 1.42-1.26 (m, 4H, CH2CHCH $\mathrm{CH}_{3} \mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), 1.25-1.17 (m, 2H, CH2CH3), 0.98 (t , $\left.J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 0.79\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right)$.

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 302.1790, found 302.1779.

Figure S31. Section of the 1D-NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at 3.96 ppm (3-H) ($C_{6} D_{6}$, 300 MHz). No correlation with 7-H at $\delta=3.31 \mathrm{ppm}$ is observed. The full 1D NOE spectrum is shown in Figure S32.

Figure S32. Full 1D-NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at $3.96 \mathrm{ppm}(3-H)\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, 300 MHz).

7-H

Figure S33. 1D NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at $3.31 \mathrm{ppm}(7-H)\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right)$. No correlation with $3-\mathrm{H}$ at $\delta=3.96 \mathrm{ppm}$ and a weak correlation with $2-\mathrm{H}$ at $\delta=2.93 \mathrm{ppm}$ is observed.

Figure S34. 1D-NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at $3.29 \mathrm{ppm}\left(\mathrm{HNCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right)$. Correlation with $\mathrm{CH}_{2} \mathrm{~S}$ at $\delta=2.82 \mathrm{ppm}$ and $2-\mathrm{H}$ at $\delta=2.93 \mathrm{ppm}$ is observed.

Figure S35. 1D-NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at $2.93 \mathrm{ppm}(2-\mathrm{H})\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right)$. Correlation with $3-\mathrm{H}$ at $\delta=3.96 \mathrm{ppm}$ and $7-\mathrm{H}$ at $\delta=3.31 \mathrm{ppm}$ is observed.

Figure S36. 1D-NOE spectrum of purified 2-L,3-L,6-D,7-D-18 with saturation at $2.82 \mathrm{ppm}\left(\mathrm{SCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right)$. Correlation with NHCH_{2} at $\delta=3.29 \mathrm{ppm}$ and weak correlation with $3-\mathrm{H}$ at $\delta=3.96 \mathrm{ppm}$ is observed.

Figure S37. Section of the 2D-NOE spectra of purified 2-L,3-L,6-D,7-D-18. A+B) H,H-COSY spectra; C+D) 2D-NOESY spectra ($\mathrm{C}_{6} \mathrm{D}_{6}(\mathbf{A}+\mathbf{C})$ or $\mathrm{CDCl}_{3}(\mathbf{B}+\mathbf{D}), 500 \mathrm{MHz}$). The full spectra are shown in Figure S38-Figure S 41 . The red boxes highlight regions in which a correlation should be visible in the 2D-NOE spectrum for a cis-THP, but not for a trans-THP. The corresponding H,H-COSY and 2D-NOE spectra for 2-D,3-D,6-D,7-D-18 are shown in Figure S44.

Figure S38. Full H,H-COSY spectrum of purified 2-L,3-L,6-D,7-D-18 (CDCl $\left.{ }_{3}, 500 \mathrm{MHz}\right)$.

Figure S39. Full 2D-NOESY spectrum of purified 2-L,3-L,6-D,7-D-18 (CDCl ${ }_{3}, 500 \mathrm{MHz}$).

Figure S40. Full H,H-COSY spectrum of purified 2-L,3-L,6-D,7-D-18 ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S41. Full 2D-NOESY spectrum of purified 2-L,3-L,6-D,7-D-18 ($\left.C_{6} D_{6}, 500 \mathrm{MHz}\right)$.
$\stackrel{\stackrel{\circ}{\mathrm{N}}}{1}$
$\stackrel{\circ}{\infty}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR analysis of 2-D,3-D,6-D,7-D-18 from incubation of $\mathbf{8}$ with $\mathrm{AmbDH} 3\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$). It shows the $2,6-$ cis-THP characteristic shift of $\delta(3-\mathrm{H})=3.47$ and $\delta(7-\mathrm{H})=2.77 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} \mathrm{~J}_{2 \mathrm{H}-3 \mathrm{H}}=$ 9.1 Hz confirms the shown configuration at $\mathrm{C}-2 .{ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=5.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.47(\mathrm{ddd}, \mathrm{J}=10.8,9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), 3.45-3.40(m,2H, NHCH2), 3.06-2.95(m,2H, CH2S), $2.77(\mathrm{td}, \mathrm{J}=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{CH}_{3}$), $2.72\left(\mathrm{dq}, \mathrm{J}=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}, 1 \times$ $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 1.70-1.59 (m, $2 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, 1 \times \mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), 1.34-1.11 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}, 1 \times$ $\left.\mathrm{OCHCH}_{2} \mathrm{CH}_{2}, 1 \times \mathrm{CH}_{2} \mathrm{CHCH}_{3}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.79\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right)$.

Figure S43. ${ }^{1} \mathrm{H}$ NMR analysis of purified 2-D,3-D,6-D,7-D-18 from incubation of 8 with AmbDH3 ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$). It shows the $2,6-\mathrm{cis}-\mathrm{THP}$ characteristic shift of $\delta(3-\mathrm{H})=3.49$ and $\delta(7-\mathrm{H})=2.66 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3}{ }_{2 \mathrm{LH}-3 \mathrm{H}}$ of 8.7 Hz confirms the shown configuration at C-2. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=4.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.49$ (ddd, $J=10.8,8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), $3.28\left(\mathrm{dd}, J=12.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right.$), $2.86-2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.71(\mathrm{dq}, J=8.6$, $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 2.66\left(\mathrm{td}, \mathrm{J}=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right), 1.61-1.53\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.48 (s, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), $1.36-0.61$ (m, $6 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCHCH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$), $1.03\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.96\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 0.61(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$).

 500 MHz). The relevant 2,3-cis-THP-characteristic correlation between $3-\mathrm{H}$ and $7-\mathrm{H}$ is highlighted with a box in the 2D-NOE spectrum. The full ${ }^{1} \mathrm{H}$ NMR spectrum is shown in Figure S43.

Figure S45. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product $\mathbf{2 - L , 3 - L , 6 - D , 7 - D - 2 4}$ from the incubation of $\mathbf{1 4}$ with PedPS7 $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. It shows the 2,6-trans-THP characteristic shift of $\delta(3-\mathrm{H})=4.02$ and $\delta(7-\mathrm{H})=3.35 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} J_{2 \mathrm{H}-3 \mathrm{H}}$ of 9.9 Hz confirms the shown configuration at $\mathrm{C}-2 .{ }^{4}$

Figure S46. Section of the ${ }^{1} \mathrm{H}$ NMR spectrum of purified 2,3-syn-trans-24 relevant for configurational analysis ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.44-7.37$ (m, $5 \mathrm{H}, \mathrm{Ph}$), 4.02 (ddd, J = 9.9, 5.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$, CCHCH), 3.35 (ddd, $J=8.7,6.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}$), 3.18 (dq, J = 9.9, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}$), 1.73-1.27 (m, 7H, CCHCHCH ${ }_{2}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$), 1.15 (d, J=7.0 Hz, 3H, $\left.\mathrm{CCHCH}_{3}\right), 0.97\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)$.

Figure S47. ${ }^{13} \mathrm{C}$ NMR analysis of the purified product 2-L,3-L,6-D,7-D-24 from the incubation of $\mathbf{1 4}$ with PedPS7 ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=200.0(\mathrm{q}, \mathrm{SCO}), 134.6(\mathrm{t}, \mathrm{Ph}), 129.3(\mathrm{t}, \mathrm{Ph}), 129.2(\mathrm{t}, \mathrm{Ph})$, $128.1(\mathrm{q}, \mathrm{Ph}), 78.7\left(\mathrm{t}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right), 73.5\left(\mathrm{t}, \mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 50.0\left(\mathrm{t}, \mathrm{CCHCH}_{3}\right), 33.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right)$, 26.5 (s, $\mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), 25.7 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}$), $24.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.6\left(\mathrm{p}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.9\left(\mathrm{CCHCH}_{3}\right)$, 10.4 ($\mathrm{p}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).

HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 293.1575, found 293.1567 .

Figure S48. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product $\mathbf{2 - L , 3 - L , 6 - D , 7 - D - 2 5}$ from the incubation of $\mathbf{1 5}$ with PedPS7 $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. It shows the 2,6-trans-THP characteristic shift of $\delta(3-\mathrm{H})=3.97$ and $\delta(7-\mathrm{H})=3.28 \mathrm{ppm}$. The vicinal coupling constant ${ }^{3} J_{2 \mathrm{H}-3 \mathrm{H}}$ of 9.9 Hz confirms the shown configuration at $\mathrm{C}-2 .{ }^{4}$

Figure S49. Section of the ${ }^{1} \mathrm{H}$ NMR analysis of purified 2-L,3-L,6-D,7-D-25 relevant for configurational analysis ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=3.97$ (ddd, $J=9.9,5.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}$), 3.28 (ddd, $\mathrm{J}=$ $\left.8.5,6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right), 3.05\left(\mathrm{dq}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 2.93-2.83(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~S}$), 1.70-1.28 (m, 7H, $\left.\mathrm{CCHCHCH}_{2}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 1.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 1.07\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCHCH}_{3}\right), 0.94\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 0.86(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}$).

Figure S50. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ NMR analysis of the purified product 2-L,3-L,6-D,7-D-25 after conversion of PedPS7 and substrate 15 ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$).
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=202.4(\mathrm{q}, \mathrm{SCO}), 78.6\left(\mathrm{t}, \mathrm{OCHCH}_{2} \mathrm{CH}_{3}\right), 73.4(\mathrm{t}$, $\mathrm{OCHCH}_{2} \mathrm{CH}_{2}$), $50.1(\mathrm{t}, \mathrm{CCHCH}), 33.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 26.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 25.6\left(\mathrm{~s}, \mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right)$, 24.8 (s, $\mathrm{CHOCH}_{2} \mathrm{CH}_{3}$), 23.2 ($\mathrm{s}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), $18.5\left(\mathrm{p}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right.$), 15.0 (p, COCHCH_{3}), 14.8 (p, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 10.2\left(\mathrm{p}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 245.1575, found 245.1568.

Stereoisomer discrimination and stereoselectivity of PedPS7

UPLC-MS analysis of crude reaction products

Figure S51. UPLC-MS analysis of conversion of $\mathbf{2 8}$ by PedPS7 after one (A) and two (B) reaction cycles. $\mathrm{M}(\mathbf{2 8})=310$, $\mathrm{M}\left(\mathbf{3 2)}=310, t_{\mathrm{R}}(\mathbf{2 8})=3.03 \mathrm{~min}, t_{\mathrm{R}}(\right.$ trans -32$)=3.23 \mathrm{~min}, t_{\mathrm{R}}($ cis-32 $)=3.44 \mathrm{~min}$. Conditions of enzyme assay: $10 \times 0.1 \mathrm{mg}$ (348 nmol) substrate 28 in HEPES buffer pH 7.2 (substrate concentration 2 mm) and $4.8-7.0 \mathrm{mg} / \mathrm{mL}$ His 6 -PedPS7.

Figure S52. UPLC-MS analysis of conversion of $\mathbf{2 9}$ by PedPS7 after one ($\mathbf{A + B}$), two ($\mathbf{C + D}$) and three ($\mathbf{E + F}$) reaction cycles. $\mathrm{M}(\mathbf{2 9})=388, \mathrm{M}(\mathbf{3 3})=388, t_{\mathrm{R}}(\mathbf{2 9})=3.24 \mathrm{~min}, t_{\mathrm{R}}($ trans -33$)=3.54 \mathrm{~min}, t_{\mathrm{R}}($ cis -33$)=3.70 \mathrm{~min}$. Conditions of enzyme assay: $5 \times 0.1 \mathrm{mg}(274 \mathrm{nmol})$ substrate 29 in HEPES buffer 6.8 (A), HEPES glycerol buffer pH 7.2 (B) and HEPES buffer pH 7.2 (C-F) (substrate concentration 2 mm) and $1.6-7.0 \mathrm{mg} / \mathrm{mL}$ His 6 -PedPS7.

Figure S53. UPLC-MS analysis of (A) substrate 30, (B) conversion of $\mathbf{3 0}$ by PedPS7. $\mathrm{M}(\mathbf{3 0})=374, \mathrm{M}(\mathbf{3 4})=374$, $t_{\mathrm{R}}(\mathbf{3 0})=3.01 \mathrm{~min}, t_{\mathrm{R}}($ trans -34$)=3.21 \mathrm{~min}, t_{\mathrm{R}}($ cis-34)$=3.47 \mathrm{~min}$. Conditions of enzyme assay: 0.1 mg (285 nmol) substrate 30 in HEPES buffer (substrate concentration 2 mm) and $2.7 \mathrm{mg} / \mathrm{mL}$ His \boldsymbol{s}_{6} PedPS7. No or only minimal spontaneous conversion of $\mathbf{3 0}$ into cis- $\mathbf{3 4}$ was observed under the reaction conditions in earlier studies. ${ }^{2}$

NMR analysis of crude reaction products

\qquad

Figure S54. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{2 8}$ after one reaction cycle $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$. The relevant signals of the starting material and the cyclised products are annotated in the enlarged section.

Figure S55. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{2 8}$ after two reaction cycles ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

Figure S56. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{2 8}$ after three reaction cycles ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

Figure S57. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{2 9}$ after one reaction cycle ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S58. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{2 9}$ after two reaction cycles ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S59. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{3 0}$ after one reaction cycle ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S60. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of AmbDH 3 and substrate $\mathbf{3 0}$ after one reaction cycle ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S61. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{3 1}$ after one reaction cycle ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$).

Figure S62. ${ }^{1} \mathrm{H}$ NMR analysis of the conversion experiment of PedPS7 and substrate $\mathbf{3 1}$ after two reaction cycles $\left(C_{6} D_{6}, 500 \mathrm{MHz}\right)$. The relevant signals of the starting material and the cyclised products are annotated in the enlarged section. The conversion could only be estimated due to overlapping signals.

Compound purification and configurational analysis

NMR analysis

Figure S63. ${ }^{1} \mathrm{H}$ NMR analysis of the product mixture 2-L,3-L,7-D-32 and 2-L,3-L,7-L-32 after column chromatography ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$). It shows the 2,6 -trans-THP characteristic shifts of $\delta(3-\mathrm{H})=3.89$ and $\delta(7-\mathrm{H})=$ 3.50 ppm (collapsing with $3-\mathrm{H}$ (cis-THP) and NHCH_{2}) as well as the 3,7 -cis-THP characteristic shifts of $\delta(3-\mathrm{H})=$ 3.52 and $\delta(\mathbf{7}-\mathrm{H})=2.73 \mathrm{ppm}$. The vicinal coupling constants ${ }^{3} \mathrm{~J}_{2 \mathrm{H}-3 \mathrm{H}}$ of 9.9 Hz for $\mathbf{2 - L , 3 - L , 7 - D - 3 2}$ and 8.9 Hz for 2-L,3-L,7-L-32 confirm the shown configuration at C-2. ${ }^{4}$

Figure S64. Section of the ${ }^{1} \mathrm{H}$ NMR analysis of the purified product mixture 2-L, $\mathbf{3 - L}, \mathbf{7}-\mathrm{D}-\mathbf{3 2}$ and $\mathbf{2 - L}, \mathbf{3}-\mathrm{L}, \mathbf{7}-\mathrm{L}-\mathbf{3 2}$ relevant for configurational analysis ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 288.1633, found 288.1628.

Figure S65. ${ }^{1} \mathrm{H}$ NMR analysis of the reisolated starting material rac- $\mathbf{2 8}$ along with a minor impurity of 2-L,3-L,7-D-32 (CDCl $\left.{ }_{3}, 500 \mathrm{MHz}\right)$.

Figure S66. Section of the ${ }^{1} \mathrm{H}$ NMR analysis of the reisolated starting material rac-28 from flash chromatography showing the signals for $\mathbf{7 - H}, \mathbf{N H C H}_{\mathbf{2}}$ and $\mathbf{C H}_{2} \mathbf{S}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.
HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 288.1633, found 288.1628; for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: calculated 310.1453, found 310.1447.

Figure S67. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product mixture of trans- $\mathbf{3 3}$ and cis- 33 after conversion of PedPS7 and substrate rac-29 ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$. The ${ }^{1} \mathrm{H}$ NMR analysis of the starting material rac-29 is shown in Figure S69. The sections of the NMR spectra for configuration determination are shown in Figure S68. It shows the 2,6-transTHP characteristic shift of $\delta(3-\mathrm{H})=4.02$ and $\delta(7-\mathrm{H})=4.86 \mathrm{ppm}$ as well as the 2,6 -cis-THP characteristic shift of $\delta(3-\mathrm{H})=3.68$ and $\delta(7-\mathrm{H})=4.14 \mathrm{ppm}$. The vicinal coupling constants ${ }^{3} /_{2 \mathrm{H}-3 \mathrm{H}}$ of 10.0 Hz for trans- 33 and 8.6 Hz for cis- $\mathbf{3 3}$ confirm the shown relative configuration along $\mathrm{C}-2-\mathrm{C}-3 .{ }^{2,4}$

Figure S68. Section of the ${ }^{1} \mathrm{H}$ NMR analysis of the purified product mixture trans-33 and cis-33 after conversion of PedPS7 and substrate rac-29 ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 366.1739, found 366.1728.

Figure S69. ${ }^{1} \mathrm{H}$ NMR analysis of the starting material rac-29 ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$. Impurities of EtOAc are visible at 3.90, 1.65 and 0.92 ppm.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.18-7.17\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{\mathrm{ArOM}} \mathrm{OMe}\right), 6.84-6.80(\mathrm{~m}, 3 \mathrm{H}, 2 \times$ $\mathrm{CH}_{\text {Ar }} \mathrm{OMe}, \mathrm{CH}_{3} \mathrm{CCH}$), $4.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27-$ $3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.88\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.87-1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCHCH}_{2}\right), 1.77(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), 1.71-1.66 (m, 1H, $1 \times \mathrm{CH}_{2} \mathrm{COH}$), 1.57-1.49 (m, $1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{COH}$), $1.46(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CCO}$), $1.43-1.36\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.32-1.22\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

Figure S70. ${ }^{1} \mathrm{H}$ NMR analysis of the product mixture trans-34 and cis-34 obtained from the incubation of rac-30 and PedPS7 after flash chromatography ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$). It shows the $2,6-$ trans-THP characteristic shifts of $\delta(7-\mathrm{H})=4.72$ and $\delta(3-\mathrm{H})=4.36 \mathrm{ppm}$ as well as the $2,6-\mathrm{cis}-\mathrm{THP}$ characteristic shifts of $\delta(7-\mathrm{H})=4.15$ and $\delta(3-\mathrm{H})=$ 3.91 ppm.

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 352.1583, found 352.1573.

Figure S71. ${ }^{1} \mathrm{H}$ NMR analysis of synthetic rac-30 ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.13-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{CHArOMe}), 6.86(\mathrm{dt}, J=13.3,5.9 \mathrm{~Hz}$, 1H, OCCHCH), 6.83-6.79 (m, 2H, o-CHArOMe), 5.99 (dt, J = 15.5, 1.5 Hz, 1H, OCCHCH), 4.68 (s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 4.29-4.25 (m, 1H, CHOH), 3.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.25-3.20(m, 2H, NCH N_{2}), $2.87(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$), 1.73-1.68 (m, 2H, CHCHCH 2), $1.61-1.54\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{OHCHCH}_{2}\right), 1.44-1.41$ ($\mathrm{m}, 1 \mathrm{H}, 1 \times \mathrm{OHCHCH}_{2}$), $1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCCH}_{3}\right), 1.36-1.28\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 1.21-1.14 (m, $1 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

Figure S72. ${ }^{1} \mathrm{H}$ NMR analysis of the mixture of trans- $\mathbf{3 5}$ and cis- $\mathbf{3 5}$ resulting from transesterification of the SNAC thioesters 34 shown in Figure S 70 to the corresponding SEt thioesters ($\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}$). It shows the 2,6-transTHP characteristic shift of $\delta(7-\mathrm{H})=4.76$ and $\delta(3-\mathrm{H})=4.39 \mathrm{ppm}$ as well as the 2,6 -cis-THP characteristic shift of $\delta(7-\mathrm{H})=4.18$ and $\delta(3-\mathrm{H})=3.97 \mathrm{ppm}$.

Figure S73. ${ }^{1} \mathrm{H}$ NMR analysis of the purified product of the incubation reaction of rac-30 and AmbDH3 $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $500 \mathrm{MHz})$. It shows the $2,6-$ cis-THP characteristic shift of $\delta(7-\mathrm{H})=4.15$ and $\delta(3-\mathrm{H})=3.91 \mathrm{ppm}$.

Figure S74. ${ }^{1} \mathrm{H}$ NMR analysis of the SEt thioester resulting from the transesterification of the SNAC thioester shown in Figure $\mathrm{S73}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$. It shows the 2,6-cis-THP characteristic shift of $\delta(7-\mathrm{H})=4.18$ and $\delta(3-\mathrm{H})=$ 3.97 ppm .

Figure S75. ${ }^{1} \mathrm{H}$ NMR analysis of the synthetic reference compound cis-rac- $34\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$. It shows the $2,6-c i s-$ THP characteristic shift of $\delta(7-\mathrm{H})=4.16$ and $\delta(3-\mathrm{H})=3.91 \mathrm{ppm}$.

Figure S76. ${ }^{1} \mathrm{H}$ NMR analysis of the SEt thioester resulting from the transesterification of the reference compound shown in Figure $\mathrm{S75}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$. It shows the 2,6 -cis-THP characteristic shift of $\delta(7-\mathrm{H})=4.18$ and $\delta(3-\mathrm{H})=$ 3.97 ppm.

Figure S77. ${ }^{1} \mathrm{H}$ NMR analysis of the purified cis- $\mathbf{3 9}$ diastereomer from the incubation of PedPS7 and $22\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, 500 MHz). It shows the 2,6-cis-THP characteristic shift of $\delta(7-\mathrm{H})=4.18$ and $\delta(3-\mathrm{H})=3.97 \mathrm{ppm}$.

HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 295.1368, found 295.1359.

Figure S78. ${ }^{1} \mathrm{H}$ NMR analysis of the purified trans- $\mathbf{3 9}$ diastereomer from the incubation of PedPS7 and $\mathbf{3 1}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz})$. It shows the 2,6-trans-THP characteristic shift of $\delta(7-\mathrm{H})=4.76$ and $\delta(3-\mathrm{H})=4.39 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 295.1368, found 295.1358.

Figure S79. ${ }^{1} \mathrm{H}$ NMR analysis of the starting material rac-31 ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=7.11-7.08\left(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH}_{\mathrm{Ar}} \mathrm{OMe}\right), 6.87(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCCHCH}$), 6.82-6.78 (m, $2 \mathrm{H}, o-\mathrm{CH}_{\text {Ar }} \mathrm{OMe}$), $6.03(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCHCH}), 4.26-$ $4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.79\left(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.72-1.67(\mathrm{~m}, 2 \mathrm{H}$, CHCHCH_{2}), 1.58-1.50 (m, 1H, $1 \times \mathrm{CH}_{2} \mathrm{COH}$), 1.45-1.37 (m, 1H, $1 \times \mathrm{CH}_{2} \mathrm{COH}$), 1.32-1.25 (m, 1H, $1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.18-1.09 ($\mathrm{m}, 2 \mathrm{H}, 1 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{OH}$), $1.06\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right)$.

Chiral HPLC analysis and reference experiments

An estimation of the individual stereoisomers of $\mathbf{2 8}, \mathbf{3 0}$ and $\mathbf{3 1}$ in the starting material and in purified products after enzymatic assays was made by chiral HPLC (Figure S80-Figure S92). The individual stereoisomers of $\mathbf{2 8}$ migrated in the order $\mathbf{7 - L - 2 8}$ and $\mathbf{7 - D - 2 8}$, according to reference ${ }^{2}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	25,87	24,85	30,43	414188	52,52	19867073	50,08
2	28,69	24,85	30,43	374466	47,48	19805989	49,92

Figure S80. Chiral HPLC analysis of $\operatorname{rac-28.} t_{\mathrm{R}}(\mathbf{7 - L}-\mathbf{2 8})=25.87 \mathrm{~min}, t_{\mathrm{R}}(\mathbf{7}-\mathrm{D}-\mathbf{2 8})=28.69 \mathrm{~min}$. The elution order was established based on the chiral HPLC profiles in reference ${ }^{2}$.

Figure S81. Chiral HPLC analysis of the resiolated mixture of 7-L-28 and 7-D-28 after three incubation cycles of PedPS7 and rac-28 and flash chromatography (see NMR spectrum in Figure S65). 7-L-28 was consumed by the PedPS7 to a larger extent. $t_{R}(\mathbf{7}-\mathrm{L}-28)=26.08 \mathrm{~min}, t_{R}(\mathbf{7}-\mathrm{D}-\mathbf{2 8})=28.87 \mathrm{~min}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	$\%$ Area
1	4,09	3,75	4,67	21478	1,76	324132	1,35
2	4,40	3,75	4,67	14070	1,15	146082	0,61
3	5,14	5,03	5,40	35195	2,88	231684	0,97
4	6,78	6,50	7,08	9391	0,77	153608	0,64
5	7,55	7,25	10,20	968247	79,36	18782367	78,35
6	9,10	7,25	10,20	171612	14,07	4335950	18,09

Figure S82. Chiral HPLC analysis of the product mixture after three reaction cycles of PedPS7 and substrate rac28 and subsequent flash chromatography (see NMR spectrum in Figure 563). $t_{R}(\mathbf{2}-\mathrm{L}, \mathbf{3 - L}, \mathbf{7}-\mathrm{L}-\mathbf{3 2})=7.55 \mathrm{~min}, t_{\mathrm{R}}(\mathbf{2}-\mathrm{L}, \mathbf{3}-$ L,7-D-32)=9.10 min. The product stereoisomers were annotated based on the established 2-L,3-L,7-D-selectivity of PedPS7, the syn-THP:anti-THP ratio in the UPLS-MS chromatograms and NMR spectra as well as by comparison to chiral HPLC elution profiles of the product from the reaction of $\mathbf{2 8}$ and AmbDH3. ${ }^{2}$

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	56,73	55,07	60,63	84272	45,85	5286873	38,57
2	58,19	55,07	60,63	78753	42,85	5782459	42,18
3	84,86	82,67	87,90	11840	6,44	1435026	10,47
4	94,95	92,78	98,55	8929	4,86	1203732	8,78

Figure S83. Chiral HPLC analysis of synthetic rac-30. $t_{\mathrm{R}}(\mathbf{7}-\mathrm{L}-\mathbf{3 0})=56.73 \mathrm{~min}, t_{\mathrm{R}}(\mathbf{7}-\mathrm{d}-\mathbf{3 0})=58.19 \mathrm{~min}$. Minor amounts of the cis-THP products resulting from spontaneous cyclisation after long-time storage are visible at 84.86 min and 94.95 min .

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	15,56	15,03	16,60	159854	18,66	4057802	2,06
2	82,05	80,68	90,17	298827	34,89	51208078	26,00
3	91,97	90,20	99,20	250257	29,22	50629096	25,70
4	105,83	103,82	110,42	8433	0,98	1449298	0,74
5	120,64	118,48	149,78	8180	0,96	1263843	0,64
6	128,05	118,48	149,78	130989	15,29	88360114	44,86

Figure S84. Chiral HPLC analysis of synthetic rac-cis-34. $t_{R}(3-\mathrm{D}, 7-\mathrm{D}-34)=82.06 \mathrm{~min}, t_{\mathrm{R}}(3-\mathrm{L}, 7-\mathrm{L}-34)=91.97 \mathrm{~min}$. Minor amounts of the trans diastereomers of 34 are visible at 105.83 min and 120.64 min . The peak at 128.05 min is associated to an impurity that is non-related to the sample (see Figure S 75 for confirmation)

Figure S85. Chiral HPLC analysis of the purified product mixture of 3-L,7-L-34 and 3-L,7-D-34 after one reaction cycle of PedPS7 and substrate 30. $t_{R}(3-L, 7-L-34)=92.98 \mathrm{~min}, t_{R}(3-D, 7-L-34$ or $3-L, 7-D-34)=116.62 \mathrm{~min}$. (see Figure S70).

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	33,92	20,82	53,27	62808	19,69	45968040	55,73
2	79,87	78,37	87,62	199701	62,59	28360353	34,38
3	91,02	88,78	95,65	42774	13,41	5933094	7,19
4	101,35	98,77	105,20	7930	2,49	1285199	1,56
5	116,32	113,50	120,00	5848	1,83	940429	1,14

Figure S86. Chiral HPLC analysis of the purified product mixture of 3-D,7-D-34 and 3-L,7-L-34 after one reaction cycle of of AmbDH3 and substrate 30. $t_{R}(3-D, 7-D-34)=79.87 \mathrm{~min}, t_{R}(3-L, 7-L-34)=91.02 \mathrm{~min}$.

The SNAC thioester shown in Figure S84-Figure S86 were converted into the respective EtS thioesters to provide a reference for the configurational assignment of the products from the incubation of $\mathbf{3 1}$ with PedPS7.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	$\%$ Area
1	14,23	13,83	17,27	61996	4,61	1121572	3,31
2	15,13	13,83	17,27	36774	2,73	812866	2,40
3	16,25	13,83	17,27	434831	32,34	9555804	28,17
4	19,62	19,12	21,22	798070	59,35	22110406	65,18
5	76,20	75,85	77,00	12951	0,96	319065	0,94

Figure S87. Chiral HPLC analysis of the purified product mixture of 3-L,7-L-34 and 3-L,7-D-34 after SNAC \rightarrow SEt transesterification of the PedPS7 reaction product to $3-\mathrm{L}, 7-\mathrm{L}-35$ and $3-\mathrm{L}, 7-\mathrm{D}-35$ (Figure S85). $t_{R}(3-L, 7-L-35)=16.25 \mathrm{~min}, t_{R}(3-L, 7-D-35)=19.62 \mathrm{~min}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	$\%$ Area
1	14,05	13,42	17,10	691567	71,65	12872539	68,66
2	15,04	13,42	17,10	45987	4,76	937989	5,00
3	16,22	13,42	17,10	138232	14,32	2903519	15,49
4	19,78	19,25	20,60	24737	2,56	610444	3,26
5	26,87	26,32	27,53	11249	1,17	317071	1,69
6	94,25	93,93	95,10	53443	5,54	1106471	5,90

Figure S88. Chiral HPLC analysis of the purified product mixture of 3-D,7-D-34 and 3-L,7-L-34 after SNAC \rightarrow SEt transesterification of the product from AmbDH3 incubation to 3-D,7-D-35 and 3-L,7-L-35 (Figure S86). $t_{\mathrm{R}}(3-\mathrm{D}, 7-\mathrm{D}-$ $35)=14.05 \mathrm{~min}, t_{\mathrm{R}}(3-\mathrm{L}, 7-\mathrm{L}-35)=16.22 \mathrm{~min}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	13,17	12,87	19,18	1507858	53,90	27314082	47,86
2	14,15	12,87	19,18	54456	1,95	921672	1,62
3	14,86	12,87	19,18	1194044	42,68	27840242	48,78
4	18,29	12,87	19,18	41402	1,48	991548	1,74

Figure S89. Chiral HPLC analysis of the reference cis-products of 3-D,7-D-34 and 3-L,7-L-34 after SNAC \rightarrow SEt transesterification of the synthetic syn-rac-mixture to $3-\mathrm{D}, 7-\mathrm{D}-35$ and $3-\mathrm{L}, 7-\mathrm{L}-35$ (Figure S87). $t_{\mathrm{R}}(3-\mathrm{D}, 7-\mathrm{D}-35$)=13.17 $\mathrm{min}, t_{\mathrm{R}}(3-\mathrm{L}, 7-\mathrm{L}-35)=14.86 \mathrm{~min}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	16,73	16,28	17,63	185248	90,24	3948186	77,22
2	20,48	19,98	21,83	11284	5,50	279161	5,46
3	21,22	19,98	21,83	4196	2,04	122367	2,39
4	27,15	24,53	30,20	3987	1,94	647178	12,66
5	90,46	87,45	93,98	572	0,28	116176	2,27

Figure S90. Chiral HPLC analysis of the purified cis-THP product 3-L,7-L-35 after two reaction cycles of PedPS7 and substrate rac-31 (see Figure S77). $t_{\mathrm{R}}(3-\mathrm{L}, 7-\mathrm{L}-35)=16.73 \mathrm{~min}$.

Figure S91. Chiral HPLC analysis of the purified trans-THP product 3-D,7-L-35 or 3-L,7-D-35 after two reaction cycles of PedPS7 and substrate 31 (see Figure S78). $t_{R}(3-D, 7-L-35$ or $3-L, 7-D-35)=20.69 \mathrm{~min}$.

	Ret. Time	Start (min)	End (min)	Height	\% Height	Area	\% Area
1	13,53	13,25	16,43	33767	3,54	550314	2,49
2	14,38	13,25	16,43	19437	2,04	345558	1,56
3	15,39	13,25	16,43	261713	27,40	5247427	23,76
4	18,49	17,95	19,87	640144	67,03	15938000	72,18

Figure S92. Chiral HPLC analysis after mixing of the product from incubation of rac-30 with PedPS7 followed by transesterification and from the incubation of rac-31 with PedPS7. The individual chiral HPLC analysis are shown in Figure S87, Figure S90 and Figure S91. This spiking experiment confirms that the configuration of the reaction products from incubation of PedPS7 and rac-30 or rac-31, respectively, is identical. $t_{R}(3-\mathrm{L}, 7-\mathrm{L}-35)=15.40 \mathrm{~min}, t_{R}(3-$ $\mathrm{D}, 7-\mathrm{L}-35$ or $3-\mathrm{L}, 7-\mathrm{D}-35$)=18.49 min .

References

1G. Berkhan and F. Hahn, Angew. Chem. Int. Ed., 2014, 53, 14240-14244.
2T. Hollmann, G. Berkhan, L. Wagner, K. H. Sung, S. Kolb, H. Geise and F. Hahn, ACS Catal., 2020, 10, 4973-4982.
3G. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba and F. Gagosz, Angew. Chem. Int. Ed., 2017, 56, 11440-11444.
4Z. Song, R. P. Hsung, T. Lu and A. G. Lohse, J. Org. Chem., 2007, 72, 9722-9731.
5 T. J. Harrison, S. Ho and J. L. Leighton, J. Am. Chem. Soc., 2011, 133, 7308-7311.
6P. J. Kocieński, R. C. D. Brown, A. Pommier, M. Procter and B. Schmidt, J. Chem. Soc. Perkin 1, 1998, 0, 9-40.

