Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Electrochemically Enhanced Deoxygenative Cross-Coupling of Aryl Ketones with Heteroarenes through in-situ Generated Benzyl

Carbocations

Yiyi Zhang,^{ab} Jianxin Hou,^b Hui Yang,^b Shengdong Wang^{*a} and Kedong Yuan^{*a}

Supporting Information	S1
General Information	S2
Graphic presentation of reaction.	S3
Controlled electrochemical studies of benzophenone and benzofuran	S3
Reaction Conditions Optimization	S4
General procedure for electrochemically enhanced cross-coupling reactions	
Procedure for synthesis of 2-benzhydrylbenzofuran (3a)	S6
Analytical Data	S7
References	S22
NMR Spectra	S24

^{a.} Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.

^{b.}Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China. Email: wangshengdong@gzmu.edu.cn; kedongyuan@gzhmu.edu.cn

General Information

Unless otherwise noted, all electrochemical reactions for products preparation were handled under air, and performed in an undivided electrolysis cell (ElectraSyn 2.0). Aryl ketones 1a-1q, the corresponding O-, S-, N-heteroarenes were purchased from Aladdin Ltd. (Shanghai, China), J&K Scientific, and TCI (Shanghai) Development Co., Ltd. Graphite plates (immersed in electrolyte $\approx 1 \times 1 \text{ cm}$), copper plates ($\approx 1 \times 1 \text{ cm}$), and other electrodes (~1 x 1 cm) were used for reaction optimization and substrate scope studies. HPLC grade solvents, N,N'-dimethylforamide (DMF), dichloromethane (DCM), acetonitrile (MeCN), and tetrahydrofuran (THF) were purchased from commercial sources and used without further purification. The new products were fully characterized by using ¹H, ¹³C NMR and HRMS. ¹H NMR spectra were recorded on a Bruker GPX 400 MHz spectrometer. Chemical shifts (δ) were reported in parts per million (ppm, δ) relative to residual chloroform (7.26 ppm for ¹H NMR; 77.0 ppm for ¹³C NMR), Coupling constants were reported in Hertz. ¹H NMR assignment abbreviations were the following: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). ¹³C NMR spectra were recorded at 101 MHz on the same spectrometer and reported in ppm. Known products were analyzed by GC-MS, ¹H NMR and verified by comparison with literature data. Melting points were measured on an SGW-4A microscopic melting point apparatus. High resolution mass spectra (HRMS) were recorded on a Waters Acquity UPLC Class I/Xevo G2 Q-Tof MS by using electrospray ionization (ESI) with a TOF mass analyzer.

Graphic presentation of reaction.

Figure S1. Typical reaction set-up of electrochemical reaction of aryl ketones and heteroarenes.

Controlled electrochemical studies of benzophenone and

benzofuran

Notably, triflic acid, a super strong acid in organic media, can help stabilize benzylic carbocations even in organic media, which also serves as an efficient supporting electrolyte for the electrochemical reactions. Cyclic voltammetry (CV) measurements were performed to study the electrical behavior of **1a** and **2a** (Figure S2). Surprisingly, the initial current was around 4.5 mA even without an applied potential and substrates, such a phenomenon possibly arose from the reaction of triflic acid and CH₃CN.¹⁷⁻¹⁸ The proton from triflic acid and the hydride from silane could work synergistically to reduce the carbonyl group, which could cause the current signal. Besides that, the CV investigation shows that benzophenone 1a and benzofuran 2a exhibit electrochemical reactivity at oxidative potentials with onset ~1.2-1.3 V vs Ag/AgCl. The mixture of 1a and 2a (green) shows an increased anodic current compared to the independent study of 1a (red) and 2a (blue), which is consistent with the occurrence of the rapid crosscoupling between benzyl carbocations and heteroarenes. It is also clear that the crosscoupling reaction between 1a and 2a (green) outcompetes the carbonyl deoxygenative reduction reaction (red). The increasing tendency to the applied potential of the carbonyl deoxygenative reduction reaction (red) probably suggests that the increased

generation of benzyl carbocation and the reduction of benzyl carbocation in the presence of silane.

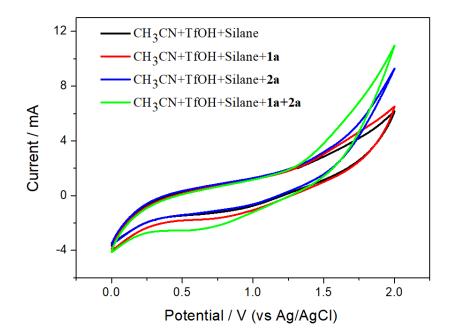


Figure S2. Electrochemical behaviors of 1a and 2a by CV techniques at scan rate 100 mv/s, vs (Ag/AgCl).

Reaction Conditions Optimization

$ \begin{array}{c} \hline \\ \hline $										
	1a		2a			3a				
Entry	Anode	Cathode	Acid	Silane	Current	Time	Solvent	Yield of 3a		
					(mA)	(h)	(5.0 mL)	(%)		
1	Graphite	Cu	CF_3SO_3H	0.25	0	3	CH₃CN	68		
2	Graphite	Cu	CF_3SO_3H	0.25	2	3	CH₃CN	73		
3	Graphite	Cu	CF_3SO_3H	0.25	5	3	CH ₃ CN	75		
4	Graphite	Cu	CF₃SO₃H	0.25	10	3	CH₃CN	100 (82)		
5	Graphite	Cu	CF₃SO₃H	0.25	10	0.5	CH₃CN	76		
6	Graphite	Cu	CF_3SO_3H	0.25	10	1	CH₃CN	83		
7	Graphite	Cu	CF_3SO_3H	0.25	10	2	CH ₃ CN	92		
8	Graphite	Cu	CF_3SO_3H	0.25	10	3	CH₃CN	100		

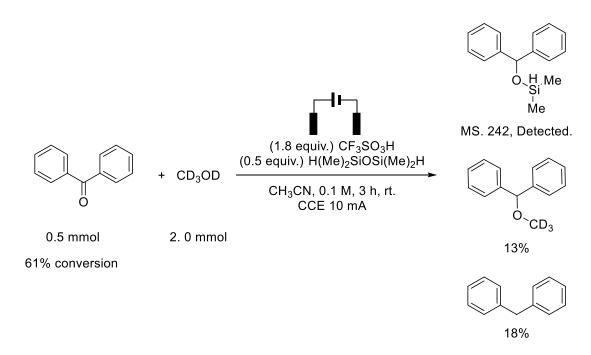
Table S1. Optimization for electrochemical reaction of 1a and 2a.^a

S4

9	Graphite	Cu	CF₃SO₃H	0.25	10	3	CH_2CI_2	0
10	Graphite	Cu	CF₃SO₃H	0.25	10	3	THF	0
11	Graphite	Cu	CF₃SO₃H	0.25	10	3	DMF	0
12	Glass carbon	Cu	CF₃SO₃H	0.25	10	3	CH₃CN	94
13	Graphite	С	CF₃SO₃H	0.25	10	3	CH₃CN	100
14	Graphite	Cu	None	0.25	10	3	CH₃CN	0
15	Graphite	Cu	CF₃COOH	0.25	10	3	CH₃CN	0
16	Graphite	Cu	CH₃COOH	0.25	10	3	CH₃CN	0
17	Graphite	Cu	TsOH	0.25	10	3	CH₃CN	0
18	Graphite	Cu	H_2SO_4	0.25	10	3	CH₃CN	0
19 ^{<i>b</i>}	Graphite	Cu	0.5mmol	0.25	10	3	CH₃CN	68
20 ^c	Graphite	Cu	0.75mmol	0.25	10	3	CH ₃ CN	100
21	Graphite	Cu	CF₃SO₃H	0	10	3	CH₃CN	0
22	Graphite	Cu	CF₃SO₃H	0.5	10	3	CH₃CN	100 (83)
23 ^d	-	-	CF₃SO₃H	0.25	50 °C	3	CH₃CN	71
24 ^d	-	-	CF₃SO₃H	0.25	70 °C	3	CH₃CN	77
25 ^d	-	-	CF₃SO₃H	0.25	90 °C	3	CH₃CN	81

^{*a*} Reaction condition: **1a**, 0.5 mmol, **2a**, 2.0 equiv. 1.0 mmol, CF₃SO₃H, 1.8 equiv. 0.90 mmol, hydrosilane, 0.50 equiv. 0.25 mmol, Solvent, CH₃CN, 5.0 mL; 10 mA, 3.0 h at room temperature. Yields was determined GC by using 50 μL of dodecane as internal standard and isolated yield was given in parenthesis. ^{*b*} 1.0 equiv. CF₃SO₃H. ^{*c*} 1.5 equiv. CF₃SO₃H. ^{*d*} Reactions were performed in a 25 mL seal Schlenk.

General procedure for electrochemically enhanced cross-coupling reactions

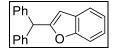

The reactions were performed in an undivided ElectraSyn 2.0 vial (10 mL), which was equipped with graphite plate (anode, $\approx 1 \times 1 \text{ cm}$) and Cu plate (cathode, $\approx 1 \times 1 \text{ cm}$) as electrodes. To this electrolysis vial, aryl ketone (0.5 mmol, 1.0 equiv.), 1,1,3,3-Tetramethyldisiloxane (0.25 mmol, 0.5 equiv.), heteroarene (1.0 mmol, 2.0 equiv.), CH₃CN (5.0 mL), and triflic acid (0.9 mmol, 1.8 equiv.) were added. The mixture was electrolyzed under 10 mA constant current at room temperature with rigid magnetic stirring, and the reaction was monitored by thin layer chromatography (TLC) after 3 hours till aryl ketone was completely converted. Then, a partial solution was filtered through a short silica gel column for GC and GC-MS analysis. The combined solution

was concentrated under reduced pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired cross-coupling products.

Procedure for synthesis of 2-benzhydrylbenzofuran (3a)

To an undivided ElectraSyn 2.0 cell (10 mL), graphite plate (anode, $\approx 2 \times 1 \text{ cm}$) and Cu plate (cathode, $\approx 2 \times 1 \text{ cm}$) was equipped as electrodes. Benzophenone (**1a**, 1.0 mmol, 182.2 mg), 1,1,3,3-Tetramethyldisiloxane (0.5 mmol, 67.2 mg), benzofuran (**2a**, 2.0 mmol, 236.4 mg), CH₃CN (10.0 mL, 0.1 M), and triflic acid (1.8 mmol, 270.1 mg) were added subsequently to the electrolysis cell. The mixture was electrolyzed under 10 mA constant current at room temperature with rigid magnetic stirring for 3 hours, and TLC showed that benzophenone **1a** was completely converted. The reaction was filtrated through celites and a partial solution was submitted for GC and GC-MS analysis. The combined filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel using petroleum ether as eluent, affording **3a** a white solid in 83% isolated yield, 236.0 mg.

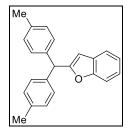
Note: When the reaction was performed in 0.2 M (1.0 mmol **1a** in 5.0 mL CH₃CN), or 0.125 M (1.0 mmol **1a** in 8.0 mL CH₃CN), trace amount of diphenylmethane was observed as side product in the reaction mixture.


Deoxygenative cross-coupling of 1a and CD₃OD

Scheme S1. Deoxygenative cross-coupling of 1a with CD₃OD. To an undivided ElectraSyn 2.0 cell (10 mL), graphite plate (anode, \approx 2 x 1 cm) and

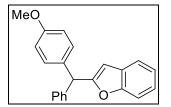
Cu plate (cathode, $\approx 2 \times 1 \text{ cm}$) was equipped as electrodes. Benzophenone (**1a**, 0.5 mmol, 91.2 mg), 1,1,3,3-Tetramethyldisiloxane (0.25 mmol, 36.6 mg), CD₃OD (2.0 mmol, 72.1 mg), CH₃CN (5.0 mL, 0.1 M), and triflic acid (0.9 mmol, 135.1 mg) were added subsequently to the electrolysis cell. The mixture was electrolyzed under 10 mA constant current at room temperature with rigid magnetic stirring for 3 hours. The reaction was filtrated through a short silica gel column, and a partial solution was submitted for GC and GC-MS analysis. The products distribution was summarized in Scheme S1.

Analytical Data


2-diphenylmethylbenzofuran^{1,2} (3a):

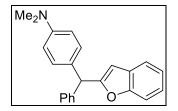
From benzophenone (0.5 mmol, 91.1 mg) and benzofuran (1.0 mmol, 118.1 mg), **3a** was obtained according the general procedure using petroleum ether as eluent to give a white solid in 82% yield, 116.5 mg. **3a** was further analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.33-7.15 (m, 12H), 6.27 (s, 1H), 5.58 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 155.2, 144.1, 142.3, 141.1, 129.2, 128.9, 128.9, 128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 127.6, 127.3, 127.1, 126.8, 124.3, 124.1, 123.8, 122.7, 122.4, 120.7, 120.7, 111.5, 111.2, 105.7, 51.4, 47.7.


2-(di-p-tolylmethyl)benzofuran (3b):

From 4,4'-dimethylbenzophenone (0.5 mmol, 105.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3b** was obtained according the general procedure using petroleum ether as eluent to give a yellow oil in 32% yield, 50.0 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 23.2, 7.5 Hz, 2H), 7.17–7.09 (m, 2H), 7.07–7.02 (m, 8H), 6.19 (s, 1H), 5.43 (s, 1H), 2.26 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 155.1, 138.3, 136.5, 129.3, 128.7, 128.5, 123.7, 122.5, 120.6, 111.2, 105.4, 50.6, 21.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₁O⁺ 313.1592; found 313.1589.

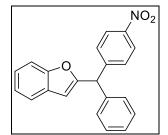

2-((4-methoxyphenyl)(phenyl)methyl)benzofuran⁵ (3c):

From 4-methoxybenzophenone (0.5 mmol, 106.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3c** was obtained according the general procedure (EtOAc/petroleum ether=1:49) to give a colorless oil in 36% yield, 56.8 mg. **3c** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.49–7.44 (m, 1H), 7.43–7.38 (m, 1H), 7.29 (ddt, *J* = 9.0, 4.2, 1.6 Hz, 3H), 7.24–7.10 (m, 6H), 6.88–6.81 (m, 2H), 6.25 (d, *J* = 0.8 Hz, 1H), 5.53 (s, 1H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.5, 155.1, 141.4, 133.2, 129.9, 128.8, 128.5, 128.5, 126.9, 123.7, 122.6, 120.3, 113.9, 111.1, 105.5, 55.2, 50.5.

From 4-(dimethylamino)benzophenone (0.5 mmol, 112.6 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3d** was obtained according the general procedure (EtOAc/petroleum ether=1:49) to give a colorless oil in 33% yield, 54.6 mg. **3d** was further analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

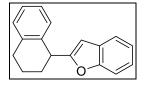
¹H NMR (400 MHz, CDCl₃) δ 7.41 (dt, *J* = 15.6, 7.4 Hz, 2H), 7.33–7.26 (m, 2H), 7.25– 7.13 (m, 6H), 7.07 (t, *J* = 9.8 Hz, 2H), 6.67 (t, *J* = 7.3 Hz, 2H), 6.25 (s, 1H), 5.45 (d, *J* = 26.0 Hz, 1H), 2.89 (d, *J* = 7.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 155.1, 149.5, 141.7, 129.5, 128.9, 128.8, 128.6, 128.4, 126.7, 123.5, 122.5, 120.5, 112.6, 111.1, 105.3, 50.4, 40.6.


2-((4- fluorophenyl)(phenyl)methyl)benzofuran¹³ (3e):

From 4-fluorobenzophenone (0.5 mmol, 100.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3e** was obtained according the general procedure (petroleum ether). The regioselectivity was determined by using GC and GC-Mass analysis (20:1), and purified using petroleum ether to give a colorless oil in 58% yield, 87.7 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.42–7.37 (m, 1H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 5.1 Hz, 1H), 7.15–7.08 (m, 6H), 6.97–6.91 (m, 2H), 6.20 (d, *J* = 9.3 Hz, 1H), 5.49 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 154.9, 141.5, 140.5, 128.6, 127.4, 123.4, 122.5, 120.5, 111.0, 102.0, 39.3, 35.6, 31.6, 31.2, 22.6, 20.4, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calced for C₂₁H₁₆FO⁺ 303.1185; found 303.1192.

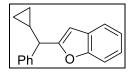
2-((4-nitrophenyl)(phenyl)methyl)benzofuran (3f):



From 4-nitrobenzophenone (0.5 mmol, 113.6 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3f** was obtained according the general procedure (EtOAc/petroleum ether=1:49) to give a brown oil in 59% yield, 97.2 mg.

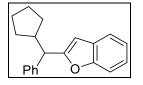
¹H NMR (400 MHz, CDCl₃) δ 8.21–8.04 (m, 2H), 7.41 (t, *J* = 9.6 Hz, 2H), 7.31 (dt, *J* = 15.7, 5.6 Hz, 4H), 7.27–7.21 (m, 3H), 7.21–7.11 (m, 2H), 6.25 (s, 1H), 5.60 (s, 1H); ¹³C NMR

 $(101 \text{ MHz}, \text{CDCI}_3) \,\delta \,158.0, 156.0, 155.2, 154.3, 148.5, 147.1, 142.1, 139.5, 129.8, 129.0, \\ 128.8, 128.7, 128.1, 127.7, 124.3, 123.9, 123.0, 120.9, 111.2, 106.2, 51.1. \text{ HRMS} (ESI) \\ \text{m/z: } [\text{M+H}]^+ \text{ calcd for } \text{C}_{21}\text{H}_{16}\text{NO}_3^+ 330.1130; \text{ found } 330.1125. \\ \end{cases}$


2-(1,2,3,4-tetrahydro-1-naphthalenyl)benzofuran⁶ (3g)

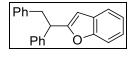
From 1-tetralone (0.5 mmol, 73.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3g** was obtained according the general procedure (petroleum ether). The regioselectivity was determined by using GC and GC-Mass analysis (5.9:1), and purified using petroleum ether to give a yellow oil in 75% yield, 93.2 mg. **3g** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.54–7.34 (m, 2H), 7.29–6.99 (m, 6H), 6.18 (s, 1H), 4.32 (t, *J* = 5.7 Hz, 1H), 2.98–2.73 (m, 2H), 2.36–2.20 (m, 1H), 2.17–2.05 (m, 1H), 1.93–1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 154.8, 137.4, 135.8, 129.9, 129.4, 128.7, 126.7, 125.7, 123.3, 122.5, 120.9, 111.0, 104.1, 39.1, 29.4, 28.5, 20.3; ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 154.8, 137.4, 135.8, 129.9, 129.4, 128.7, 126.7, 125.7, 123.3, 122.5, 120.4, 110.9, 104.1, 39.1, 29.4, 28.5, 20.3.


2-(cyclopropyl(phenyl)methyl)benzofuran² (3h):

From cyclopropyl phenyl ketone (0.5 mmol, 73.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3h** was obtained according the general procedure (petroleum ether). The regioselectivity was determined by using GC and GC-Mass analysis (6.3:1), and purified using petroleum ether to give a colorless oil in 19% yield, 23.6 mg. **3h** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

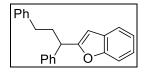
¹H NMR (400 MHz, CDCl₃) δ 7.55–7.46 (m, 1H), 7.43–7.29 (m, 4H), 7.25 (s, 2H), 7.23– 7.15 (m, 2H), 6.62 (s, 1H), 3.38 (d, *J* = 9.4 Hz, 1H), 1.57–1.33 (m, 2H), 0.79–0.52 (m, 2H), 0.38 (ddt, *J* = 22.3, 9.4, 4.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 154.9, 141.7, 128.7, 128.5, 128.4, 128.05, 128.0, 126.7, 123.4, 122.5, 120.5, 111.1, 102.9, 50.2, 15.6, 5.3, 4.6.


2-(cyclopentyl(phenyl)methyl)benzofuran (3i):

From cyclopentylphenylmethanone (0.5 mmol, 87.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3i** was obtained according the general procedure (petroleum ether) to give a colorless oil in 75% yield, 103.6 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.43–7.37 (m, 1H), 7.35–7.26 (m, 4H), 7.24–7.20 (m, 1H), 7.17 (t, *J* = 6.4 Hz, 1H), 7.14–7.03 (m, 2H), 6.42 (s, 1H), 3.69 (t, *J* = 10.7 Hz, 1H), 2.75– 2.46 (m, 1H), 1.45–1.32 (m, 2H), 1.28–1.19 (m, 2H), 1.09 (ddd, *J* = 24.5, 15.1, 11.5 Hz, 2H), 0.79 (ddd, *J* = 13.8, 13.0, 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.7, 142.2, 128.4, 128.3, 126.6, 123.2, 122.4, 120.4, 111.0, 102.3, 52.0, 44.0, 32.0, 31.8, 25.3, 25.1. HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₀H₂₁O⁺ 277.1592; found 277.1586.

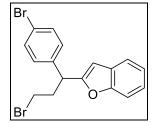
2-(1,2-diphenylethyl)benzofuran² (3j):



From 2-phenylacetophenone (0.5 mmol, 98.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3j** was obtained according the general procedure (petroleum ether) to give a colorless oil in 67% yield, 100.2 mg. **3j** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.55–7.38 (m, 2H), 7.31–6.88 (m, 10H), 6.45 (d, *J* = 1.0 Hz, 1H), 4.35 (t, *J* = 7.7 Hz, 1H), 3.57 (dd, *J* = 13.7, 7.5 Hz, 1H), 3.25 (dd, *J* = 13.7, 8.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 154.8, 141.3, 139.4, 129.0, 129.0, 128.6, 128.5,

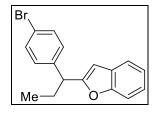
128.4, 128.2, 128.2, 128.1, 128.1, 126.9, 126.2, 123.5, 122.5, 120.6, 111.0, 103.2, 47.8, 40.9.


2-(1,3-diphenylpropyl)benzofuran (3k):

From 1,3-diphenyl-2-propen-1-one (0.5 mmol, 104.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3k** was obtained according the general procedure (petroleum ether) [using 1.0 equiv. tetramethyldisiloxane (1.0 mmol, 134.3 mg)]. The regioselectivity was determined by using GC and GC-Mass analysis (6.0:1), and purified using petroleum ether to give a yellow oil in 51% yield, 79.8 mg.

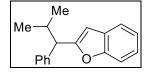
¹H NMR (400 MHz, CDCl₃) δ 7.45–7.38 (m, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.28–7.22 (m, 6H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 5.5 Hz, 1H), 7.13–7.05 (m, 5H), 6.38 (s, 1H), 3.99 (t, *J* = 7.5 Hz, 1H), 2.56 (p, *J* = 7.8 Hz, 2H), 2.34–2.16 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 154.8, 141.7, 141.6, 128.7, 128.6, 128.5, 128.5, 128.1, 128.0, 126.9, 126.0, 123.5, 122.5, 120.5, 111.0, 102.6, 45.0, 36.0, 33.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₁O⁺ 313.1592; found 313.1585.

2-(3-bromo-1-(4-bromophenyl)propyl)benzofuran (3I):

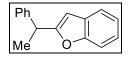


From 3-bromo-1-(4-bromophenyl)propan-1-one (0.5 mmol, 146.0 mg) and benzofuran (1.0 mmol, 118.1 mg), **3I** was obtained according the general procedure. The regioselectivity was determined by using GC and GC-Mass analysis (5.6:1), and purified using petroleum ether to give a yellow oil in 27% yield, 53.2 mg. Meanwhile, **3m** was obtained in the same reaction mixture with C2:C3 regioselectivity as 3.3:1,

and was isolated by using column chromatography (EtOAc/petroleum ether=1:99) to give a yellow oil in 31% yield, 49.1 mg.

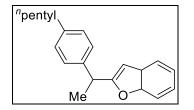

3I: ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.41 (m, 3H), 7.28–7.24 (m, 2H), 7.18 (t, *J* = 3.4 Hz,2H), 7.16 (d, *J* = 2.8 Hz, 1H), 6.45 (s, 1H), 3.90 (dd, *J* = 13.3, 5.7 Hz, 1H), 2.23 (qt, *J* = 13.4, 6.8 Hz, 1H), 2.03–1.89 (m, 1H), 0.97–0.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 154.8, 141.2, 140.9, 131.6, 129.8, 123.5, 122.6, 120.5, 111.0, 102.6, 47.0, 27.4, 12.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₅Br₂O⁺ 392.9490; found 392.9504.

2-(1-(4-bromophenyl)propyl)benzofuran (3m):


¹H NMR (400 MHz, CDCl₃) δ 7.48 (ddd, *J* = 9.1, 5.1, 3.6 Hz, 1H), 7.45–7.35 (m, 3H), 7.27– 7.19 (m, 2H), 7.17–7.14 (m, 2H), 6.45 (s, 1H), 3.90 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.29–2.16 (m, 1H), 2.02–1.88 (m, 1H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 154.8, 141.0, 131.6, 131.6, 129.8, 129.8, 128.5, 123.6, 122.6, 120.6, 120.5, 111.0, 102.6, 467.0, 27.4, 12.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆BrO⁺ 315.0385; found 315.0390.

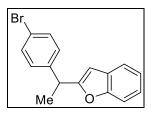
2-(2-methyl-1-phenylpropyl)benzofuran (3n):

From isobutyrophenone (0.5 mmol, 74.1 mg) and benzofuran (1.0 mmol, 118.1 mg), **3n** was prepared according the general procedure, and the regioselectivity was determined by using GC and GC-Mass analysis (4.9:1). **3n** was isolated by using column chromatography (petroleum ether) to give a colorless oil in 32% yield, 40.1 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (m, 1H), 7.34–7.24 (m, 1H), 7.15–7.05 (m, 5H), 7.04–6.97 (m, 2H), 6.33 (s, 1H), 4.19–4.06 (m, 1H), 2.46 (dt, *J* = 12.1, 8.1 Hz, 1H), 1.29– 1.16 (m, 3H), 0.79 (q, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 154.7, 141.5, 128.5, 128.4, 126.6, 123.2, 122.4, 120.4, 111.0, 102.8, 54.1, 32.1, 21.7, 21.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₉O ⁺251.1436; found 251.1433.


2-(1-phenylethyl)benzofran^{2,3} (3o)

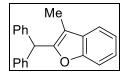
From acetophenone (0.5 mmol, 105.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3o** was obtained according the general procedure, and the regioselectivity was determined by using GC and GC-Mass analysis (4.9:1). Purification of the mixture using petroleum ether gave **3o** as a colorless oil in 71 yield, 156 mg. **3o** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.51–7.41 (m, 1H), 7.41–7.34 (m, 1H), 7.33–7.25 (m, 4H), 7.17 (dddd, *J* = 21.3, 15.5, 9.5, 6.9 Hz, 3H), 6.42 (s, 1H), 4.28–4.19 (m, 1H), 1.68 (dd, *J* = 7.2, 3.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 154.9, 143.4, 128.7, 128.6, 128.6, 127.5, 127.4, 126.8, 123.5, 122.5, 120.5, 111.0, 102.2, 39.7, 20.4.


2-(1-(4-pentylphenyl)ethyl)-3a,7a-dihydrobenzofuran (3p)

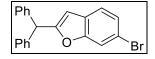
From 4'-n-amylacetophenone (0.5 mmol, 95.1 mg) and benzofuran (**2a**, 1.0 mmol, 118.1 mg), **3p** was obtained according the general procedure. The regioselectivity was determined by using GC and GC-Mass analysis (11.1:1), and purified using petroleum ether to give **3p** as a colorless oil in 78% yield, 114.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (m, 1H), 7.34–7.24 (m, 1H), 7.15–7.05 (m, 5H), 7.04–6.97 (m, 1H), 6.33 (s, 1H), 4.19–4.06 (m, 1H), 2.46 (dt, *J* = 12.1, 8.1 Hz, 3H), 1.69– 1.55 (m, 2H), 1.50 (dd, *J* = 14.6, 7.0 Hz, 2H), 1.29–1.16 (m,4H), 0.79 (t, *J* = 6.9 Hz,3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 154.9, 141.5, 140.5, 128.6, 127.4, 123.4, 122.5, 120.5, 111.0, 102.0, 39.3, 35.6, 31.6, 31.2, 22.6, 20.4, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₅O ⁺ 293.1906, found 293.1920.


2-(1-(4-bromophenyl)ethyl)benzofuran (3q)

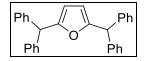
From 4'-bromoacetophenone (0.5 mmol, 99.5 mg) and benzofuran (1.0 mmol, 118.1 mg), **3q** was obtained according the general procedure. The regioselectivity was determined by using GC and GC-Mass analysis (3.1:1), and purified using EtOAc/petroleum ether (1:99) to give a yellow oil in 83% yield, 125.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.51–7.43 (m, 2H), 7.40–7.36 (m,2H), 7.27–7.24 (m, 1H), 7.21 (d, *J* = 1.6 Hz, 1H), 7.18–7.13 (m, 2H), 6.44 (s, 1H), 4.28–4.13 (m, 1H), 1.67 (dd, *J* = 7.2, 2.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.9, 142.3, 141.3, 131.7, 131.6, 129.3, 129.2, 128.5, 123.6, 122.6, 120.6, 111.0, 102.3, 39.2, 20.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄BrO⁺ 301.0228; found 301.0222.


2-benzhydryl-3-methylbenzofuran (4a)

From benzophenone (**1a**, 0.5 mmol, 91.1 mg) and 3-methylbenzofuran (1.0 mmol, 132.2 mg), **4a** was obtained according the general procedure (petroleum ether) to give a white solid in 72% yield, 108.0 mg. Melting point: 69.5-71.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.40–7.34 (m, 1H), 7.32–7.26 (m, 1H), 7.21 (t, *J* = 6.4 Hz, 3H), 7.15 (dd, *J* = 11.7, 4.6 Hz, 7H), 7.11 (dd, *J* = 8.8, 5.1 Hz, 2H), 5.56 (s, 1H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 153.3, 141.3, 130.3, 129.1, 128.5, 126.8, 123.7, 122.2, 119.1, 111.7, 111.2, 49.0, 8.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉O⁺ 299.1436; found 299.1427.


2-benzhydryl-6-bromobenzofuran (4b):

From benzophenone (**1a**, 0.5 mmol, 91.1 mg) and 6-bromobenzofuran (1.0 mmol, 98.5 mg), **4b** was obtained according the general procedure for 8 hours. Purification by using petroleum ether to give **4b** as a white solid in 47% yield, 85.3 mg. Melting point: 141.6-143.2 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 1.8 Hz, 1H), 7.27 (d, *J* = 6.9 Hz, 4H), 7.24–7.22 (m, 2H), 7.21–7.17 (m, 3H), 7.14 (d, *J* = 7.0 Hz, 3H), 6.15 (s, 1H), 5.50 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 153.9, 140.7, 130.5, 128.9, 128.7, 128.7, 127.2, 126.9, 126.6, 123.3, 115.7, 112.6, 105.2, 51.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₆BrO⁺ 363.0385; found 363.0398.

2, 5-dibenzhydrylfuran¹⁴ (4c):

From benzophenone (**1a**, 0.5 mmol, 91.1 mg) and furan (1.0 mmol, 68 mg), **4c** was obtained according the general procedure (petroleum ether) to give a yellow oil in 78% yield, 285.6mg. **4c** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

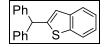
¹H NMR (400 MHz, CDCl₃) δ 7.30–7.18 (m, 14H), 7.17–7.09 (m, 8H), 5.80 (d, *J* = 3.2 Hz, 2H), 5.39 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 141.9, 128.8, 128.3, 126.6, 108.9, 77.4, 77.0, 76.73, 50.9.

2-benzhydrylthiophene⁷ (4d):

From benzophenone (0.5 mmol, 91.1 mg) and thiophene (1.0 mmol, 84.1 mg), **4d** was obtained according the general procedure (petroleum ether) to give a colorless oil in 55 yield, 68.8 mg. **4d** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by

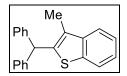
comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.31–7.22 (m, 9H), 7.25–7.17 (m, 4H), 7.18–7.10 (m, 7H), 5.80 (s, 2H), 5.39 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 143.8, 129.0, 128.8, 128.4, 128.4, 126.7, 126.6, 126.4, 124.6, 52.2.


2-(diphenylmethyl)-5-methylthiophene⁸ (4e):

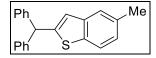
From benzophenone (0.5 mmol, 91.1 mg) and 2-methylthiophene (1.0 mmol, 98.2 mg), **4e** was obtained according the general procedure (petroleum ether) to give a colorless oil in 31% yield, 41 mg. **4e** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, *J* = 10.4, 4.4 Hz, 4H), 7.15 (dd, *J* = 7.1, 4.3 Hz, 6H), 6.49 (d, *J* = 2.4 Hz, 2H), 6.37 (d, *J* = 3.2 Hz, 2H), 5.51 (s, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 142.8, 137.9, 127.8, 127.3, 125.6, 125.1, 123.5, 51.2, 14.3.

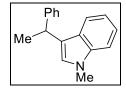

2-benzhydrylbenzo[b]thiophene⁵ (4f):

From benzophenone (0.5 mmol, 91.1 mg) and benzo[b]thiophene (1.0 mmol, 134.2 mg), **4f** was obtained according the general procedure (petroleum ether) to give a white solid in 53% yield, 79.5 mg. **4f** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.54–7.41 (m, 1H), 7.33–7.08 (m, 12H), 6.71 (d, *J* = 0.9 Hz, 1H), 5.73 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 140.8, 139.2, 138.5, 129.2, 128.6, 126.7, 125.2, 124.3, 124.0, 122.8, 122.8, 51.4.

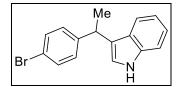

2-benzhydryl-3-methylbenzo[b]thiophene (4g):

From benzophenone (0.5 mmol, 91.1 mg) and 3-methylbenzo[b]thiophene (1.0 mmol, 148.2 mg), **4g** was obtained according the general procedure (petroleum ether) to give a white solid in 72% yield, 113.2 mg. Melting point: 98.7–100.2 $^{\circ}$ C.


¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 19.6, 7.9 Hz, 2H), 7.33 (dd, *J* = 12.2, 4.2 Hz, 1H), 7.30–7.26 (m, 4H), 7.23 (dd, *J* = 6.7, 5.4 Hz, 7H), 5.85 (s, 1H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.4, 141.0, 139.0, 129.2, 129.1, 128.5, 128.0, 126.9, 124.0, 123.8, 122.3, 121.5, 50.6, 12.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₉S⁺: 315.1208; found 315.1215.

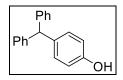
2-benzhydryl-5-methylbenzo[b]thiophene (4h):

From benzophenone (0.5 mmol, 91.1 mg) and 5-methylthianaphthene (1.0 mmol, 148.2 mg), **4h** was obtained according the general procedure. The regioselectivity was determined by using GC and GC-Mass (C2:C3=20:1), and purified using petroleum ether to give a white solid in 82% yield, 128.9 mg. Melting point: 126.9–128.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 1H), 7.30–7.16 (m, 6H), 7.17–7.11 (m, 2H), 7.12–7.05 (m, 3H), 7.03 (dd, *J* = 13.6, 7.6 Hz, 1H), 6.61 (s, 1H), 5.93–5.46 (m, 1H), 2.71–1.91 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 138.9, 138.7, 137.9, 133.7, 129.1, 128.5, 126.6, 126.1, 125.4, 122.6, 122.4, 51.3, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₉S⁺ 315.1208; found 315.1223.


1-methyl-3-(1-phenylethyl)-1H-indole¹⁶ (4i):

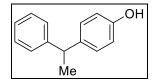
From acetophenone (0.5 mmol, 60.1 mg) and 1-methyl-1H-indole (1.0 mmol, 131.2

mg), **4i** was obtained according to a modified condition from general procedure (under electrolysis at 2.0 mA for 3.0 hours). Purification by column chromatography using EtOAc/petroleum ether (1:99) as eluent gave **4i** as a yellow oil in 53% yield, 62.4 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dt, J = 8.1, 1.0 Hz, 1H), 7.32–7.19 (m, 5H), 7.20–7.10 (m, 2H), 6.97 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 6.79 (d, J = 1.0 Hz, 1H), 4.35 (q, J = 7.1 Hz, 1H), 3.67 (s, 3H), 1.68 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 137.5, 128.4, 127.6, 127.4, 126.1, 126.0, 121.6, 120.1, 119.9, 118.8, 109.2, 37.0, 32.7, 22.6.


(R)-3-(1-(4-bromophenyl)ethyl)-1H-indole¹⁵(4j):

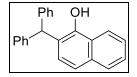
From 1-(4-bromophenyl)ethan-1-one (0.5 mmol, 99.6 mg) and 1H-indole (1.0 mmol, 117.2 mg), **4j** was obtained according to a modified condition from general procedure (under electrolysis at 2.0 mA for 3.0 hours). Purification by column chromatography using EtOAc/petroleum ether (1:99) as eluent gave **4j** as a colorless oil in 58% yield, 87.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.40–7.30 (m, 2H), 7.35–7.26 (m, 2H), 7.19– 7.09 (m, 3H), 7.06–6.94 (m, 2H), 4.31 (q, *J* = 7.1 Hz, 1H), 1.66 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 136.6, 131.3, 129.2, 126.6, 122.1, 121.1, 120.6, 119.5, 119.3, 111.1, 36.4, 22.2.


4-benzhydrylpheno⁹ (4k):

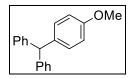
From benzophenone (0.5 mmol, 91.1 mg) and phenol (1.0 mmol, 94.1 mg), **4k** was obtained according the general procedure (EtOAc/petroleum ether=3:47) to give a yellow oil in 86% yield, 112 mg. **4k** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.35–7.16 (m, 6H), 7.15–7.04 (m, 4H), 6.99 (dd, *J* = 16.8, 8.0 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 2H), 5.48 (s, 1H), 4.92 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 144.3, 136.4, 130.6, 129.4, 128.3, 126.3, 115.2, 56.0.


4-(1-phenylethyl)phenol¹¹ (4l):

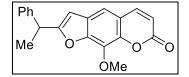
From acetophenone (0.5 mmol, 105.1 mg) and phenol (1.0 mmol, 94.1 mg), **4I** was obtained according the general procedure (EtOAc/petroleum ether=3:47) to give a yellow oil in 87 yield, 86.2mg. **4I** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.38–7.04 (m, 7H), 6.82–6.61 (m, 2H), 5.18 (s, 1H), 4.08 (d, *J* = 7.2 Hz,1 H), 1.60 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 146.8, 138.8, 128.8, 128.4, 127.6, 126.0, 115.2, 44.0, 22.1.


2-benzhydrylnaphthalen-1-ol¹² (4m):

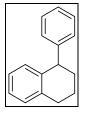
From benzophenone (**1a**, 0.5 mmol, 91.1 mg) and 1-naphthol (1.0 mmol, 144.1 mg), **4m** was obtained according the general procedure (EtOAc/petroleum ether=3:47) to give a colorless oil in 82% yield, 127 mg. **4m** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.91 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.53–7.33 (m, 3H), 7.32–7.01 (m, 9H), 6.76–6.49 (m, 2H), 6.17 (s, 1H), 5.39 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 144.0, 132.9, 132.52, 129.7, 128.4, 127.6, 126.7, 126.3, 124.9, 124.8, 124.4, 122.2, 107.8, 52.8.


(4-methoxyphenyl)diphenylmethane¹⁰ (4n):

From benzophenone (0.5 mmol, 91.1 mg) and anisole (1.0 mmol, 108.1 mg), **4n** was obtained according the general procedure (EtOAc/petroleum ether=1:49) to give a colorless oil in 64% yield, 87.7mg. **4n** was analyzed by GC-MS, ¹H NMR, ¹³C NMR and verified by comparison with literature data.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, *J* = 8.2, 6.7 Hz,4H), 7.23–7.15 (m,2H), 7.14–7.06 (m, 4H), 7.06–6.98 (m, 2H), 6.82 (dd, *J* = 8.6, 1.7 Hz, 2H), 5.50 (s,1H), 3.77 (d, *J* = 1.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 158.1, 144.3, 136.1, 130.4, 129.4, 128.3, 126.3, 113.7, 56.1, 55.26.

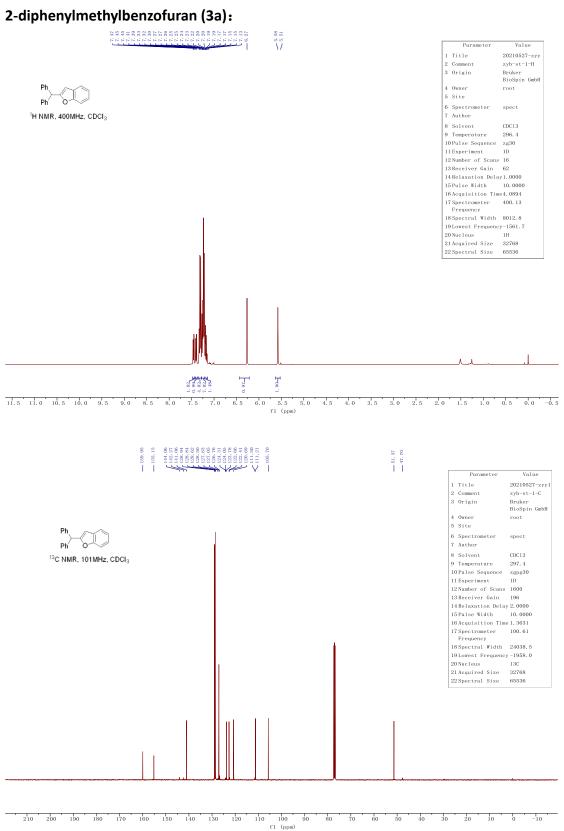

9-methoxy-2-(1-phenylethyl)-7H-furo[3,2-g]chromen-7-one (4o):

From acetophenone (0.5 mmol, 105.1 mg) and 8-methoxypsoralen (1.0 mmol, 216.2 mg), **40** was obtained according the general procedure (EtOAc/petroleum ether=3:17) to give a colorless oil in 46% yield, 73.8 mg.

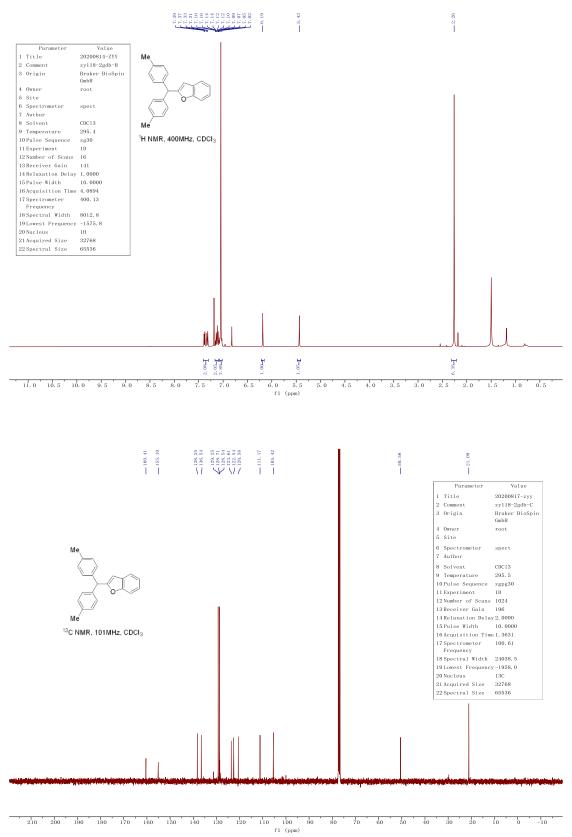
¹H NMR (400 MHz, CDCl₃) δ 7.92 (t, *J* = 20.1 Hz, 1H), 7.55–7.39 (m, 1H), 7.26–7.20 (m, 2H), 7.14 (dd, *J* = 11.1, 7.4 Hz, 3H), 6.43 (d, *J* = 2.2 Hz, 1H), 6.23 (d, *J* = 10.0 Hz, 1H), 4.86–4.71 (m, 1H), 4.18 (s, 3H), 1.72 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 148.0, 145.8, 144.1, 143.9, 140.9, 131.5, 130.6, 128.7, 128.6, 127.2, 126.5, 125.2, 114.1, 106.2, 61.5, 38.3, 20.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇O₄⁺ 321.1127; found 321.1139.

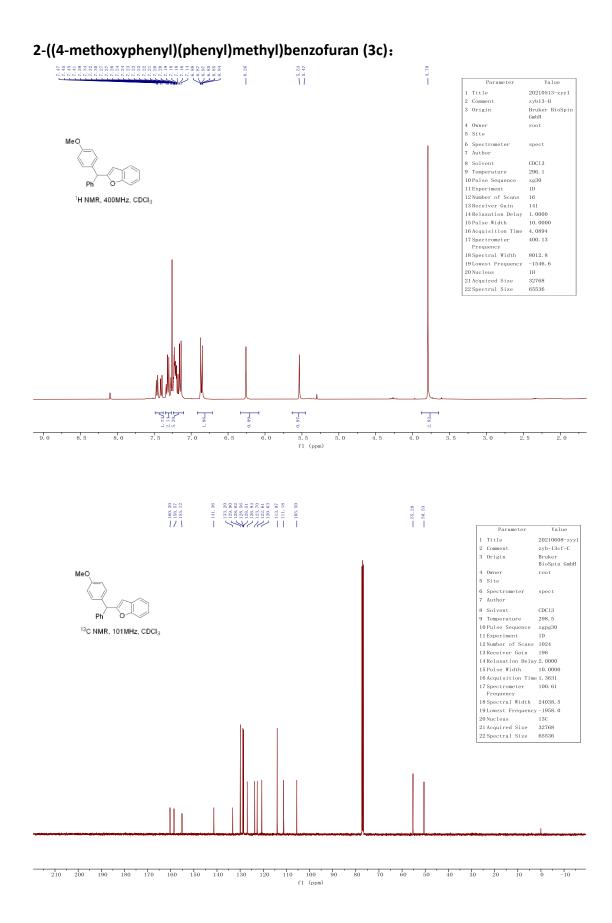
1-phenyl-1,2,3,4-tetrahydronaphthalene¹⁹ (4p)

From 1,4-diphenylbutan-1-one **1p** (0.5 mmol, 112.1 mg), **4p** was obtained according the general procedure (petroleum ether) to give a colorless oil in 73% yield, 76.1 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m, 2H), 7.23–7.18 (m, 1H), 7.16–7.08 (m, 4H), 7.03 (ddd, *J* = 7.7, 6.2, 2.5 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 4.13 (t, *J* = 6.7 Hz, 1H), 3.00– 2.80 (m, 2H), 2.23–2.11 (m, 1H), 1.89 (dddd, *J* = 15.7, 12.6, 7.1, 3.0 Hz, 2H), 1.77 (dddd, *J* = 14.1, 8.5, 6.0, 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 139.4, 137.6, 130.2, 129.0, 128.9, 128.2, 126.0, 125.9, 125.6, 45.6, 33.3, 29.8, 21.0.

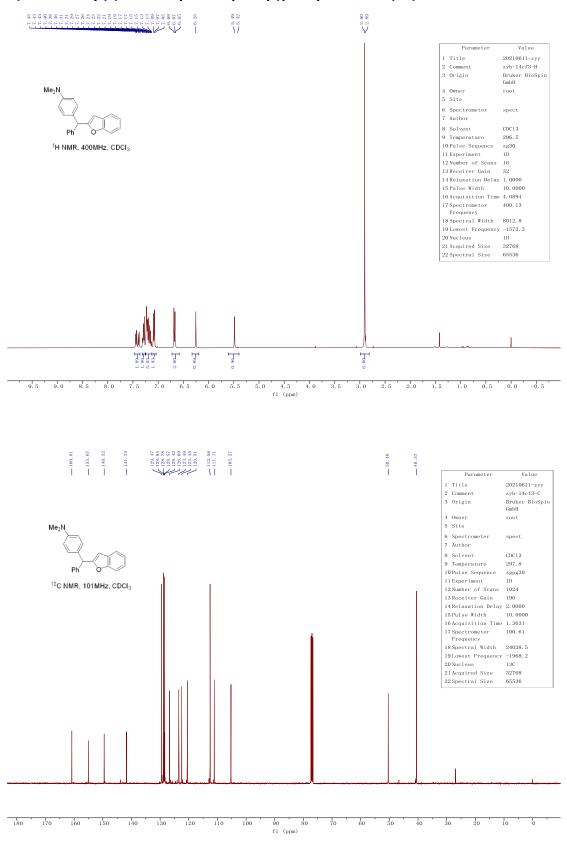

References

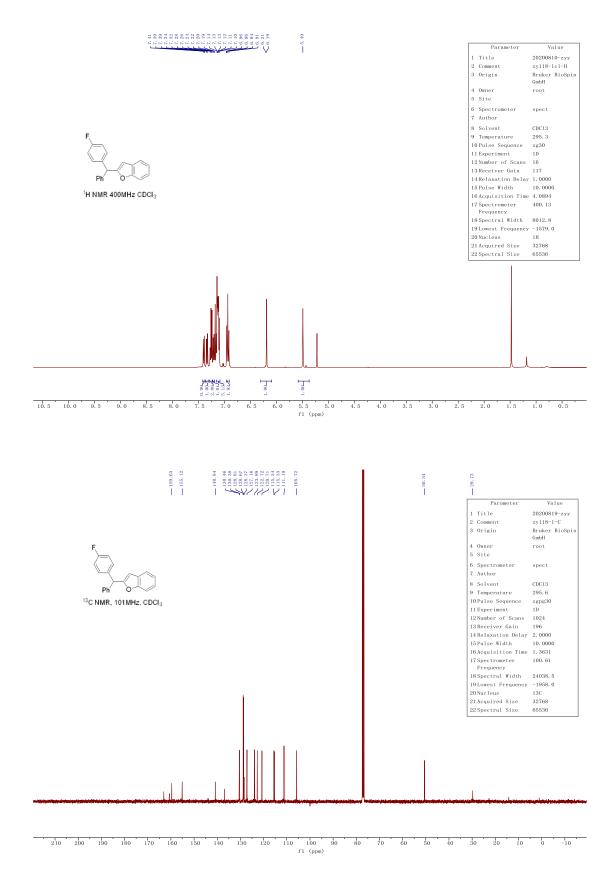
- 1. Hayashi, R.; Shimizu, A.; Yoshida, J. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling. *J. Am. Chem. Soc.* **2016**, *138*, 8400–8403.
- Xiao, T.; Dong, X.; Zhou, L. Benzofuran and indole synthesis via Cu(I)-catalyzed coupling of Ntosylhydrazone and o-hydroxy or o-amino phenylacetylene. *Org. Biomol. Chem.* 2013, *11*, 1490–1497.
- 3. Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Nickel-catalyzed hydroheteroarylation of vinylarenes. *Angew. Chem. Int. Ed.*, **2010**, *49*, 4451–4454.
- 4. Avendafio, C.; Diego, C. d.; Elguero, J. Reduction of Tri(hetero)arylcarbinols to Tri(hetero)arylmethanes. *Monatshefte fur Chemie* **1990**, *121*, 649–652.
- Yang, G.-P.; Dilixiati, D.; Yang, T.; Liu, D.; Yu, B.; Hu, C.-W. Phosphomolybdic acid as a bifunctional catalyst for Friedel-Crafts type dehydrative coupling reaction. *Appl. Organomet. Chem.* 2018, 32, 4450.
- Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Intra- and Intermolecular Nickel-Catalyzed Reductive Cross-Electrophile Coupling Reactions of Benzylic Esters with Aryl Halides. *Angew. Chem. Int. Ed.* 2016, *55*, 6730–6733.
- 7. Saha, T.; Kumar, M. S. L.; Bera, S.; Karkara, B. B.; Panda, G. Efficient access to triarylmethanes through decarboxylation. *RSC Adv.*, **2017**, *7*, 6966–6971.
- Makarov, A. S.; Kekhvaeva, A. E.; Hall, C. J. J.; Price, D. R.; Trushkov, I. V.; Uchuskin, M. G. CuBr₂ -catalyzed alkylation of furans with benzyl alcohols and benzaldehydes. Domino reactions including this alkylation as a key step. *Tetrahedron* 2017, *73*, 7042–7053.
- Emery, K. J.; Young, A.; Arokianathar, J. N.; Tuttle, T.; Murphy, J. A. KO(t)Bu as a Single Electron Donor? Revisiting the Halogenation of Alkanes with CBr₄ and CCl₄. *Molecules* **2018**, *23*, 1055.
- 10. Yu, J.-Y.; Kuwano, R. Suzuki-Miyaura Coupling of Diarylmethyl Carbonates with Arylboronic Acids: A New Access to Triarylmethanes. *Org. Lett.* **2008**, *10*, 973–976.
- 11. Wu, S.; Dong, J.; Zhou, D.; Wang, W.; Liu, L.; Zhou, Y. Phosphorous Acid-Catalyzed Alkylation

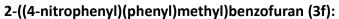

of Phenols with Alkenes. J. Org. Chem. 2020, 85, 14307–14314.

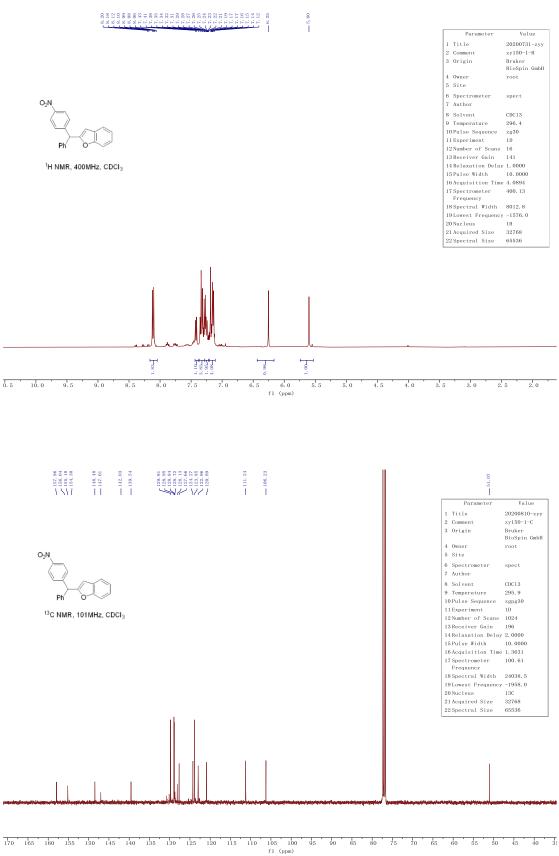

- 12. Liu, Y.-L.; Liu, L.; Wang, Y.-L.; Han, Y.-C.; Wang, D.; Chen, Y.-J. Calix[n]arene sulfonic acids bearing pendant aliphatic chains as recyclable surfactant-type Brønsted acid catalysts for allylic alkylation with allyl alcohols in water. *Green Chem.* **2008**, *10*, 635–640.
- Zhou, J.; Li, T.; Li, M.; Li, C.; Hu, X.; Jin, L.; Sun, N.; Hu, B.; Shen, Z. FeCl₂-Catalyzed Direct C2 Benzylation of Benzofurans with Diarylmethanes via Cross Dehydrogenative Coupling. *Asian J. Org. Chem.* **2021**, *10*, 549–553.
- 14. Watanabe, N.; Matsugi, A.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Organocatalytic Friedel–Crafts Benzylation of Heteroaromatic and Aromatic Compounds via an SN1 Pathway. *Synlett.* **2014**, *25*, 0438–0442.
- 15. Bains, A. K.; Biswas, A.; Adhikari, D., Nickel-catalysed chemoselective C-3 alkylation of indoles with alcohols through a borrowing hydrogen method. *Chem. Comm.* **2020**, *56*, 15442–15445.
- 16. Lee, S. Y.; Villani-Gale, A. J.; Eichman, C. C., Room Temperature Catalyst System for the Hydroarylation of Olefins. *Org. Lett.* **2016**, 18, 5034–5037.
- 17. Salnikov, G. E.; Genaev, A. M.; Vasiliev, V. G.; Shubin, V. G., Interaction of acetonitrile with trifluoromethanesulfonic acid: unexpected formation of a wide variety of structures. *Org. Biomol. Chem.* **2012**, *10*, 2282-2288.
- Amer, M. I.; Booth, B. L.; Noori, G. F. M.; J. R. P. Proenqa, M. F., The Chemistry of Nitrilium Salts. Part 3.' The Importance of Triazinium Salts in Houben-Hoesch Reactions Catalyzed by Trif luoromethanesulphonic Acid. J. Chem. Soc. PERKIN TRANS. I. 1983 1075.
- Zhang, F.; Das, S.; Walkinshaw, A. J.; Casitas, A.; Taylor, M.; Suero, M. G.; Gaunt, M. J., Cu-Catalyzed Cascades to Carbocycles: Union of Diaryliodonium Salts with Alkenes or Alkynes Exploiting Remote Carbocations, *J. Am. Chem. Soc.* **2014**, *136*, 8851–8854.

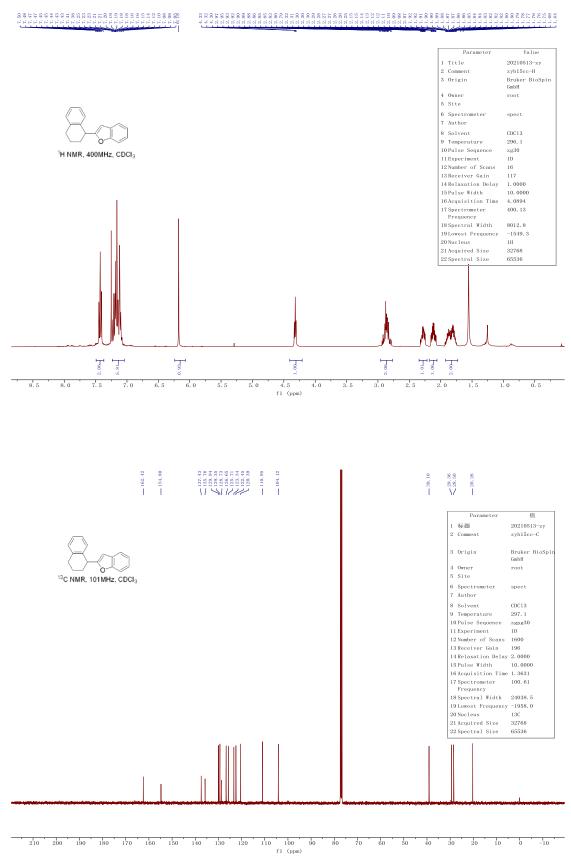
NMR Spectra



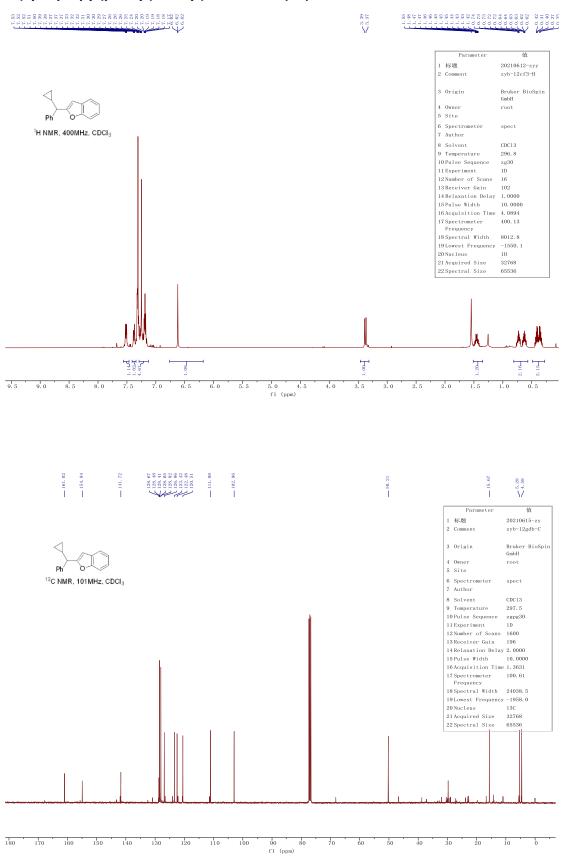

2-(di-p-tolylmethyl)benzofuran (3b):

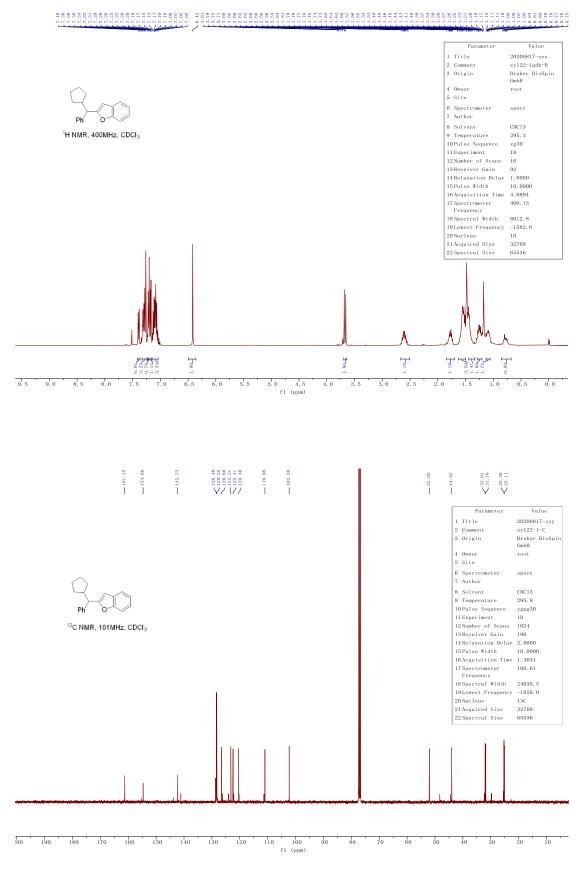




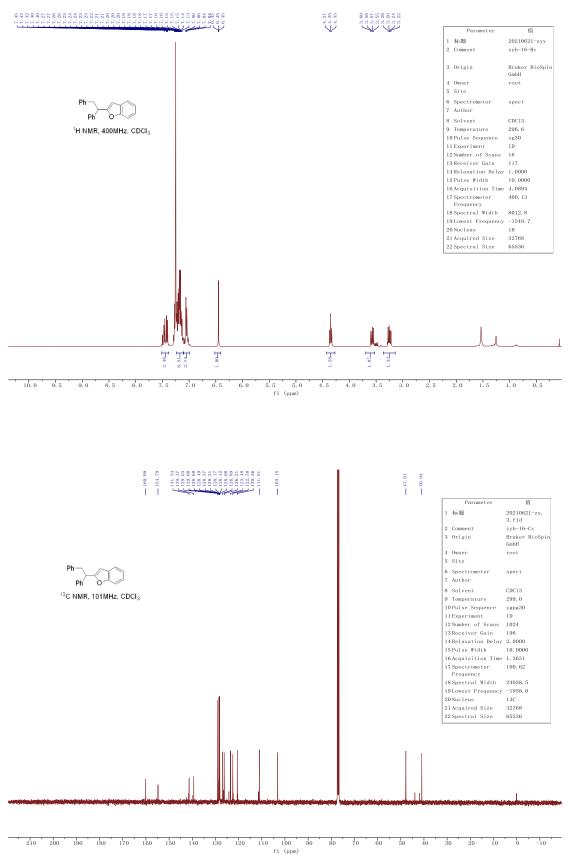


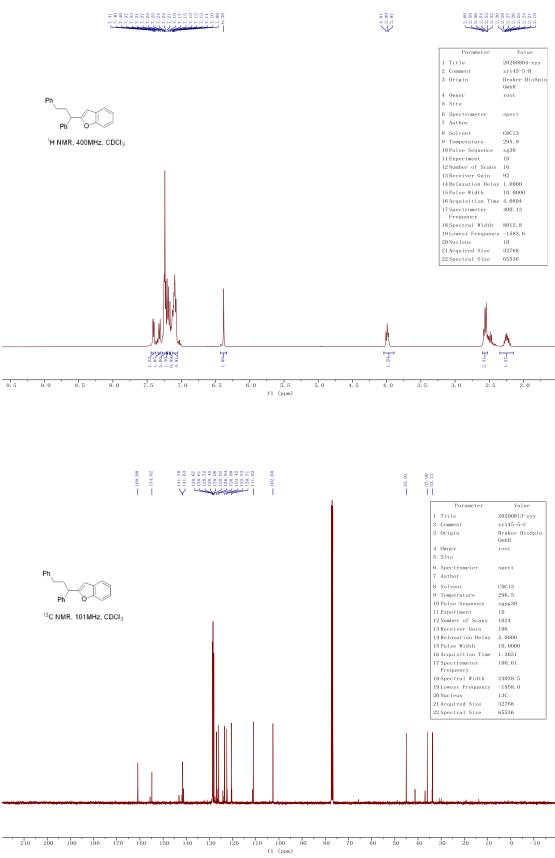
2-((4- fluorophenyl)(phenyl)methyl)benzofuran (3e):

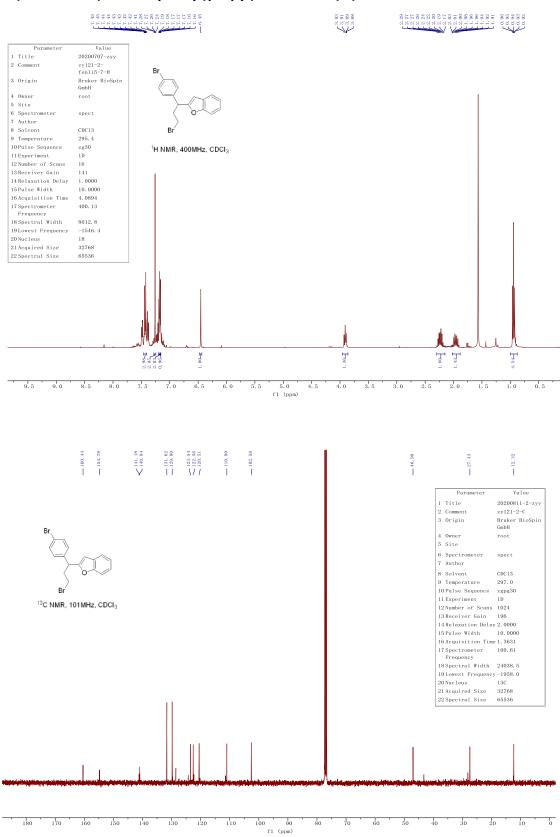




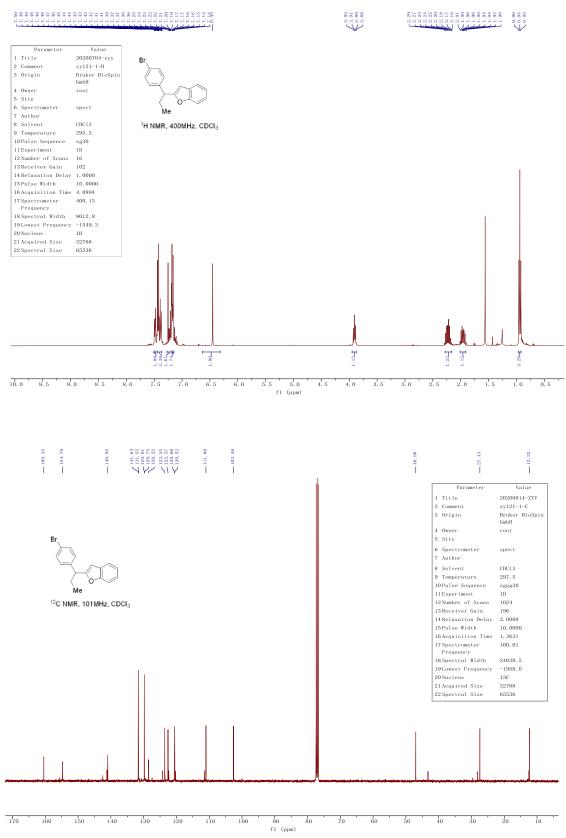
2-(1,2,3,4-tetrahydro-1-naphthalenyl)benzofuran(3g)

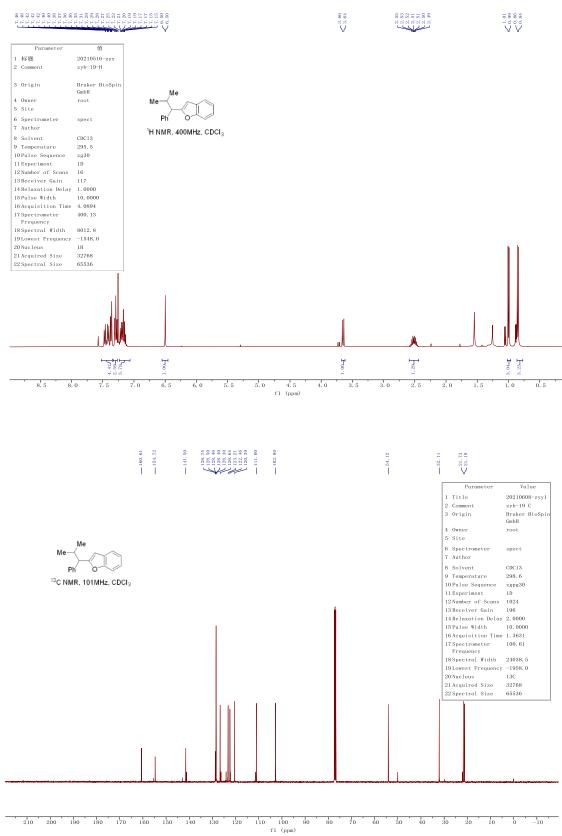

2-(cyclopropyl(phenyl)methyl)benzofuran (3h):



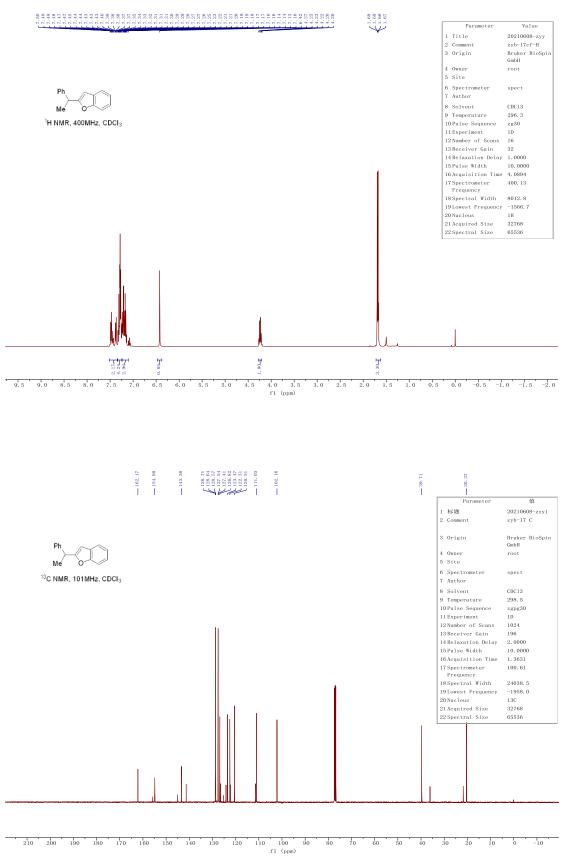

2-(cyclopentyl(phenyl)methyl)benzofuran (3i):

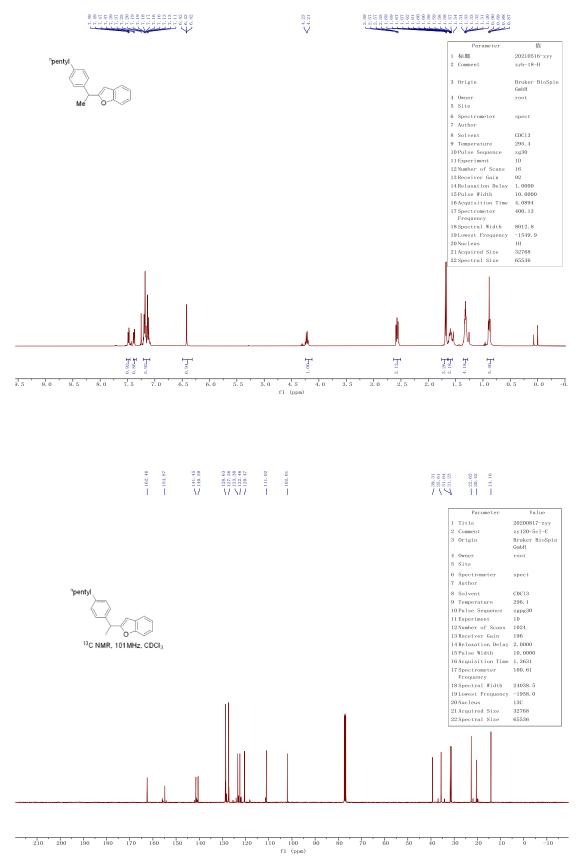
2-(1,2-diphenylethyl)benzofuran (3j):


2-(1,3-diphenylpropyl)benzofuran (3k):



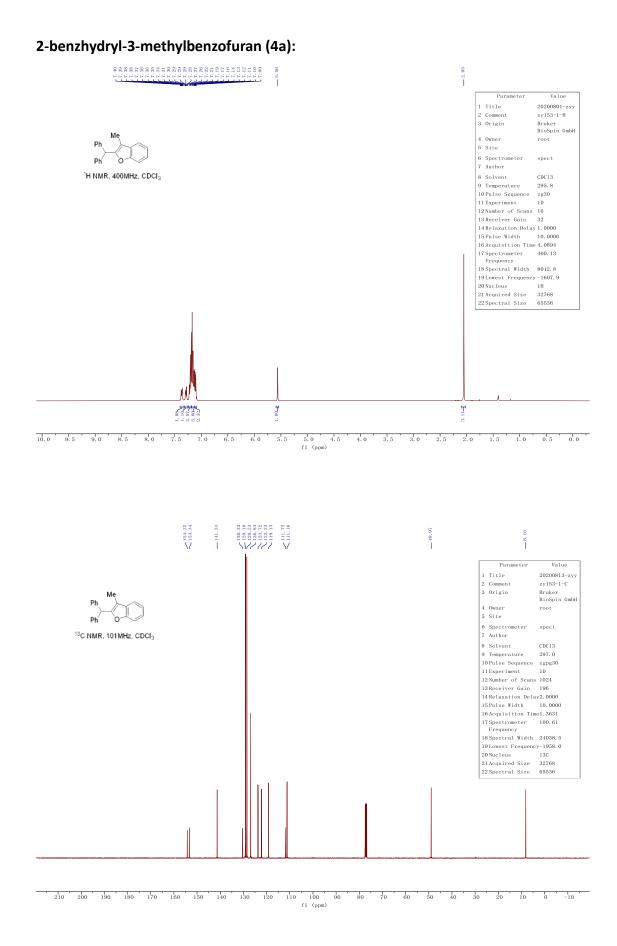
2-(3-bromo-1-(4-bromophenyl)propyl)benzofuran (3I):


2-(1-(4-bromophenyl)propyl)benzofuran (3m):

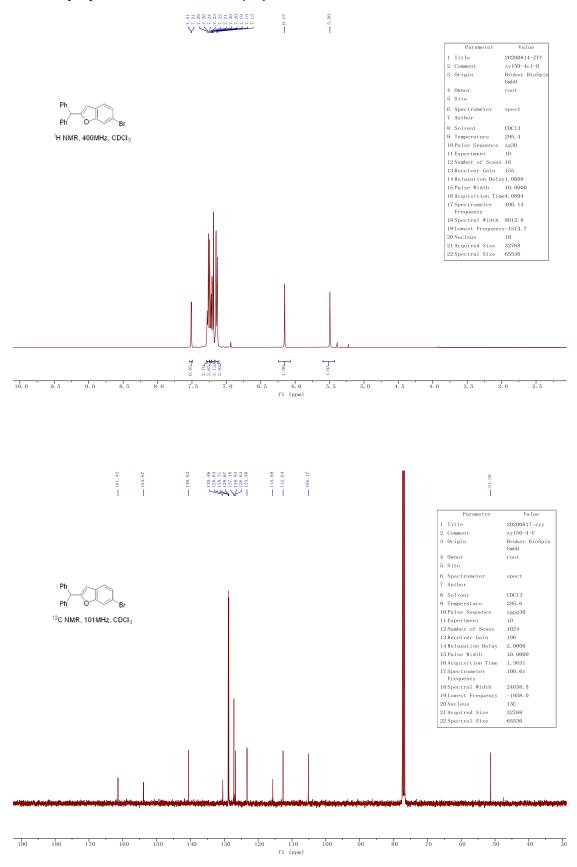


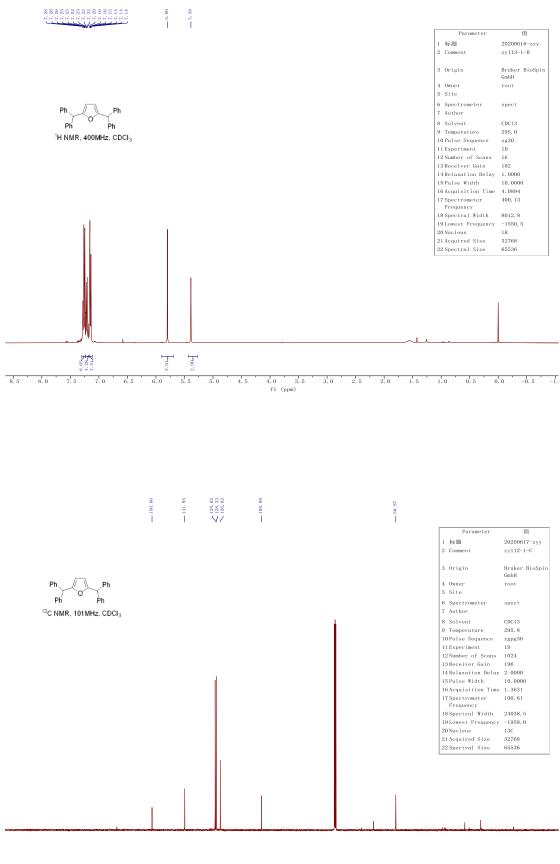
2-(2-methyl-1-phenylpropyl)benzofuran (3n):


2-(1-phenylethyl)benzofran (30)



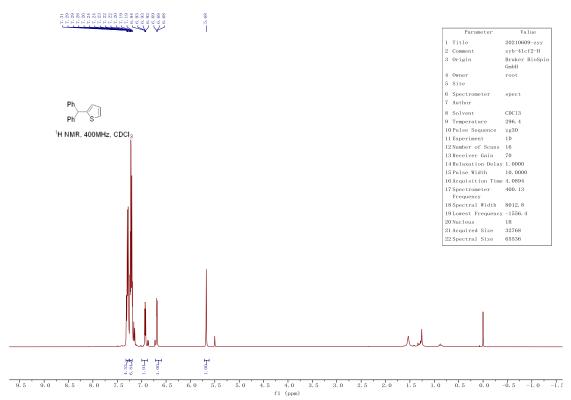
2-(1-(4-pentylphenyl)ethyl)-3a,7a-dihydrobenzofuran (3p):

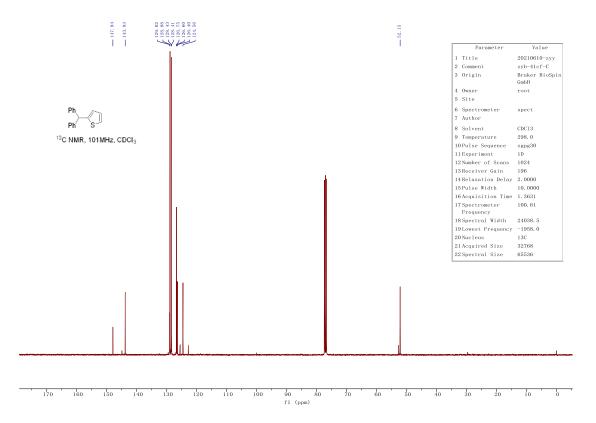

2-(1-(4-bromophenyl)ethyl)benzofuran (3q):

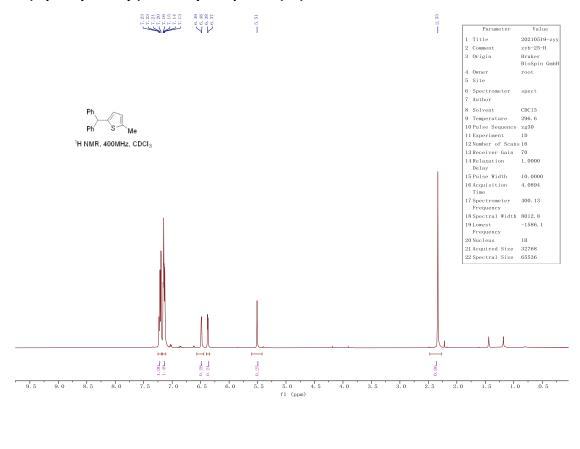


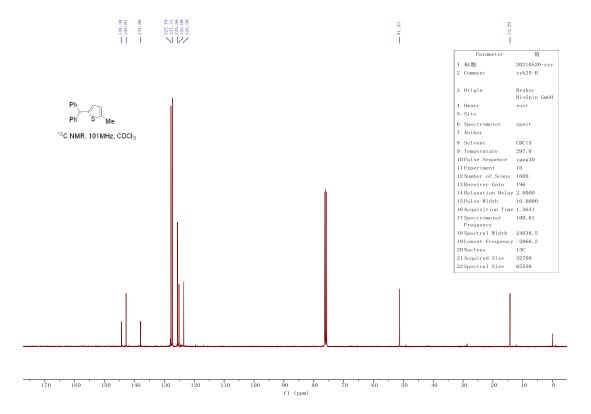
S41

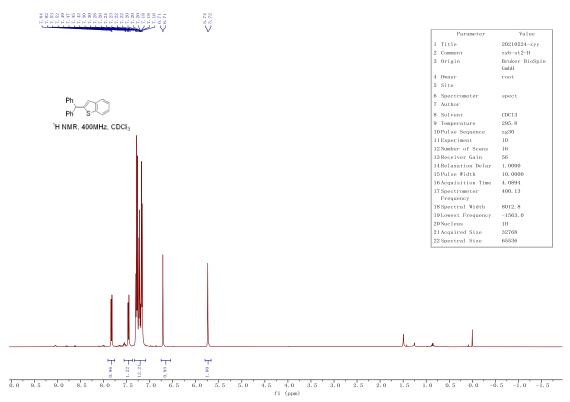
2-benzhydryl-6-bromobenzofuran (4b):

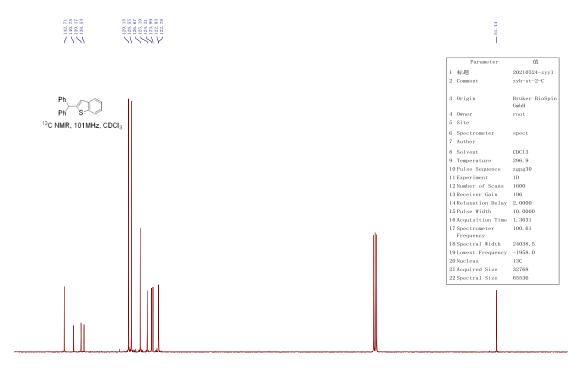


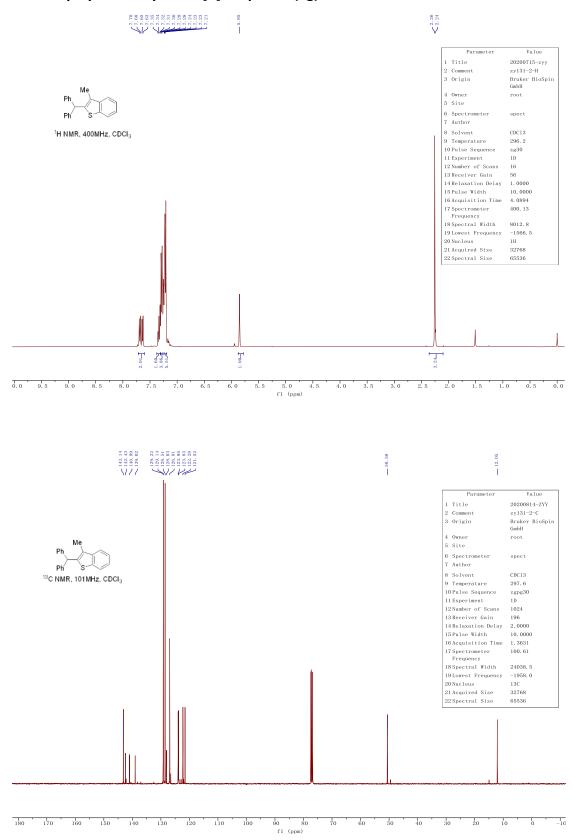

2, 5-dibenzhydrylfuran (4c):

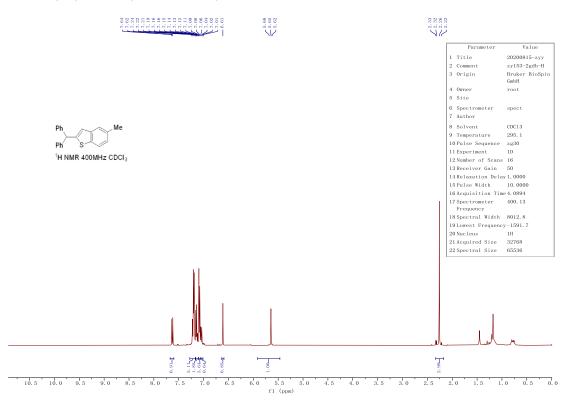

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

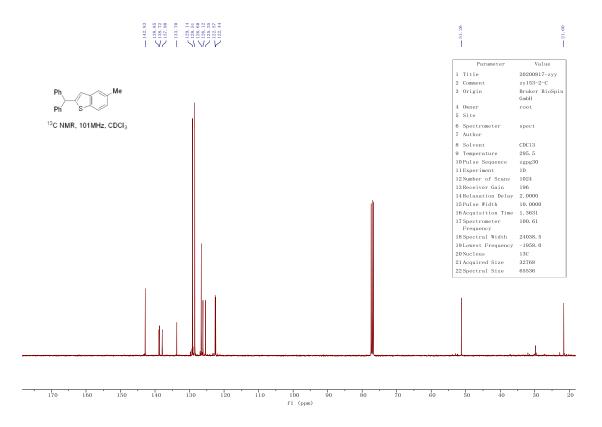

2-benzhydrylthiophene (4d):



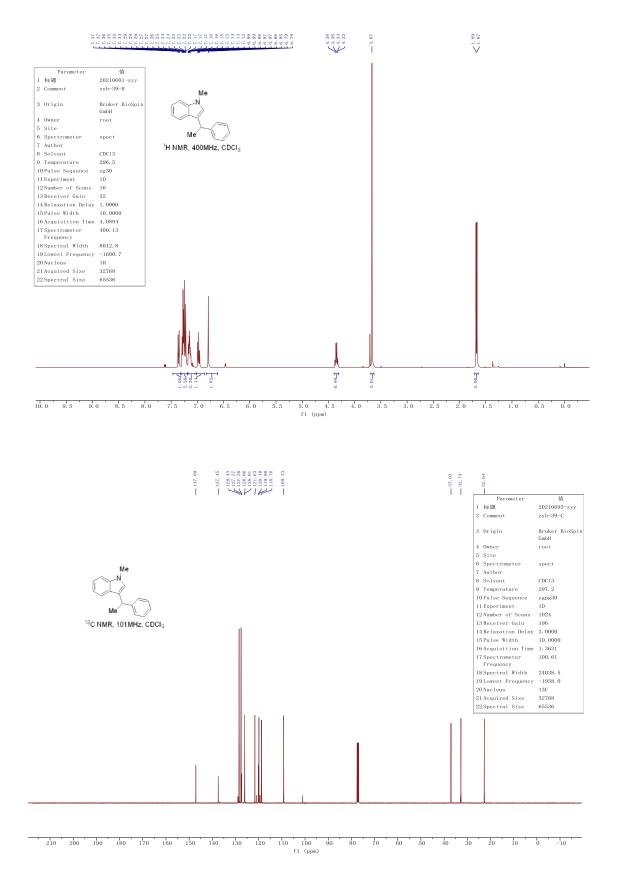

2-(diphenylmethyl)-5-methylthiophene (4e):


2-benzhydrylbenzo[b]thiophene (4f):

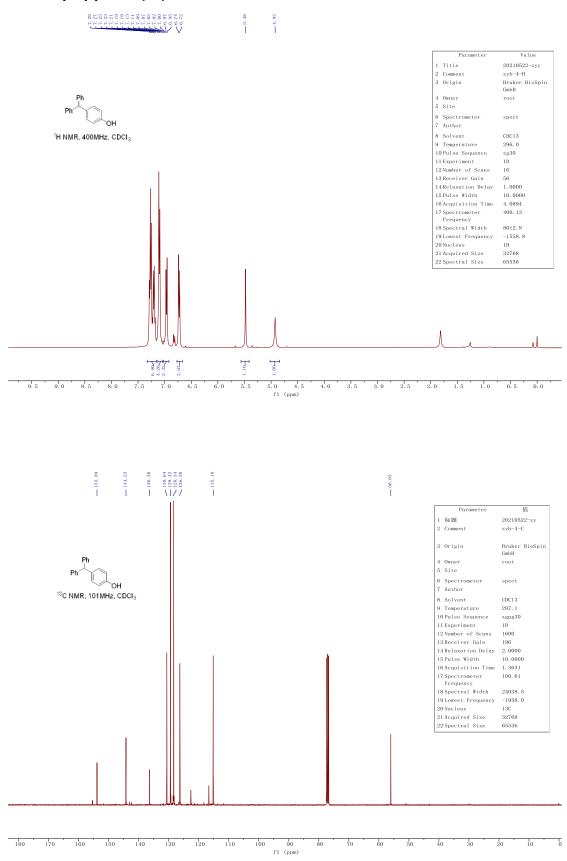


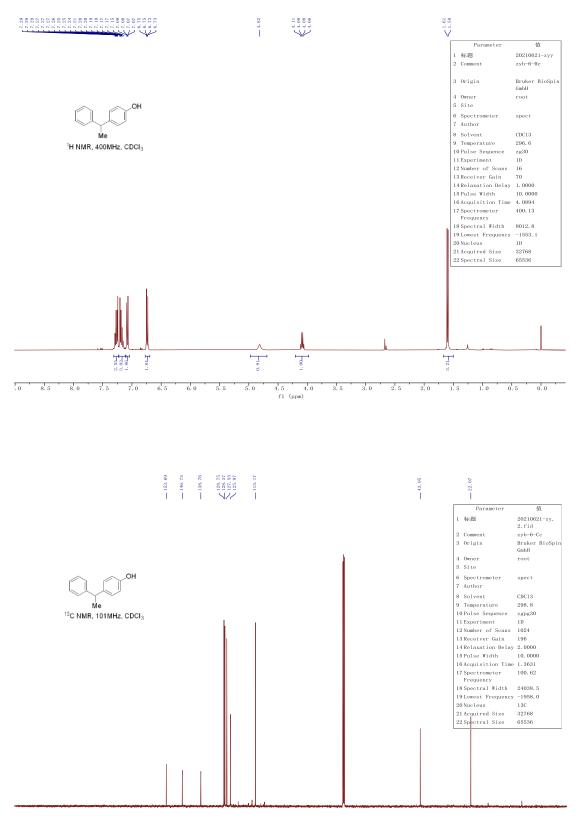

150 145 140 135 130 125 120 115 110 f1 (ppm)

2-benzhydryl-3-methylbenzo[b]thiophene (4g):



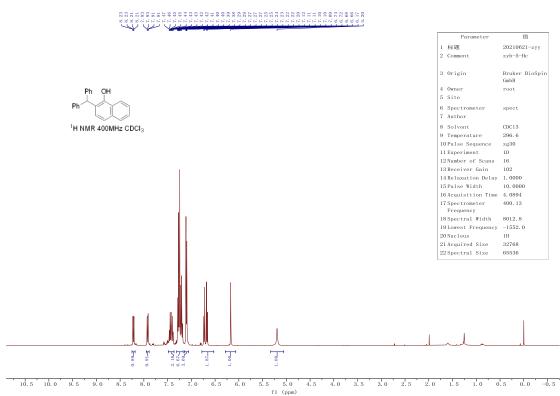




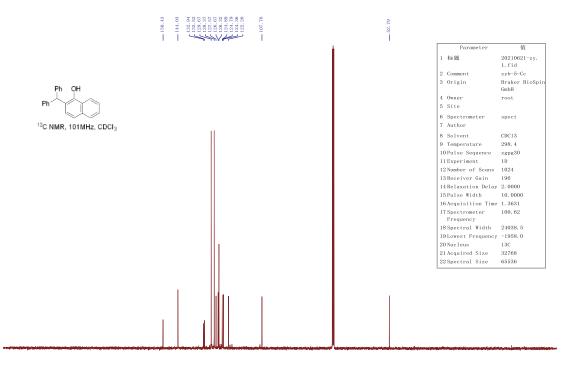

3-(1-(4-bromophenyl)ethyl)-1H-indole (4j):

f1 (ppm)

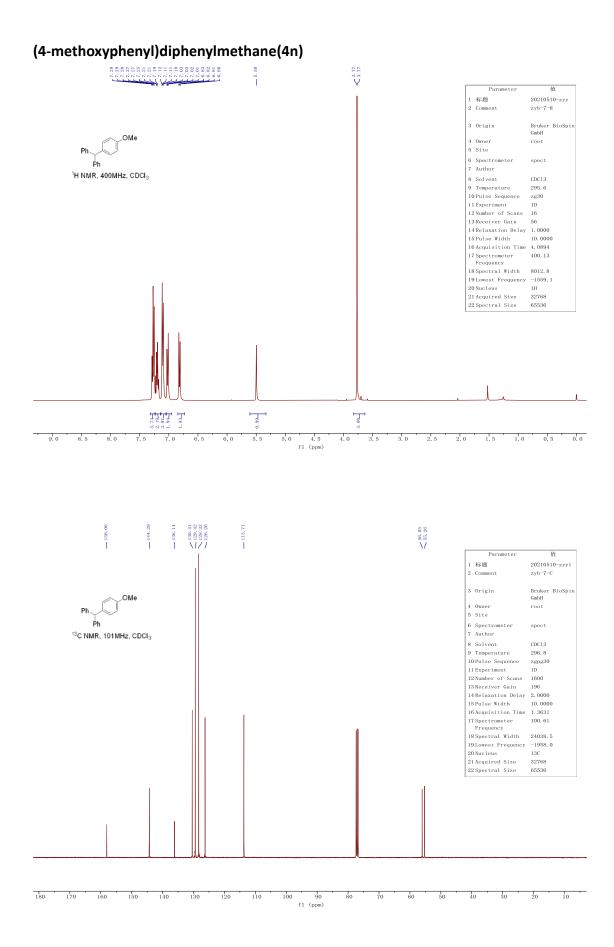
4-benzhydrylpheno (4k):

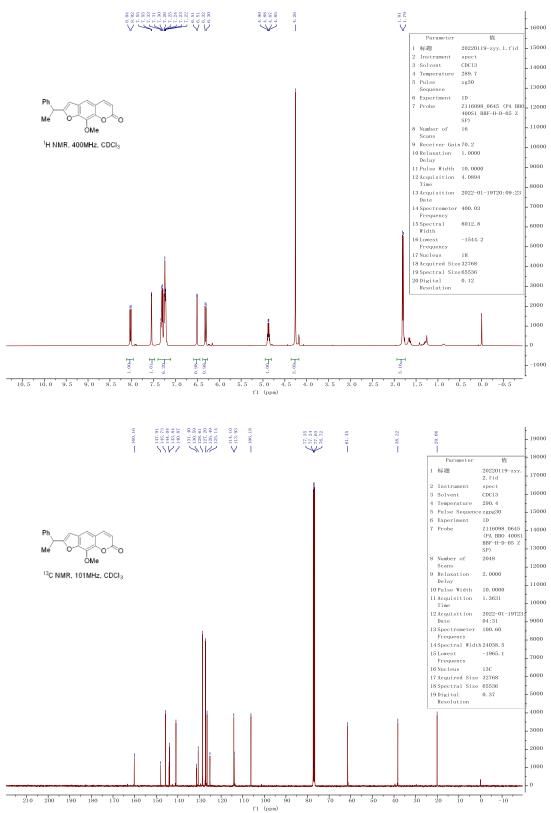


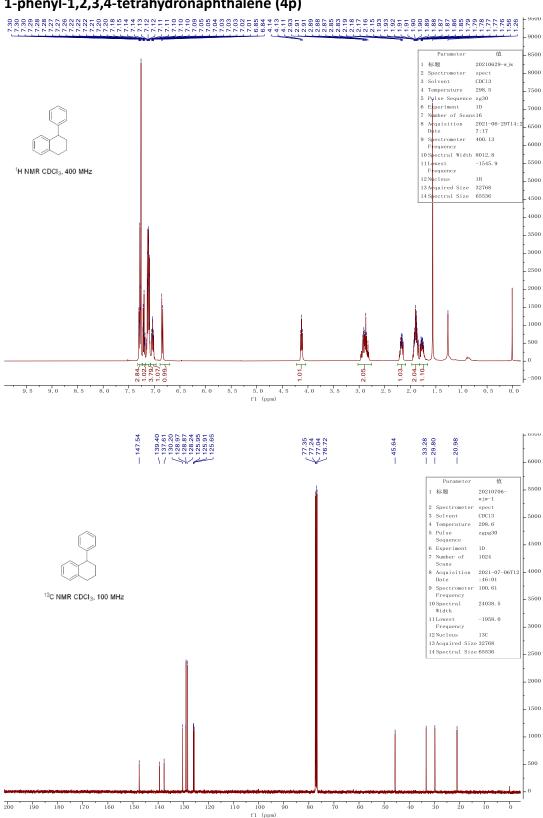
4-(1-phenylethyl)phenol (4l):



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)


2-benzhydrylnaphthalen-1-ol (4m):




210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) 0 -10

S54

9-methoxy-2-(1-phenylethyl)-7H-furo[3,2-g]chromen-7-one (4o):

1-phenyl-1,2,3,4-tetrahydronaphthalene (4p)