Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Selective Access to Fused Tetrahydroquinolines via a Copper-Catalysed Oxidative Three-Component Annulation Reaction

Peng Duan,^a JiaLu Sun,^a Zhibo Zhu^b and Min Zhang*

^{*a*}Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China ^{*b*}Clinical Research Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, P. R. China

*E-mail: minzhang@scut.edu.cn

Table of Contents

General information	.S2
Typical procedure for the synthesis of product D_1	S2
Substrate employed for the synthesis of fused tetrahydroquinolines	\$3
NOESY Spectrum of Compound D ₁	S4
Synthetic utility	.S4-S5
Analytical data of the obtained compounds	.S6-S16
NMR spectra of the obtained compounds	.S17-S59
References	S60

1. General Information

All the reactions were carried out using oven dried glassware and under air unless otherwise stated. All the obtained products were characterized by melting points (m.p.), ¹H-NMR, ¹³C-NMR, and mass spectra (MS), the NMR spectra of the known compounds were found to be identical with the ones reported in the literatures. Additionally, all the new compounds were further characterized by high resolution mass spectra (HRMS). Melting points were measured on a BUCHI Melting Point M-565. ¹H-NMR, ¹³C-NMR spectra were obtained on Bruker-500 MHz or 400 MHz. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m). TLC was performed using commercially prepared 1600-2000 mesh silica gel plates (GF254), and visualization was effected with short wavelength UV light (254 nm).

All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All reactions were heated by metal sand bath (WATTCAS, LAB500, https://www.wattcas.com).

2. Typical procedure for the synthesis of product D₁

Under air atmosphere, Cu(OTf)₂ (0.02 mmol, 7.22 mg), *p*-nitrobenzoic acid (0.06 mmol,10.1 mg) and paraformaldehyde **B** (0.6 mmol,18.0 mg) were introduced into a dried Schlenk tube (50 mL) at room temperature. Then, THF **C**₁ (1.0 mL), *N*-ethyl aniline **A**₁ (0.2 mmol, 24.2 mg) and tert-Butyl hydroperoxide (70 % in water, 0.4 mmol, 51.4 mg) were added, and the Schlenk tube was then sealed. After stirring for 16 hours at 80 °C, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether (PE, 60-90 °C) and ethyl acetate (EA) (v/v = 8 : 1) to give the desired yellow oily product **D**₁ (30.5 mg, 75 %).

3. Substrate employed for the synthesis of tetrahydroquinoline derivatives

3. NOESY Spectrum of Compound D₁

NOESY Spectrum of Compound D₁

4. Synthetic utility

(1) Large-scale experiments synthesis of D_{21}

Under air atmosphere, Cu(OTf)₂ (0.4 mmol, 0.144 g), *p*-nitrobenzoic acid (1.2 mmol, 0.202 g) and Paraformaldehyde **B** (12.0 mmol, 0.36 g) were introduced into a dried Schlenk tube (100 mL) at room temperature. Then, THF **C**₁ (15.0 mL), *N*-ethylaniline **A**₁ (4.0 mmol, 0.484 g) and tert-butyl hydroperoxide (70 % in water, 8.0 mmol, 1.028 g) were added and the Schlenk tube was sealed. After stirring for 16 hours at 80 °C, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether and ethyl acetate (v/v = 8 : 1) to give the desired product **D**₂₁ as a yellow oil (0.587 g, 55 %).

(2) Synthesis of compound 2

Under nitrogen atmosphere, Pd(PPh₃)₄ (0.02 mmol, 23.1 mg), K₂CO₃ (0.3 mmol, 41.4 mg), 4-tert-

butylphenylboronic acid **1** (0.4 mmol, 71.2 mg) and **D**₂₁ (0.2 mmol, 53.4 mg) were introduced into a dried Schlenk tube (50 mL) at room temperature. Then, 1,4-dioxane and H₂O (v : v = 4 : 1, 1.5 mL) were added into the Schreck tube via injection. After that, the reaction mixture was stirred at 110 °C for 18 h. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with PE : EA = 10 : 1 (v/v) to give the desired yellow oily product **2** (41.7 mg, 65 %); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 5.0 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.43 – 7.40 (m, 2H), 6.75 – 6.70 (m, 1H), 5.43 (dd, *J* = 4.7, 1.4 Hz, 1H), 3.92 – 3.80 (m, 2H), 3.06 – 3.01 (m, 0.5H), 2.93 (s, 1H), 2.89 (s, 3H), 2.86 – 2.80 (m, 0.5H), 1.98 – 1.91 (m, 1H), 1.87 – 1.79 (m, 2H), 1.35 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 138.3, 129.8, 127.8, 126.0, 126.0, 125.6, 125.5, 113.3, 100.0, 67.0, 52.6, 39.4, 36.0, 34.4, 32.3, 31.4, 23.4; HRMS (ESI): Calcd. for C₂₂H₂₈NO [M+H]⁺: 322.2165; found: 322.2162.

(3) Synthesis of compound 3

Under nitrogen atmosphere, Pd/C (0.02 mmol,2.1 mg), **D**₈ (0.2 mmol, 53 mg), HCOONH₄ (2 mmol, 136 mg), and methanol (0.5 mL) were introduced into a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 65 °C for 16 h. After cooling down to room temperature, the resulting mixture was extracting with ethyl acetate, washed with H₂O, dried with anhydrous sodium sulfate, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica, eluting with PE : EA = 4 : 1 (v/v) to give the desired white solid product **3** (22.8 mg, 65 % yield)¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.08 (td, *J* = 7.6, 1.6 Hz, 1H), 6.74 (td, *J* = 7.4, 1.2 Hz, 1H), 6.60 (dd, *J* = 8.0, 1.1 Hz, 1H), 4.58 (d, *J* = 5.4 Hz, 1H), 3.98 – 3.93 (m, 1H), 3.86 – 3.78 (m, 1H), 3.15 (dd, *J* = 11.0, 5.2 Hz, 1H), 2.87 (t, *J* = 11.0 Hz, 1H), 2.49 – 2.40 (m, 1H), 2.30 – 2.18 (m, 1H), 1.81 – 1.72 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 131.4, 128.8, 120.6, 118.2, 114.8, 75.5, 65.3, 43.2, 36.1, 29.8.

5. Analytical data of the obtained compounds

(1) 5-ethyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁)² CAS: 2380351-17-5

(m, 1H), 1.13 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.4, 131.7, 129.0, 121.2, 116.6, 111.6, 76.1, 65.0, 49.2, 45.3, 35.6, 30.0, 10.6.

(2) 5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₂)² CAS: 143771-30-6

Yellow oil liquid (27 mg, 72 %); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 5.0 Hz, H), 7.20 (t, J = 7.5 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 5.0 Hz, 1H), 4.59 (d, J = 5.0 Hz, 1H), 3.98 – 3.90 (m, 1H), 3.85 – 3.77 (m, 1H), 3.01 (dd, J = 11.2, 5.2Hz, 1H), 2.89 (s, 3H), 2.79 (t, J = 11.0 Hz, 1H), 2.57 – 2.50 (m, 1H), 2.30 – 2.21 (m, 1H), 1.80 – 1.73 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 147.2, 131.2, 129.1, 121.7, 117.5, 111.9, 75.9, 65.2, 52.6, 39.4, 36.0, 30.1.

(3) 5-isopropyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₃)² CAS: 1683587-11-2

Yellow oil liquid (29.9 mg, 69 %); ¹H NMR (500 MHz, CDCl₃) δ 7.35 (dd, J = 7.5, 1.7 Hz, 1H), 7.19 – 7.14 (m, 1H), 6.78 (d, J = 5.0 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 4.54 (d, J = 5.0 Hz, 1H), 4.14 – 4.04 (m, 1H), 3.95 – 3.86 (m, 1H), 3.78 (td, J = 8.7, 6.5 Hz, 1H), 3.08 (dd, J = 11.5, 4.8 Hz, 1H), 2.51 (t, J = 11.2 Hz, 1H), 2.41 – 2.30 (m, 1H), 2.28 – 2.18 (m, 1H), 1.80 – 1.72 (m, 1H), 1.24 (d, J = 5.0 Hz, 3H), 1.12 (d, J = 5.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.2, 131.8, 128.9, 122.1, 116.6, 111.6, 76.2, 65.1, 46.3, 41.2, 36.3, 30.3, 20.4, 17.7.

(4) 5-butyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₄)² CAS: 1683587-12-3

Yellow oil liquid (30 mg, 65 %); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 5.0 Hz,
¹ 1H), 7.16 (t, J = 10.0 Hz, 1H), 6.69 (t, J = 7.5 Hz, 2H), 4.54 (d, J = 5.0 Hz, 1H), 3.98
- 3.90 (m, 1H), 3.85 - 3.77 (m, 1H), 3.38 - 3.28 (m, 1H), 3.27 - 3.17 (m, 1H), 3.02

(dd, *J* = 11.6, 5.3 Hz, 1H), 2.87 (t, *J* = 10.0 Hz, 1H), 2.45 – 2.36 (m, 1H), 2.30 – 2.17 (m, 1H), 1.81 – 1.69 (m, 1H), 1.56 – 1.51 (m, 2H), 1.41 – 1.33 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 131.7, 129.0, 120.9, 116.3, 111.5, 76.1, 65.0, 51.2, 50.2, 35.6, 30.0, 28. 2,

20.5, 14.0.

(5) 5-cyclohexyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₅)

Yellow oil liquid (31.8 mg, 62 %); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 5.0 Hz, (H, J = 10.0 Hz, 1H), 7.16 (t, J = 10.0 Hz, 1H), 6.76 (d, J = 10.0 Hz, 1H), 6.69 (t, J = 7.5 Hz, 1H), 4.54 (d, J = 5.0 Hz, 1H), 3.98 – 3.87 (m, 1H), 3.82 – 3.71 (m, 1H), 3.62 – 3.54 (m, 1H), 3.14 (dd, J = 11.7, 4.8 Hz, 1H), 2.56 (t, J = 11.2 Hz, 1H), 2.37 – 2.31 (m, 1H), 2.27 – 2.17 (m, 1H), 1.90 – 1.81 (m, 3H), 1.79 – 1.68 (m, 2H), 1.62 – 1.53 (m, 2H), 1.43 – 1.29 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 131.9, 128.9, 122.0, 116.4, 111.6, 76.2, 65.1, 55.8, 42.7, 36.4, 30.9, 30.2, 28.7, 26.5, 26.1, 26.1; HRMS (ESI): Calcd. for C₁₇H₂₄NO [M+H]⁺: 258.1852; found: 258.1852.

(6) 5-allyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₆)

Yellow oil liquid (19.4 mg, 45 %); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (dd, J = 10.0, 1.7 Hz, 1H), 7.18 – 7.12 (m, 1H), 6.75 – 6.67 (m, 2H), 5.92 – 5.80 (m, 1H), 5.25 – 5.13 (m, 2H), 4.57 (d, J = 5.0Hz, 1H), 4.01 – 3.91 (m, 2H), 3.87 – 3.78 (m, 2H), 3.03 (dd, J = 11.5, 5.3 Hz, 1H), 2.87 (t, J = 10.0 Hz, 1H), 2.52 – 2.41 (m, 1H), 2.28 – 2.16 (m, 1H), 1.80 – 1.68 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 133.5, 131.6, 129.0, 125.2, 117.0, 116.7, 112.1, 76.0, 65.1, 53.9, 50.0, 35.7, 29.7; HRMS (ESI): Calcd. for C₁₄H₁₈NO [M+H]⁺: 216.1383; found: 216.1381.

(7) N-(2-(2,3,3a,9b-tetrahydrofuro[3,2-c]quinolin-5(4H)-yl)ethyl)aniline (D₇)

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{HN}^{\mbox{Ph}} & \mbox{Yellow oil liquid (20 mg, 34 \%); } ^{1}\mbox{H NMR (500 MHz, CDCl_3) } \delta 8.41 (s, 1\mbox{H}), 7.43 - \\ & \mbox{7.38 (m, 2\mbox{H}), 7.33 - 7.29 (m, 2\mbox{H}), 7.16 - 7.09 (m, 3\mbox{H}), 6.74 - 6.67 (m, 2\mbox{H}), 4.48 \\ & \mbox{(d, $J = 5.0 \mbox{ Hz}, 1\mbox{H}), 4.06 - 4.00 (m, 1\mbox{H}), 3.99 - 3.94 (m, 1\mbox{H}), 3.93 - 3.87 (m, 1\mbox{H}), \\ & \mbox{3.81 - 3.77 (m, 1\mbox{H}), 3.54 - 3.49 (m, 2\mbox{H}), 3.04 (\mbox{dd}, $J = 11.5, 5.2 \mbox{ Hz}, 1\mbox{H}), 2.87 (\mbox{t}, $J = 1.5, 5.2 \mbox{Hz}, 1\mbox{Hz}), 2.87 (\mbox{Hz}, 1\mbox{Hz}), 2.87 (\mbox{Hz}), 2.87 (\$

= 11.1 Hz, 1H), 2.32 – 2.26 (m, 1H), 2.23 – 2.15 (m, 1H), 1.70 – 1.66 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 145.1, 141.1, 131.8, 129.8, 129.3, 127.0, 124.0, 117.1, 111.30, 75.9, 65.0, 50.2, 48.4, 42.7, 35.4, 29.8. HRMS (ESI): Calcd. for C₁₉H₂₃N₂O [M+H]⁺: 316.1696; found: 316.1694.

(8) 5-benzyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₈)³ CAS: 1269006-20-3

Ph Gray oily liquid (30.6 mg, 58 %); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 1H), 7.34 – 7.26 (m, 4H), 7.25 – 7.22 (m, 1H), 7.13 – 7.08 (m, 1H), 6.75 – 6.70 (m, 1H), 6.67 – 6.61 (m, 1H), 4.61 (d, J = 5.0 Hz, 1H), 4.54 – 4.44 (m, 2H), 3.99 – 3.93 (m, 1H), 3.88 – 3.80 (m, 1H), 3.09 (dd, *J* = 11.6, 5.3 Hz, 1H), 2.96 (t, *J* = 12.5 Hz, 1H), 2.55 – 2.44 (m, 1H), 2.28 – 2.14 (m, 1H), 1.78 – 1.67 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 138.6, 131.6, 129.1, 128.6, 126.9, 126.9, 121.0, 117.1, 112.1, 76.0, 65.1, 55.2, 50.5, 35.7, 29.9.

(9) ethyl 2-(2,3,3a,9b-tetrahydrofuro[3,2-c]quinolin-5(4H)-yl)acetate (D₉)

CODET Yellow oil liquid (24 mg, 46 %); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.5 Hz, Hz, H), 7.07 (d, J = 5.0 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 6.45 (d, J = 5.0 Hz, 1H), 4.54 (d, J = 10.0 Hz, 1H), 4.14 – 4.07 (m, 2H), 4.07 – 3.98 (m, 1H), 3.93 – 3.84 (m, 1H), 3.83 – 3.71 (m, 2H), 3.06 (d, J = 5.0 Hz, 2H), 2.49 – 2.39 (m, 1H), 2.21 – 2.12 (m, 1H), 1.88 – 1.82 (m, 1H), 1.17 (t, J = 12.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 145.0, 131.6, 129.0, 121.7, 117.9, 111.2, 75.7, 65.2, 61.0, 53.3, 51.4, 36.0, 29.8, 14.2; HRMS (ESI): Calcd. for C₁₅H₂₀NO₃ [M+H]⁺: 262.1437; found: 262.1436.

(10) 3-(2,3,3a,9b-tetrahydrofuro[3,2-c]quinolin-5(4H)-yl)propanenitrile (D₁₀)

Gray oily liquid (22 mg, 48 %); ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 10.0 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 6.60 (d, J = 10.0 Hz, 1H), 4.54 (d, J = 5.0 Hz, 1H), 4.00 – 3.91 (m, 1H), 3.86 – 3.78 (m, 1H), 3.72 (d, J = 7.5 Hz, 1H), 3.62 (d, J = 7.8 Hz, 1H), 3.12 (dd, J = 11.4, 5.3 Hz, 1H), 2.97 (t, J = 11.2 Hz, 1H), 2.67 – 2.59 (m, 1H), 2.57 – 2.53 (m, 1H), 2.51 – 2.46 (m, 1H), 2.30 – 2.21 (m, 1H), 1.80 – 1.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 132.3, 129.4, 121.7, 118.5, 118.0, 110.8, 75.7, 65.1, 50.6, 47.4, 35.6, 29.8, 15.0; HRMS (ESI): Calcd. for C₁₄H₁₇N₂O [M+H]⁺: 229.1335; found: 229.1334.

(11) 5,6-dimethyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₁)⁴ CAS: 2033096-59-0

(126 MHz, CDCl₃) & 147.2, 131.7, 130.6, 128.6, 127.8, 122.5, 76.0, 66.0, 53.5, 41.5, 30.2, 30.1, 18.3.

(12) ethyl 3-(6-methyl-2,3,3a,9b-tetrahydrofuro[3,2-c]quinolin-5(4H)-yl)propanoate (D₁₂)

1H), 3.13 - 3.05 (m, 2H), 2.77 - 2.66 (m, 2H), 2.61 (d, J = 11.1 Hz, 2H), 2.36 - 2.29 (m, 1H), 2.28 (s, 3H), 1.62 - 1.51 (m, 1H), 1.26 (t, J = 7.5 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 172.2, 146.7, 131.7, 130.7, 128.4, 128.0, 122.6, 75.9, 66.0, 60.6, 48.7, 48.3, 34.6, 30.9, 30.2, 18.6, 14.2; HRMS (ESI): Calcd. for C₁₇H₂₄NO₃ [M+H]⁺: 290.1750; found: 290.1749.

(13) 5,8-dimethyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₃)⁴ CAS: 143771-28-2

Yellow oil liquid (30.5 mg, 75 %); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (s, 1H), N, H N, H N, O N

3H), 2.72 (t, *J* = 10.0 Hz, 1H), 2.57 – 2.50 (m, 1H), 2.28 – 2.21 (m, 4H), 1.80 – 1.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.2, 131.5, 129.6, 126.8, 122.0, 112.1, 75.9, 65.3, 53.0, 39.5, 36.3, 30.2, 20.2.

(14) 8-methoxy-5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₄)³ CAS: 143771-29-3

 $\begin{array}{c} & \text{Yellow oil liquid (35.5 mg, 81 \%); }^{1}\text{H NMR (500 MHz, CDCl_3) } \delta \ 6.96 \ (d, J = \\ & \text{MeO} \end{array}$

J = 11.0, 5.1 Hz, 1H), 2.84 (s, 3H), 2.68 (t, *J* = 10.8 Hz, 1H), 2.60 – 2.55 (m, 1H), 2.29 – 2.20 (m, 1H), 1.80 – 1.76(m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.0, 141.9, 123.2, 115.8, 115.6, 113.3, 76.0, 65.5, 55.8, 53.4, 39.9, 36.6, 30.2.

(15) 5-ethyl-9-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₅)

Gray oily liquid (23 mg, 53%); ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.18 (m, 1H), 6.53 (d, J = 10.0 Hz, 2H), 4.52 (d, J = 5.0 Hz, 1H), 3.97 – 3.89 (m, 1H), 3.83 – 3.75 (m, 1H), 3.55 – 3.44 (m, 1H), 3.31 – 3.22 (m, 1H), 2.98 (dd, J = 11.4, 5.3 Hz, 1H), 2.84 (t, J = 12.5 Hz, 1H), 2.46 – 2.37 (m, 1H), 2.29 (s, 3H), 2.25 – 2.17 (m, 1H), 1.77 – 1.69 (m, 1H), 1.13 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.3, 138.8, 131.6, 118.5, 117.6, 112.1, 76.0, 65.0, 49.3, 45.2, 35.7, 30.0, 21.9, 10.7. HRMS (ESI): Calcd. for C₁₄H₂₀NO [M+H]⁺: 218.1539; found: 218.1539.

(16) 5-benzyl-2,3,3a,4,5,11c-hexahydrobenzo[f]furo[3,2-c]quinoline (D₁₆)

Ph Red solid (26 mg, 41 %); m.p.: 115-116 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 10.0 Hz, 1H), 7.64 (d, J = 10.0 Hz, 1H), 7.60 (d, J = 10.0 Hz, 1H), 7.46 (t, S9 J = 75 Hz, 1H), 7.33 – 7.25 (m, 5H), 7.21 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 5.0 Hz, 1H), 5.03 (d, J = 5.0 Hz, 1H), 4.74 – 4.59 (m, 2H), 4.06 – 4.00 (m, 1H), 3.98 – 3.94 (m, 1H), 3.17 – 3.04 (m, 2H), 2.54 – 2.46 (m, 1H), 2.40 – 2.29 (m, 1H), 1.80 – 1.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 138.7, 134.8, 129.8, 128.7, 128.0, 127.1, 127.0, 127.0, 126.7, 122.7, 122.0, 115.1, 111.5, 73.6, 64.8, 55.6, 50.9, 34.7, 29.8; HRMS (ESI): Calcd. for C₂₂H₂₂NO [M+H]⁺: 316.1696; found: 316.1694.

(17) 5,6-dimethyl-8-nitro-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₇)

Yellow oily liquid (24.8 mg, 50 %); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J =2.7 Hz, 1H), 7.96 (d, J = 2.6 Hz, 1H), 4.52 (d, J = 5.0 Hz, 1H), 4.01 – 3.95 (m, 1H), 3.88 – 3.80 (m, 1H), 3.04 (dd, J = 13.4, 4.8 Hz, 1H), 2.92 (s, 3H), 2.77 (t, J

= 13.0 Hz, 1H), 2.58 – 2.51 (m, 1H), 2.37 (s, 3H), 2.35 – 2.30 (m, 1H), 1.73 – 1.63 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 141.1, 130.8, 126.9, 126.1, 125.0, 75.6, 65.8, 53.1, 41.8, 31.6, 29.6, 19.7. HRMS (ESI): Calcd. for C₁₃H₁₇N₂O₃ [M+H]⁺: 249.1234; found: 249.1231.

(18) 5-methyl-6-nitro-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₈)

(19) 8-fluoro-5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₁₉)¹ CAS: 1683587-07-6

 $\begin{array}{c} \downarrow & Ye \\ \downarrow & Ye \\ \downarrow & \downarrow & H \\ \downarrow & \downarrow & H \\ \downarrow & \downarrow & H \\ H^{(1)} & 0 \\ \end{pmatrix}$

Yellow oil liquid (26.1 mg, 63 %); ¹H NMR (500 MHz, CDCl₃) δ 7.08 (dd, J = 8.9, 3.0 Hz, 1H), 6.92 – 6.86 (m, 1H), 6.62 (dd, J = 9.0, 4.6 Hz, 1H), 4.55 (d, J = 5.0 Hz, 1H), 3.96 – 3.88 (m, 1H), 3.83 – 3.76 (m, 1H), 2.99 (dd, J = 11.2, 5.1 Hz,

1H), 2.85 (s, 3H), 2.71 (t, J = 10.0 Hz, 1H), 2.60 – 2.48 (m, 1H), 2.30 – 2.18 (m, 1H), 1.80 – 1.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.6 (d, J = 236.3 Hz), 143.8 (d, J = 1.8 Hz), 123.4 (d, J = 6.4 Hz), 117.1 (d, J = 21.9 Hz), 115.5 (d, J = 22.1 Hz), 112.8 (d, J = 7.4 Hz), 75.6, 65.4, 53.0, 39.8, 36.4, 30.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -128.05.

(20) 8-chloro-5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₂₀)² CAS: 192223-77-1

Yellow oil liquid (23.2 mg, 52 %); ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.31 (d, $J = 5.0$
Hz, 1H), 7.13 (dd, $J = 8.8$, 2.6 Hz, 1H), 6.60 (d, $J = 10.0$ Hz, 1H), 4.53 (d, $J = 5.0$
Hz, 1H), 3.93 (td, $J = 8.4$, 5.8 Hz, 1H), 3.80 (td, $J = 8.8$, 6.2 Hz, 1H), 3.01 (dd, $J = 8.4$

= 11.3, 5.2 Hz, 1H), 2.86 (s, 3H), 2.76 (t, J = 11.0 Hz, 1H), 2.55 – 2.47 (m, 1H), 2.29 – 2.20 (m, 1H), 1.79 – 1.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.8, 130.7, 128.8, 123.3, 122.2, 113.1, 75.4, 65.3, 52.5, 39.4, 36.0, 30.0.

(21) 8-bromo-5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline $(D_{21})^2$ CAS: 1683587-08-7

Gray oil liquid (29.5 mg, 55 %); ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.44 (d, $J = 2.5$
Br Hz, 1H), 7.27 – 7.22 (m, 1H), 6.55 (d, $J = 10.0$ Hz, 1H), 4.53 (d, $J = 5.0$ Hz, 1H)
3.97 – 3.89 (m, 1H), 3.83 – 3.76 (m, 1H), 3.01 (dd, $J = 11.4$, 5.3 Hz, 1H), 2.86 (s

3H), 2.76 (t, J = 11.0 Hz, 1H), 2.56 – 2.45 (m, 1H), 2.28 – 2.18 (m, 1H), 1.81 – 1.67 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.2, 133.5, 131.7, 123.8, 113.5, 109.3, 75.4, 65.3, 52.4, 39.3, 36.0, 29.9.

(22) 5-methyl-8-(trifluoromethyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₂₂)² CAS: 2242742-73-8

White solid (24.2 mg, 47 %); m.p.: 69-71 °C; ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.58
 $F_{3}C$ (d, $J = 2.3$ Hz, 1H), 7.41 (dd, $J = 8.8, 2.3$ Hz, 1H), 6.69 (d, $J = 8.7$ Hz, 1H), 4.56
(d, $J = 5.2$ Hz, 1H), 3.98 – 3.91 (m, 1H), 3.87 – 3.79 (m, 1H), 3.08 (dd, $J = 11.4$

5.5 Hz, 1H), 2.95 (s, 3H), 2.87 (t, J = 11.2 Hz, 1H), 2.54 – 2.43 (m, 1H), 2.33 – 2.21 (m, 1H), 1.81 -1.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 128.4 (q, J = 3.7 Hz), 126.2 (q, J = 3.6 Hz), 123.8, 120.9, 118.6 (q, J = 32.5 Hz), 111.2, 75.4, 65.1, 51.9, 39.2, 35.4, 29.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -61.06.

(23) 5-methyl-8-nitro-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₂₃)² CAS: 2242742-74-7

Yellow solid (28.1 mg, 60 %); m.p.: 123-125°C; ¹H NMR (500 MHz, CDCl₃)
$$\delta$$

8.22 (d, $J = 2.6$ Hz, 1H), 8.06 (dd, $J = 9.2, 2.7$ Hz, 1H), 6.61 (d, $J = 10.0$ Hz, 1H), 4.56 (d, $J = 5.0$ Hz, 1H), 3.96 (td, $J = 8.6, 6.1$ Hz, 1H), 3.87 (td, $J = 9.0, 5.9$

Hz, 1H), 3.19 (dd, J = 12.0, 5.6 Hz, 1H), 3.06 (s, 3H), 3.02 (t, J = 12.5 Hz, 1H), 2.53 - 2.46 (m, S11

1H), 2.33 – 2.24 (m, 1H), 1.81 – 1.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 151.3, 137.3, 127.9, 125.8, 119.9, 110.4, 75.1, 65.1, 51.4, 39.3, 34.8, 29.5.

(24) 5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline-8-carbonitrile (D₂₄)

Gray oil liquid (24 mg, 56 %); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.43 NC H (dd, J = 8.8, 1.4 Hz, 1H), 6.64 (d, J = 10.0 Hz, 1H), 4.51 (d, J = 5.0 Hz, 1H), 3.95 (td, J = 8.4, 5.9 Hz, 1H), 3.84 (td, J = 8.8, 5.9 Hz, 1H), 3.13 (dd, J = 11.8, 5.5 Hz, 1H), 2.98 (s, 3H), 2.93 (t, J = 12.5 Hz, 1H), 2.50 – 2.41 (m, 1H), 2.36 – 2.24 (m, 1H), 1.80 – 1.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 135.3, 133.2, 121.2, 120.3, 111.5, 98.5, 74.9, 65.1,

51.5, 39.0, 35.0, 29.6; HRMS (ESI): Calcd. for C₁₃H₁₅N₂O [M+H]⁺: 215.1179; found: 215.1177.

(25) 5,6,8a,9,10,11a-hexahydro-4H,8H-furo[3,2-c]pyrido[3,2,1-ij]quinoline (D₂₅)

Yellow oil liquid (29.2 mg, 68 %); ¹H NMR (500 MHz, CDCl₃) δ 7.15 (dd, J = 7.5, 1.5 Hz, 1H), 6.90 (dd, J = 7.2, 1.5 Hz, 1H), 6.64 (t, J = 7.5 Hz, 1H), 4.56 (d, J = 5.0Hz, 1H), 3.98 – 3.90 (m, 1H), 3.83 – 3.76 (m, 1H), 3.21 – 3.13 (m, 1H), 3.06 (td, J = 10.5, 3.4 Hz, 1H), 2.92 (dd, J = 11.1, 5.2 Hz, 1H), 2.87 – 2.75 (m, 2H), 2.70 (t, J = 12.5 Hz, 1H), 2.53 – 2.43 (m, 1H), 2.28 – 2.18 (m, 1H), 2.11 – 1.94 (m, 2H), 1.80 – 1.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 143.6, 129.1, 129.0, 122.7, 120.9, 117.2, 76.1, 65.1, 51.3, 50.4, 35.5, 30.2, 27.6, 22.1; HRMS (ESI): Calcd. for C₁₄H₁₈NO [M+H]⁺: 216.1383; found: 216.1380.

(26) 3-methoxy-5,6,8a,9,10,11a-hexahydro-4H,8H-furo[3,2-c]pyrido[3,2,1-ij]quinoline (D₂₆)

Gray oil liquid (36.7 mg, 75 %); ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 5.0 Hz, 1H), 6.32 (d, *J*=10.0 Hz, 1H), 4.55 (d, *J*=5.0 Hz, 1H), 3.96 – 3.90 (m, 1H), 3.82 – 3.79 (m, 1H), 3.78 (s, 3H), 3.17 – 3.08 (m, 1H), 3.02 – 2.97 (m, 1H), 2.89

(dd, J = 11.1, 5.2 Hz, 1H), 2.80 - 2.74 (m, 1H), 2.68 (t, J = 15.0 Hz, 1H), 2.59 - 2.44 (m, 2H), 2.28 - 2.17 (m, 1H), 2.02 - 1.97 (m, 2H), 1.81 - 1.71 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) & 157.2, 144.6, 129.2, 114.3, 110.6, 100.3, 76.1, 65.1, 55.4, 51.6, 50.0, 35.7, 30.2, 21.7, 21.3; HRMS (ESI): Calcd. for C₁₅H₂₀NO₂ [M+H]⁺: 246.1489; found: 246.1485.

(27) 2-bromo-5,6,8a,9,10,11a-hexahydro-4H,8H-furo[3,2-c]pyrido[3,2,1-ij]quinoline (D₂₇)

2.79 – 2.70 (m, 2H), 2.67 (t, *J* = 10.0 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.29 – 2.17 (m, 1H), 2.02 – 1.93

(m, 2H), 1.79 – 1.69 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 142.6, 131.4, 131.3, 124.9, 122.9, 108.8, 75.5, 65.2, 51.0, 50.1, 35.4, 30.0, 27.4, 21.7; HRMS (ESI): Calcd. for C₁₄H₁₇NBrO [M+H]⁺: 294.0488; found: 294.0483.

(28) 1-nitro-5,6,8a,9,10,11a-hexahydro-4H,8H-furo[3,2-c]pyrido[3,2,1-ij]quinoline (D₂₈₎

Yellow oil liquid (25 mg, 48 %); ¹H NMR (500 MHz, CDCl₃) δ 7.00 – 6.93 (m, 2H), 5.19 (d, J = 5.0 Hz, 1H), 3.90 – 3.82 (m, 1H), 3.81 – 3.74 (m, 1H), 3.28 – 3.21 (m, 1H), 3.17 – 3.10 (m, 1H), 3.06 (dd, J = 11.6, 5.0 Hz, 1H), 2.84 – 2.76 (m, 3H), 2.53 – 2.44 (m, 1H), 2.25 – 2.15 (m, 1H), 2.05 – 1.96 (m, 2H), 1.82 – 1.73 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 150.2, 144.1, 128.5, 127.3, 113.5, 112.3, 71.1, 65.3, 50.3, 50.2, 35.0, 29.4, 28.1, 21.2; HRMS (ESI): Calcd. for C₁₄H₁₇N₂O₃ [M+H]⁺: 261.1234; found: 261.1231.

(29) 5,6,8a,9,10,11a-hexahydro-8H-furo[3,2-c][1,4]oxazino[2,3,4-ij]quinoline (D₂₉)

Yellow oil liquid (19.1 mg, 44 %); ¹H NMR (500 MHz, CDCl₃) δ 6.95 (dd, J = 6.7, 2.3 Hz, 1H), 6.72 – 6.66 (m, 2H), 4.61 (d, J = 5.0 Hz, 1H), 4.39 – 4.29 (m, 2H), 4.00 – 3.94 (m, 1H), 3.85 – 3.78 (m, 1H), 3.24 – 3.14 (m, 2H), 2.95 (dd, J = 10.6, 4.9 Hz, 1H), 2.65 (t, J = 12.5 Hz, 1H), 2.59 – 2.54 (m, 1H), 2.30 – 2.18 (m, 1H), 1.82 – 1.75 (m, 1H); ¹³C

NMR (126 MHz, CDCl₃) δ 133.2, 127.8, 123.1, 122.5, 118.9, 115.4, 75.2, 65.4, 64.8, 50.7, 48.0, 35.7, 30.1; HRMS (ESI): Calcd. for C₁₅H₁₆NO₂ [M+H]⁺: 218.1176; found: 218.1175.

(30) 5,6,8a,9,10,11a-hexahydro-8H-furo[3,2-c][1,4]thiazino[2,3,4-ij]quinoline (D₃₀)

Yellow solid (25 mg, 53 %); m.p.: 38-40 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.08 (dd, J = 7.5, 1.6 Hz, 1H), 6.95 (dd, J = 7.6, 1.6 Hz, 1H), 6.64 (t, J = 7.6 Hz, 1H), 4.55 (d, J = 5.0 Hz, 1H), 3.99 – 3.90 (m, 1H), 3.85 – 3.76 (m, 1H), 3.56 – 3.44 (m, 2H), 3.34

- 3.26 (m, 1H), 3.00 - 2.93 (m, 2H), 2.81 (t, *J* = 12.5 Hz, 1H), 2.51 - 2.42 (m, 1H), 2.28 - 2.18 (m, 1H), 1.79 - 1.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 128.2, 127.0, 121.9, 118.0, 117.8, 76.3, 65.2, 52.0, 50.8, 35.3, 30.0, 25.5; HRMS (ESI): Calcd. for C₁₃H₁₆NOS [M+H]⁺: 234.0947; found: 234.0945.

(31) 4,5,7a,8,9,10a-hexahydro-7H-furo[3,2-c]pyrrolo[3,2,1-ij]quinoline (D₃₁)³ CAS: 355394-0204

- 2.92 (m, 1H), 2.72 - 2.63 (m, 1H), 2.47 (t, *J* = 10.0 Hz, 1H), 2.31 - 2.23 (m, 1H), 1.96 - 1.87 (m, 1H), 1.84 - 1.76 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 152.8, 127.308, 123.9, 119.4, 113.9, 74.3, 66.0, 57.3, 55.3, 50.0, 38.0, 29.0.

(32) 4,5,6,7,9a,10,11,12a-octahydro-9H-azepino[3,2,1-ij]furo[3,2-c]quinoline (D₃₂)

Yellow oil (31 mg, 68 %); ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, J = 7.6, 1.6 Hz, ^NH 1H), 7.05 (dd, J = 7.3, 1.6 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 4.52 (d, J = 5.2 Hz, 1H), 4.02 - 3.91 (m, 1H), 3.85 - 3.77 (m, 1H), 3.26 - 3.15 (m, 1H), 3.00 (dd, J = 13.3, 4.5 Hz, 1H), 2.91 - 2.81 (m, 3H), 2.74 - 2.64 (m, 1H), 2.48 - 2.37 (m, 1H), 2.33 - 2.22 (m, 1H), 1.92 - 1.84 (m, 1H), 1.84 - 1.70 (m, 2H), 1.64 - 1.54 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 136.2, 129.3, 129.1, 126.0, 121.3, 76.1, 65.7, 55.9, 55.7, 34.9, 32.33, 30.7, 29.9, 25.8; HRMS (ESI): Calcd. for C₁₅H₂₀NO [M+H]⁺: 230.1539; found: 230.1538.

(33) 5,6,9b,11,12,12a-hexahydro-13H-benzo[6,7]azepino[3,2,1-ij]furo[3,2-c]quinoline (D₃₃)

Yellow oil (20 mg, 36 %); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (dd, J = 7.7, 1.6 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.10 – 7.07 (m, 1H), 7.05 – 7.02 (m, 1H), 6.94 – 6.88 (m, 2H), 4.63 (d, J = 6.0 Hz, 1H), 4.06 – 3.94 (m, 1H), 3.87 – 3.75 (m, 2H), 3.41 – 3.32 (m, 2H), 3.14 – 3.08 (m, 1H), 2.96 – 2.85 (m, 3H), 2.42 – 2.31 (m, 1H), 1.74 – 1.66 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 133.6, 132.4, 131.2, 129.9, 129.3, 129.1, 128.8, 126.7, 121.9, 121.5, 119.2, 116.7, 76.3, 65.8, 52.1, 35.6, 33.3, 33.3, 30.3; HRMS (ESI): Calcd. for C₁₉H₂₀N₂O [M+H]⁺: 278.1539; found: 278.1539.

(34) 8-methyl-5-(p-tolyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₃₄)

Gray solid (29.6 mg, 53 %); m.p.: 88-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 10.0Hz, 1H), 7.14 (d, J = 10.0 Hz, 2H), 7.09 – 7.05 (m, 2H), 6.84 (d, J = 5.0 Hz, 1H), 6.68 (d, J = 10.0 Hz, 1H), 4.62 (d, J = 5.0 Hz, 1H), 4.02 – 3.95 (m, 1H), 3.85 – 3.78 (m, 1H), 3.47 (dd, J = 11.8, 5.0 Hz, 1H), 3.17 (t, J = 12.5 Hz, 1H), 2.58 – 2.51 (m, 1H), 2.33 (s, 3H), 2.25 (s, 3H), 2.21 (d, J = 8.4 Hz, 1H), 1.80 – 1.70 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.1, 142.7, 133.2, 131.5, 130.0, 129.2, 128.2, 124.1, 123.0, 115.7, 75.8,

65.5, 51.5, 36.3, 29.9, 20.9, 20.4; HRMS (ESI): Calcd. for C₁₉H₂₂NO [M+H]⁺: 280.1696; found: 280.1693.

(35) 5-(p-tolyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₃₅)

Yellow oil (24 mg, 45 %); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 8.1 Hz, 2H), 7.12 – 7.02 (m, 2H), 7.02 – 6.92 (m, 1H), 6.87 (d, J = 8.4Hz, 0.7H), 6.78 (t, J = 6.7 Hz, 1H), 6.72 (d, J = 8.3 Hz, 0.3H), 4.64 (dd, J = 10.9, 5.6 Hz, 1H), 4.02 – 3.95 (m, 1H), 3.86 – 3.79 (m, 1H), 3.57 – 3.52 (m, 0.7H), 3.46 (dd, J = 11.8, 5.1 Hz, 0.3H), 3.20 (q, J = 11.9 Hz, 1H), 2.60 – 2.51 (m, 1H), 2.35 (s, 1H), 2.32 – 2.27 (m, 1H), 2.26 (s, 2H), 1.81 – 1.69 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 142.1, 131.5, 130.1, 129.3, 128.4, 124.8, 123.6, 123.1, 116.2, 75.7, 65.6, 51.2, 36.4, 29.9, 20.4; HRMS (ESI): Calcd. for C₁₈H₂₀NO [M+H]⁺: 266.1539; found: 266.1537.

(36) 5-(2-nitrophenyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₃₆)

Yellow oil (12.5 mg, 21 %); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 5.0 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.30 (d, *J* = 5.0 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.87 (t, *J* = 7.5 Hz, 1H), 6.48 (s, 1H), 4.68 (d, *J* = 5.5 Hz, 1H), 4.04 – 3.97 (m, 1H), 3.90 – 3.81 (m, 1H), 3.40 (s, 1H), 3.24 (t, *J* = 12.5 Hz, 1H), 2.68 (s,

1H), 2.32 – 2.22 (m, 1H), 1.79 – 1.72 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.2, 143.3, 140.8, 137.2, 133.8, 131.5, 128.9, 128.7, 125.6, 125.2, 120.2, 112.1, 75.4, 65.5, 51.5, 35.9, 29.6; HRMS (ESI): Calcd. for C₁₇H₁₇N₂O₃ [M+H]⁺: 297.1234; found: 297.1231.

(37) 5-ethyl-2,3,3a,4,5,9b-hexahydrothieno[3,2-c]quinoline (D₃₇)

Yellow oil (18.9 mg, 43 %); ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.04 (m, 2H), 6.72 – 6.53 (m, 2H), 4.61 (d, J = 5.0 Hz, 1H), 3.50 – 3.42 (m, 1H), 3.33 – 3.22 (m, 2H), 3.00 – 2.94 (m, 3H), 2.68 – 2.61 (m, 1H), 2.24 – 2.18 (m, 1H), 2.11 – 2.05 (m, 1H), 1.15 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 130.8, 128.0, 122.6, 116.2, 111.4, 49.0, 48.0, 45.4, 39.8, 34.2, 30.0, 10.7; HRMS (ESI): Calcd. for C₁₃H₁₈NS [M+H]⁺: 220.1154;

found: 220.1153.

(38) 6-ethyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano[3,2-c]quinoline (D₃₈)

Yellow oil (16.5 mg, 38 %); ¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.18 (m, 1H), 7.15 – 7.09 (m, 1H), 6.63 – 6.59 (m, 2H), 4.40 (d, J = 5.0 Hz, 1H), 3.99 – 3.91 (m, 1H), 3.70 – 3.62 (m, 1H), 3.57 (t, J = 11.1 Hz, 1H), 3.48 – 3.40 (m, 1H), 3.31 – 3.20 (m, 1H), 2.96 (dd, J = 11.1, 4.0 Hz, 1H), 2.12 – 2.07 (m, 1H), 1.93 – 1.85 (m, 1H), 1.81 – 1.71 (m, 2H), 1.50 – 1.41 (m, 1H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 131.0, 129.3, 121.3, 115.7, 110.9, 74.3, 67.2, 48.2, 45.3, 32.15, 25.5, 22.6, 10.9; HRMS (ESI): Calcd. for C₁₄H₂₀NO [M+H]⁺: 218.1539; found: 218.1538. HRMS (ESI): Calcd. for C₁₄H₂₀NO [M+H]⁺: 218.1539; found: 218.1538.

(39) 8-(4-(tert-butyl)phenyl)-5-methyl-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₃₉).

t-Bu

Brown liquid (41.7 mg, 65 %); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 5.0 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.43 – 7.40 (m, 2H), 6.75 – 6.70 (m, 1H), 5.43 (dd, *J* = 4.7, 1.4 Hz, 1H), 3.92 – 3.80 (m, 2H), 3.06 – 3.01 (m, 0.5H), 2.93 (s,

1H), 2.89 (s, 3H), 2.86 – 2.80 (m, 0.5H), 1.98 – 1.91 (m, 1H), 1.87 – 1.79 (m, 2H), 1.35 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 138.3, 129.8, 127.8, 126.0, 126.0, 125.6, 125.5, 113.3, 100.0, 67.0, 52.6, 39.4, 36.0, 34.4, 32.3, 31.4, 23.4; HRMS (ESI): Calcd. for C₂₂H₂₈NO [M+H]⁺: 322.2165; found: 322.2162.

(40) 2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline (D₄₀).

Brown liquid (22.8 mg, 65 %); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, J = 5.0 Hz, 1H), 7.06 – 7.09 (m, 1H), 7.72 – 7.76 (m, 1H), 6.59 – 6.61 (m, 1H), 4.58 (d, J = 5.0Hz, 1H), 3.95 – 3.97 (m, 1H), 3.82 – 3.83 (m, 1H), 3.15 – 3.17 (m, 1H), 2.86 (t, J = 10.0 Hz, 1H), 2.28 – 2.50 (m, 2H), 1.73 – 1.80 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.4, 131.4, 128.8, 120.6, 118.2, 114.8, 75.4, 65.3, 43.2, 36.1, 29.8; HRMS (ESI): Calcd. for C₁₁H₁₄NO [M+H]⁺: 176.1162; found: 176.0921.

5. NMR spectra of the obtained compounds

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₄

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₅

¹H-NMR (500 MHz, CDCl₃) spectrum of D₆

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₆

¹H-NMR (500 MHz, CDCl₃) spectrum of D₇

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₇

Ph

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₈

¹H-NMR (500 MHz, CDCl₃) spectrum of D₉

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₉

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₀

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₀

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₁

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₂

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₂

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₃

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₃

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₄

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₅

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₅

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₆

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₆

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₇

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₈

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₈

¹H-NMR (500 MHz, CDCl₃) spectrum of D₁₉

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of D₁₉

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₁₉

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₀

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₁

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₁

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₂

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of D₂₂

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₂

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₃

	 137.28 127.87 125.82 119.86 	 	65.05	51.44	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₃

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₄

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₅

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₅

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₆

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₆

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₇

142.55	$\begin{pmatrix} 131.42\\ 131.28\\ -124.91\\ -122.85 \end{pmatrix}$	108.80	75.49	 51.04	- 35.43	27.43	- 21.72		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₇

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₈

¹H-NMR (500 MHz, CDCl₃) spectrum of D₂₉

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₂₉

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₀

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₀

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₁

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₁

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₂

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₃

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₃

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₄

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₄

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₅

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₅

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₆

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₆

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₇

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₇

¹H-NMR (500 MHz, CDCl₃) spectrum of D₃₈

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₈

¹³C-NMR (126 MHz, CDCl₃) spectrum of D₃₉

¹³C-NMR (101 MHz, CDCl₃) spectrum of D₄₀

6. References

1. Zhao H.; Wu Y.; Ci C. G.; Tan Z. D.; Yang J.; Jiang H. F.; Dixneuf P. H.; Zhang M. Intermolecular Diastereoselective Annulation of Azaarenes into Fused N-heterocycles by Ru(II) Reductive Catalysis. *Nat. Commun.*, DOI:10.1038/s41467-022-29985-z.

2. Kisan Kawade R.; Huple D. B.; Lin R. J.; Liu R. S. Cu-catalyzed oxidative Povarov reactions between N-alkyl N-methylanilines and saturated oxa- and thiacycles. *Chem. Commun.*, **2015**, *51*, 6625.

3. Subba Reddy B. V.; Grewal H. Iodine-catalyzed formation of aza-dienes: a novel synthesis of angularly fused hexahydropyrano- and furo[3,2-c]quinoline derivatives. *Tetrahedron Letters*, **2011**, *52*, 761–763.

4. Huo C. D.; Chen F. J.; Quan Z. J.; Dong J.; Wang Y. J. Cobalt-catalyzed aerobic oxidative Povarov reaction of tertiary anilines with dihydrofuran for the synthesis of hexahydrofuroquinolines. *Tetrahedron Letters*, **2016**, *57*, 5127–5131.