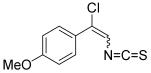
Synthesis of N-vinyl isothiocyanates and carbamates by the cleavage of NH-1,2,3-triazoles with one-carbon electrophiles

Vladimir Motornov* and Petr Beier*

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.

Table of contents

General	1
General procedure 1 for the synthesis of vinyl isothiocyanates from NH-triazoles and thiophosgene	2
Synthesis of 1,2-dichloroethyl isothiocyanate 5	4
General procedure 2 for the synthesis of N-(chlorovinyl) compounds from NH-triazoles, triphosgene nucleophiles	
Synthesis of functionalized β -enamido triflates 8	8
Half-gram scale one-pot three component synthesis of N-vinylurea 6d	9
References	9
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	10

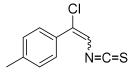

General

All solvents were dried by activated molecular sieves (3 and 4 Å) and stored under nitrogen. All commercially available chemicals were used as received, unless stated otherwise. Starting NH-1,2,3-triazoles were prepared according to procedures published in literature.¹⁻⁴ Flash column chromatography was performed using silica gel 60 (0.040–0.063 mm). ¹H, ¹³C and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H, ¹³C NMR) or residual solvents (CDCl₃, 7.26 ppm for ¹H, 77.0 ppm for ¹³C NMR) and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (*J*) are reported in Hertz. High resolution MS spectra (HRMS) were recorded on Agilent 7250 GC/Q-TOF using electron impact (EI) or chemical (CI) ionizations or on an LTQ Orbitrap XL using electrospray (ESI) or atmospheric pressure chemical (APCI) ionizations.

General procedure 1 for the synthesis of vinyl isothiocyanates from NH-triazoles and thiophosgene

To the suspension of NH-1,2,3-triazole **1** (0.2 mmol) in dry DCE (6 ml) in a 10 ml vial thiophosgene (1.5 equiv., 0.3 mmol, 23 μ l) was added. The vial was sealed, and the resulting mixture was heated at 70 °C for 12-24 hours. After the reaction was complete (NMR monitoring), it was evaporated under reduced pressure and purified by silica gel column chromatography (cyclohexane or cyclohexane/EtOAc) to afford vinyl isothiocyanates **4**.

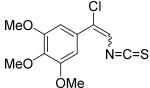
1-(1-chloro-2-isothiocyanatovinyl)-4-methoxybenzene (4a)



Vinyl isothiocyanate **4a** was obtained from NH-triazole **1** (35 mg, 0.2 mmol) and thiophosgene according to general procedure 1. Column chromatography (cyclohexane/EtOAc, 19:1) afforded product **4a** (29 mg, 65%, *E/Z* = 2.5:1) as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.63 (m, 2H, Ar), 6.98-

6.93 (m, 2H, Ar), 6.45 (s, 1H, CH-NCS), 3.85 (s, 3H, OMe); 13 C NMR (101 MHz, CDCl₃) δ 160.7, 135.6 (br s, NCS), 135.2, 129.7, 125.9, 113.8, 111.7 (<u>CH</u>-NCS), 55.4 (OMe); *Z*-isomer: 1 H NMR (400 MHz, CDCl₃) δ 7.49-7.46 (m, 2H, Ar), 6.91-6.89 (m, 2H, Ar), 6.46 (s, 1H, CH-NCS), 3.83 (s, 3H, OMe); 13 C NMR (101 MHz, CDCl₃) δ 161.0, 137.1 (br s, NCS), 135.2, 127.7, 126.6, 114.1, 111.1 (<u>CH</u>-NCS), 55.4 (OMe); HRMS (Cl⁺) *m/z* calcd for C₁₀H₉CINOS [M+H]⁺: 226.0088, found 226.0087.

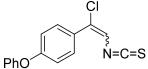
For 1 mmol scale synthesis, vinyl isothiocyanate **4a** was obtained from NH-triazole **1** (175 mg, 1 mmol) and thiophosgene according to general procedure 1 (reaction time 24 hours). Column chromatography (cyclohexane/EtOAc, 19:1) afforded product **4a** (160 mg, 71%, E/Z = 2.5:1) as a yellow oil.


1-(1-chloro-2-isothiocyanatovinyl)-4-methylbenzene (4b)

Vinyl isothiocyanate **4b** was obtained from NH-triazole **1** (31.8 mg, 0.2 mmol) and thiophosgene (2 equiv.) according to general procedure 1. Column chromatography (cyclohexane) afforded product **4b** (22 mg, 53%, *E/Z* = 1.7:1) as a pale-yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H, Ar), 7.26-

7.24 (m, 2H, Ar), 6.49 (s, 1H, CH-NCS), 2.40 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 135.8 (br s, NCS), 135.4, 130.7, 129.1, 128.0, 112.6 (<u>CH</u>-NCS), 21.4 (Me); *Z*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H, Ar), 7.20-7.18 (m, 2H, Ar), 6.52 (s, 1H, CH-NCS), 2.38 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 137.4 (br s, NCS), 135.6, 131.4, 129.4, 126.1, 112.1 (<u>CH</u>-NCS), 21.3 (Me); HRMS (CI⁺) *m/z* calcd for C₁₀H₉CINS [M+H]⁺: 210.0139, found 210.0136.

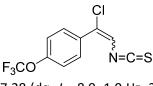
5-(1-chloro-2-isothiocyanatovinyl)-1,2,3-trimethoxybenzene (4c)



Vinyl isothiocyanate **4c** was obtained from NH-triazole **1** (47 mg, 0.2 mmol) and thiophosgene according to general procedure 1. Column chromatography (cyclohexane/EtOAc, 9:1) afforded product **4c** (31 mg of E-isomer and 14 mg of Z-isomer, total yield 79%, E/Z = 2.2:1) as a yellow solid. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 2H, Ar), 6.44 (s, 1H, CH-NCS), 3.90 (s, 6H, 2×OMe),

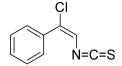
3.89 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 152.9, 139.5, 135.5, 135.0 (br s, NCS), 128.6, 112.5, 105.5 (CH_{Ar}), 60.9 (OMe), 56.2 (2×OMe); *Z*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 6.77 (s, 2H, Ar), 6.54 (s, 1H, CH-NCS), 3.88 (s, 6H, 2×OMe), 3.87 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 153.2, 139.8, 137.9 (br s, NCS),

135.1, 129.7, 112.6, 103.8 (CH_{Ar}), 60.9 (OMe), 56.3 (2×OMe); HRMS (ESI⁺) m/z calcd for C₁₂H₁₃ClNO₃S [M+H]⁺: 286.0299, found 286.0295.


1-(1-chloro-2-isothiocyanatovinyl)-4-(phenyloxy)benzene (4d)

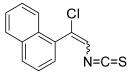
Vinyl isothiocyanate **4d** was obtained from NH-triazole **1** (50 mg, 0.21 mmol) and thiophosgene according to general procedure 1. Column chromatography (cyclohexane/EtOAc, 49:1) afforded product **4d** (37 mg, 61%, *E/Z* = 2.5:1) as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H, Ar), 7.42-

7.36 (m, 2H, Ph), 7.20-7.15 (m, 1H, Ph), 7.09-7.06 (m, 2H, Ph), 7.04-7.01 (m, 2H, Ar), 6.50 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 155.9, 136.2 (br s, NCS), 134.6, 130.0, 128.7, 127.8, 124.3, 119.9, 117.7, 112.5 (<u>CH</u>-NCS); *Z*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H, Ar), 7.42-7.36 (m, 2H, Ph), 7.20-7.15 (m, 1H, Ph), 7.08-7.06 (m, 2H, Ph), 6.99-6.96 (m, 2H, Ar), 6.49 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 156.0, 137.6 (br s, NCS), 134.8, 131.0, 129.9, 128.0, 124.2, 119.7, 118.2, 112.0 (<u>CH</u>-NCS); HRMS (ESI⁺) *m/z* calcd for C₁₅H₁₁NOCIS [M+H]⁺: 288.0244, found 288.0246.


1-(1-chloro-2-isothiocyanatovinyl)-4-(trifluoromethoxy)benzene (4e)

Vinyl isothiocyanate **4e** was obtained from NH-triazole **1** (46 mg, 0.2 mmol) and thiophosgene according to general procedure **1**. Column chromatography (cyclohexane) afforded product **4e** (28 mg, 50%, E/Z = 1:1.5)

F₃CO as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.72 (m, 2H, Ar), 7.28 (dq, *J* = 8.9, 1.0 Hz, 2H, Ar), 6.60 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 150.2 (q, *J* = 1.8 Hz), 137.3 (br s, NCS), 133.6, 132.8, 129.9, 129.8, 120.6, 120.4 (q, *J* = 258.2 Hz, CF₃), 114.4 (<u>CH</u>-NCS); *Z*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.56 (m, 2H, Ar), 7.24 (dq, *J* = 8.9, 1.0 Hz, 2H, Ar), 6.56 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 150.0 (q, *J* = 1.8 Hz), 138.5 (br s, NCS), 133.1, 132.1, 129.5, 127.8, 121.0, 120.3 (q, *J* = 258.2 Hz, CF₃), 113.8 (<u>CH</u>-NCS); HRMS (APCl⁺) m/z calcd for C₁₀H₅NOClF₃S [M]⁺: 278.9727, found 278.9729.


(E)-(1-chloro-2-isothiocyanatovinyl)benzene (4f)

Vinyl isothiocyanate **4f** was obtained from NH-triazole **1** (29 mg, 0.2 mmol) and thiophosgene according to general procedure 1. Column chromatography (cyclohexane) afforded product **4f** (8.5 mg, 22%, only E-isomer) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 2H, Ar), 7.41-7.38 (m, 3H, Ar), 6.56 (s, 1H, CH-

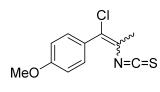
NCS); ¹³C NMR (101 MHz, CDCl₃) δ 137.8 (br s, NCS), 135.4, 134.2, 130.0, 128.8, 126.2, 113.0 (<u>CH</u>-NCS); HRMS (EI⁺) *m/z* calcd for C₉H₆CINS [M]⁺: 194.9904, found 194.9905.

1-(1-chloro-2-isothiocyanatovinyl)naphthalene (4g)

Vinyl isothiocyanate **4g** was obtained from NH-triazole **1** (39 mg, 0.2 mmol) and thiophosgene according to modified general procedure 1 (temperature 45°C, reaction time 24 hours). Column chromatography (cyclohexane) afforded product **4g** (20 mg, 41%, E/Z = 2.2:1) as a slightly yellow oil. ¹H NMR (400 MHz, CDCl₃) δ

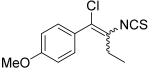
8.09-8.06 (m, 1H, CH_{Ar} *Z*-isomer), 7.97-7.88 (m, 9H, CH_{Ar}), 7.61-7.52 (m, 12H, Ar), 7.49-7.44 (m, 2H, CH_{Ar} *Z*-isomer), 6.65 (s, 1H, CH-NCS *E*-isomer), 6.37 (s, 1H, CH-NCS *Z*-isomer); ¹³C NMR (101 MHz, CDCl₃) δ 138.2 (br s, NCS, *Z*-isomer), 137.4 (br s, NCS, *E*-isomer), 134.7, 133.7, 133.63, 133.59, 132.5, 132.1, 131.6, 130.9, 130.6, 130.0, 129.6, 128.7, 128.6, 127.7, 127.6, 127.1, 126.52, 126.48, 125.1, 125.0, 124.9, 124.7, 117.2

(CH-NCS, *E*-isomer), 116.8 (CH-NCS, *Z*-isomer); HRMS (EI⁺) m/z calcd for C₁₃H₈CINS [M]⁺: 245.0060, found 245.0062.


2-(1-chloro-2-isothiocyanatovinyl)thiophene (4h)

Vinyl isothiocyanate 4h was obtained from NH-triazole 1 (30.2 mg, 0.2 mmol) and thiophosgene according to modified general procedure 1 (temperature 45°C, reaction time 24 hours). Column chromatography (cyclohexane) afforded product **4h** (19 mg, 48%, *E/Z* = 1.5:1) as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.30 (m, 2H), 7.03 (dd, *J* = 5.1, 3.8 Hz, 1H), 6.58 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 138.3-138.0 (br s, NCS), 137.4, 128.7,

127.9, 127.6, 127.1, 111.4 (CH-NCS); Z-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 3.9, 1.3 Hz, 1H), 7.47 (dd, J = 5.1, 1.3 Hz, 1H), 7.09 (dd, J = 5.1, 3.8 Hz, 1H), 6.44 (s, 1H, CH-NCS); ¹³C NMR (101 MHz, CDCl₃) δ 138.3-138.0 (br s, NCS), 135.9, 129.8, 128.8, 128.5, 126.9, 110.7 (CH-NCS); HRMS (EI⁺) m/z calcd for C₇H₄ClNS₂ [M]⁺: 200.9468, found 200.9468.


1-(1-chloro-2-isothiocyanatoprop-1-en-1-yl)-4-methoxybenzene (4i)

Vinyl isothiocyanate **4i** was obtained from NH-triazole **1** (19 mg, 0.1 mmol) and thiophosgene according to general procedure 1. Column chromatography (pentane/EtOAc, 19:1 to 9:1) afforded product 4i (11.5 mg of *E*-isomer and 7.5 mg of *Z*-isomer, total yield 19 mg, 79%, E/Z = 1.5:1) as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H, Ar), 6.93-

6.90 (m, 2H, Ar), 3.84 (s, 3H, OMe), 2.30 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 136.4 (br s, NCS), 130.7, 130.0, 128.1, 121.9, 113.6 (C(Me)-NCS), 55.3 (OMe), 21.1 (Me); Z-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25 (m, 2H, Ar), 6.91-6.89 (m, 2H, Ar), 3.83 (s, 3H, OMe), 2.38 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 137.0 (br s, NCS), 130.6, 130.5, 127.9, 123.0, 113.8 (C(Me)-NCS), 55.4 (OMe), 20.2 (Me); HRMS (EI⁺) m/z calcd for C₁₁H₁₀CINOS [M]⁺: 231.0166, found 231.0168.

1-(1-chloro-2-isothiocyanatobut-1-en-1-yl)-4-methoxybenzene (4j)

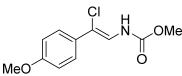
Vinyl isothiocyanate 4j was obtained from NH-triazole 1 (40.5 mg, 0.2 mmol) and thiophosgene according to general procedure 1. Column chromatography (cyclohexane/EtOAc, 29:1) afforded product 4j (19 mg, 37%, E/Z = 1:1.4) as a yellow oil. *E*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H, Ar), 6.93-

6.90 (m, 2H, Ar), 3.84 (s, 3H, OMe), 2.68 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 135.5 (br s, NCS), 130.4, 130.0, 128.2, 127.4, 113.6, 55.3 (OMe), 28.2, 11.1; *Z*-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.27 (m, 2H, Ar), 6.91-6.89 (m, 2H, Ar), 3.83 (s, 3H, OMe), 2.35 (q, J = 7.4 Hz, 2H), 1.16 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 136.6 (br s, NCS), 129.4, 130.2, 128.9, 128.0, 113.9, 55.3 (OMe), 27.0, 12.2; HRMS (ESI⁺) m/z calcd for C₁₂H₁₃CINOS [M+H]⁺: 254.0401, found 254.0397.

Synthesis of 1,2-dichloroethyl isothiocyanate 5

To the suspension of NH-1,2,3-triazole 1 (34.5 mg, 0.5 mmol) in dry DCE (7 ml) in a 10 ml vial thiophosgene (2 equiv., 1 mmol, 76.5 μl) was added. The vial was sealed, and the resulting mixture was heated at 70 °C for 16 hours. After the reaction was complete (NMR monitoring), it was subjected to silica gel column chromatography (pentane) without evaporation of the initial DCE solution to afford 1,2-dichloroethyl

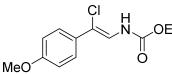
isothiocyanate **5** as yellow oil (44 mg, 57%). To avoid loss of product during evaporation, the solvent was removed at 300 Torr pressure.


¹H NMR (400 MHz, CDCl₃) δ 5.55 (dd, *J* = 6.8, 4.9 Hz, 1H), 3.83 (d, *J* = 4.9 Hz, 1H), 3.82 (d, *J* = 6.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (NCS), 67.5 (CH), 48.1 (CH₂); HRMS (EI⁺) *m/z* calcd for C₃H₃Cl₂NS [M]⁺: 154.9358, found 154.9360.

General procedure 2 for the synthesis of N-(chlorovinyl) compounds from NH-triazoles, triphosgene and nucleophiles

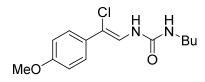
To the suspension of NH-triazole **1** (0.1 mmol) in dry DCE (0.5 ml) triphosgene (30 mg, 0.1 mmol, 1 equiv.) was added, and the resulting mixture was heated in a closed vial at 60°C for 30 min. Then excess of nucleophile (exact amount is specified for each case) was added directly to the reaction mixture and it was stirred at r.t. for 1 hour, then evaporated under reduced pressure. Crude products **6** were purified by column chromatography (cyclohexane/EtOAc).

CAUTION: Triphosgene and phosgene are highly toxic. In the cases when stoichiometric amount of nucleophile (preparation of compounds **6d-6g**) was used, evaporation of the reaction mixture containing residual triphosgene and phosgene should be carried out under well-ventilated fume hood to avoid exposure.


Methyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamate (6a)

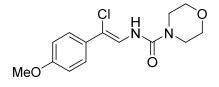
Compound **6a** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), triphosgene (1 equiv.) and methanol (1 ml). Yield 19.5 mg (81%), colorless oil; eluent: cyclohexane/EtOAc, 9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H, Ar), 7.22 (d, *J* = 10.9 Hz, 1H, =CH), 6.88-6.86 (m, 3H,

CH_{Ar} and NH), 3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 159.4 (<u>C</u>-OMe), 153.8 (<u>C</u>O₂Me), 128.3, 126.8, 126.7, 119.0 (=CH), 113.9, 55,3 (OMe), 53.0 (CO₂Me); HRMS (EI⁺) *m/z* calcd for C₁₁H₁₂ClNO₃ [M]⁺: 241.0500, found 241.0507.


Ethyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamate (6b)

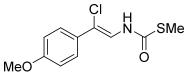
Compound **6b** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), OEt triphosgene (1 equiv.) and ethanol (1 ml). Yield 16.5 mg (65%), colorless oil; eluent: cyclohexane/EtOAc, 15:1. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H, Ar), 7.23 (d, *J* = 11.0 Hz, 1H, =CH), 6.89-6.85 (m, 3H, CH_{Ar} and

NH), 4.24 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H, OMe), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4 (<u>C</u>-OMe), 153.3 (<u>C</u>O₂Et), 128.3, 126.7, 125.6, 119.1 (=CH), 113.9, 62.0 (CH₂), 55.3 (OMe), 14.4 (CH₃); HRMS (ESI⁺) m/z calcd for C₁₂H₁₅CINO₃ [M+H]⁺: 256.0735, found 256.0731.


(Z)-1-butyl-3-(2-chloro-2-(4-methoxyphenyl)vinyl)urea (6c)

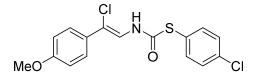
Compound **6c** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), triphosgene (1 equiv.) and butylamine (0.5 ml). Yield 22 mg (78%), slightly yellow oil; eluent: cyclohexane/EtOAc, 4:1 to 2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.6-7.4 (br s, 1H, NH), 7.44-7.42 (m, 3H, Ar and =CH), 6.86-

6.83 (m, 2H, Ar), 5.92 (br s, 1H, NH), 3.80 (s, 3H, OMe), 3.29 (t, J = 7.1 Hz, 2H), 1.57-1.50 (m, 2H, CH₂), 1.42-1.33 (m, 2H, CH₂), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9 (<u>C</u>-OMe), 154.7 (C=O), 129.0, 126.4, 119.9, 114.7, 113.8, 110.9, 55.3 (OMe), 40.2 (CH₂), 32.1 (CH₂), 20.0 (CH₂), 14.4 (CH₃); HRMS (APCl⁺) m/z calcd for C₁₄H₂₀ClN₂O₂ [M+H]⁺: 283.1208, found 283.1209.


(Z)-N-(2-chloro-2-(4-methoxyphenyl)vinyl)morpholine-4-carboxamide (6d)

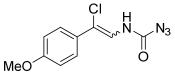
Compound **6d** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), triphosgene (1 equiv.) and morpholine (1 equiv.) by modified general procedure 2: Solution of NH-triazole and triphosgene in DCE (0.8 ml) was heated at 60°C for 30 min, then the mixture was evaporated to dryness. A solution of morpholine (9 μ l, 0.1 mmol, 1 equiv.) and

triethylamine (15 µl, 0.1 mmol, 1.1 equiv.) in DCE (1 ml) was added, and the resulting mixture was stirred for 1 h at r.t. Then it was evaporated under reduced pressure and crude product was purified by column chromatography (eluent: cyclohexane/EtOAc, 3:1 to 1:1). Yield 25 mg (86%), yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 10.4 Hz, 1H, =CH), 7.45-7.42 (m, 2H, Ar), 6.89-6.85 (m, 2H, Ar), 6.80 (br d, *J* = 10.4 Hz, 1H, NH), 3.81 (s, 3H, OMe), 3.76-3.73 (m, 2H, CH₂), 3.49-3.47 (m, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 159.2 (<u>C</u>-OMe), 153.1 (C=O), 128.5, 126.7, 119.7, 113.9, 112.8, 66.3 (CH₂), 55.3 (OMe), 44.1 (CH₂); HRMS (APCl⁺) *m/z* calcd for C₁₄H₁₈ClN₂O₃ [M+H]⁺: 297.1001, found 297.0996.


S-methyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamothioate (6e)

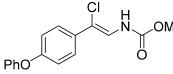
Compound **6e** was obtained from NH-triazole **1** (35 mg, 0.1 mmol), triphosgene (1 equiv.) and sodium methanethiolate (1.3 equiv.) by modified procedure: Solution of NH-triazole and triphosgene in DCE (1 ml) was heated at 60°C for 30 min, then the mixture was evaporated to

dryness. Crude product was redissolved in 1 ml of MeCN, and MeSNa (18 mg, 0.26 mmol, 1.3 equiv.) was added. The solution was stirred for 15 min at r.t., then evaporated under reduced pressure. Crude product was purified by column chromatography (eluent: cyclohexane/EtOAc, 4:1). Yield 30 mg (58%), pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 4H), 6.90-6.86 (m, 2H, Ar), 3.81 (s, 3H, OMe), 2.45 (s, 3H, SMe); ¹³C NMR (101 MHz, CDCl₃) δ 159.6 (<u>C</u>-OMe), 127.9, 126.9, 125.6, 117.5, 115.0, 113.9, 55.3 (OMe), 12.6 (SMe); HRMS (ESI⁻) *m/z* calcd for C₁₁H₁₁CINO₂S [M-H]⁻: 256.0205, found 256.0202.


S-(4-chlorophenyl) (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamothioate (6f)

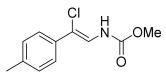
Compound **6f** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), triphosgene (1 equiv.) and 4-chlorothiophenol (1 equiv.) by modified procedure: Solution of NH-triazole and triphosgene in DCE (0.8 ml) was heated at 60°C for 30 min, then the mixture

was evaporated to dryness. A solution of 4-chlorothiophenol (14.4 mg, 0.1 mmol, 1 equiv.) and triethylamine (15 μ l, 0.1 mmol, 1.1 equiv.) in DCE (1 ml) was added, and the resulting mixture was stirred for 1 h at r.t. Then it was evaporated under reduced pressure and crude product was purified by column chromatography (eluent: cyclohexane/EtOAc 9:1 to 4:1). Yield 17.5 mg (49%), pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 2H, Ar), 7.46-7.40 (m, 5H, Ar and =CH), 7.34 (br d, *J* = 10.3 Hz, 1H, NH), 6.89-6.85 (m, 2H, Ar), 3.81 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (C=O), 159.8 (<u>C</u>-OMe), 136.8, 136.7, 129.9, 127.6, 127.0, 125.5, 117.1, 116.4, 114.0, 55.4 (OMe); HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₃Cl₂NO₂SNa [M+Na]⁺: 375.9936, found 375.9937.


(2-chloro-2-(4-methoxyphenyl)vinyl)carbamoyl azide (6g)

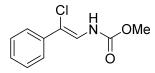
Compound **6g** was obtained from NH-triazole **1** (17.5 mg, 0.1 mmol), triphosgene (1 equiv.) and sodium azide (5 equiv.) according to modified general procedure 2: Solution of NH-triazole and triphosgene in DCE (0.8 ml) was heated at 60°C for 30 min, then the mixture was evaporated to

dryness. Yield 8 mg (32%), Z/E-mixture (9:1), yellow amorphous solid; eluent: cyclohexane/EtOAc, 9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H, Ar), 7.26 (d, J = 11 Hz, 1H, =CH), 7.13 (d, J = 11 Hz, 1H, NH), 6.90-6.87 (m, 2H, Ar), 3.82 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 159.8 (<u>C</u>-OMe), 153.8 (<u>C</u>O₂Me), 127.6, 127.0, 117.5, 116.9, 114.0, 53.4 (OMe); HRMS (APCl⁺) *m*/z calcd for C₁₀H₁₀ClN₂O₂ [M-N₂+H]⁺: 225.0425, found 225.0427.


Methyl (Z)-(2-chloro-2-(4-phenoxyphenyl)vinyl)carbamate (6h)

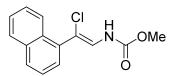
Compound **6i** was obtained from NH-triazole **1** (24.3 mg, 0.1 mmol), OMe triphosgene (1 equiv.) and methanol (1 ml). Yield 25.5 mg (84%), slightly yellow oil, which solidifies upon storage; eluent: cyclohexane/EtOAc, 9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.45 (m, 2H, Ar), 7.38-7.33 (m, 2H,

Ar), 7.27 (d, J = 10.5 Hz, 1H), 7.13 (ddt, J = 8.5, 7.1, 1.1 Hz, 1H), 7.04-7.01 (m, 2H), 6.99-6.96 (m, 2H), 6.90 (d, J = 10.5 Hz, 1H), 3.81 (s, 3H, CO₂Me); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 156.8, 153.7 (<u>C</u>O₂Me), 130.6, 129.8, 126.9, 123.6, 119.8, 119.1, 118.6, 113.4, 53.1 (CO₂Me); HRMS (ESI⁺) m/z calcd for C₁₆H₁₃ClNO₃ [M+H]⁺: 302.0589, found 302.0589.


Methyl (Z)-(2-chloro-2-(p-tolyl)vinyl)carbamate (6i)

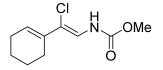
Compound **6i** was obtained from NH-triazole **1** (15.9 mg, 0.1 mmol), OMe triphosgene (1 equiv.) and methanol (1 ml) according to modified general procedure 2; reaction conditions 70°C, 30 min for the first step. Yield 16 mg (70%), colorless oil; eluent: cyclohexane/EtOAc, 9:1. ¹H NMR (400 MHz,

CDCl₃) δ 7.45-7.42 (m, 2H, Ar), 7.34 (d, *J* = 10 Hz, 1H, =CH), 7.19-7.17 (m, 2H, Ar), 6.96 (br d, *J* = 10 Hz, 1H, NH), 3.83 (s, 3H, OMe), 2.38 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (<u>C</u>O₂Me), 137.7, 132.8, 129.1, 125.2, 119.6 (=CH), 114.0, 53.0 (CO₂Me), 21.0 (Me); HRMS (ESI⁺) *m/z* calcd for C₁₁H₁₃CINO₂ [M+H]⁺: 226.0629, found 226.0626.

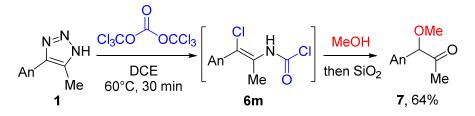

Methyl (Z)-(2-chloro-2-phenylvinyl)carbamate (6j)

Compound **6j** was obtained from NH-triazole **1** (29 mg, 0.2 mmol), triphosgene (1 equiv.) and methanol (1 ml) according to modified general procedure 2; reaction conditions 70°C, 20 h for the first step. Yield 26 mg (62%), colorless oil, which solidifies upon storage; eluent: cyclohexane/EtOAc, 9:1. ¹H NMR (400

MHz, CDCl₃) δ 7.53-7.51 (m, 2H, Ph), 7.39-7.32 (m, 3H, CH_{Ar} and NH), 7.30-7.25 (m, 1H, Ph), 6.95 (br d, *J* = 8.2 Hz, 1H, NH), 3.81 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (<u>C</u>0₂Me), 135.6, 128.5, 127.8, 125.3, 120.4 (=CH), 113.8, 53.1 (CO₂Me); HRMS (EI⁺) *m*/*z* calcd for C₁₀H₁₀ClNO₂ [M]⁺: 211.0395, found 211.0397.

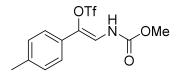

Methyl (Z)-(2-chloro-2-(naphthalen-1-yl)vinyl)carbamate (6k)

Compound **6k** was obtained from NH-triazole **1** (39 mg, 0.2 mmol), triphosgene (1 equiv.) and methanol (2 ml) according to modified general procedure 2; reaction conditions 70°C, 30 min for the first step. Yield 26.5 mg (51%), slightly brown oil, which solidifies upon storage; eluent:


cyclohexane/EtOAc, 14:1. ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.10 (m, 1H, Ar), 7.89-7.85 (m, 2H, Ar), 7.57-7.49 (m, 3H, Ar), 7.44 (dd, *J* = 8.1, 7.0 Hz, 1H), 7.13 (d, *J* = 10.4 Hz, 1H), 7.04 (d, *J* = 10.4 Hz, 1H), 3.82 (s, 3H, OMe); ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (<u>C</u>O₂Me), 134.0, 133.7, 131.7, 129.7, 128.4, 128.3, 126.5, 126.1, 125.3, 125.1, 123.6, 111.2, 53.1 (CO₂Me); HRMS (EI⁺) *m/z* calcd for C₁₄H₁₂CINO₂ [M]⁺: 261.0551, found 261.0551.

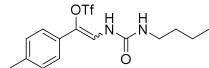
Methyl (Z)-(2-chloro-2-(cyclohex-1-en-1-yl)vinyl)carbamate (61)

Compound **6I** was obtained from NH-triazole **1** (29.8 mg, 0.2 mmol), triphosgene (1 equiv.) and methanol (1 ml). Yield 31.5 mg (73%), colorless oil; eluent: cyclohexane/EtOAc, 19:1 to 9:1. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, *J* = 11.2 Hz, 1H), 6.85 (d, *J* = 11.2 Hz, 1H), 6.12 (t, *J* = 4.0 Hz, 1H), 3.77 (s, 3H, CO₂Me),


2.21-2.15 (m, 2H), 1.72-1.66 (m, 2H), 1.61-1.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (<u>C</u>O₂Me), 130.8, 125.7, 117.8, 116.8, 52.9 (CO₂Me), 25.62, 25.60, 22.5, 22.1; HRMS (APCl⁺) *m/z* calcd for C₁₀H₁₅CINO₂ [M+H]⁺: 216.0786, found 216.0783.

Methoxyketone **7** (An = 4-methoxyphenyl) was obtained from NH-triazole **1** (19 mg, 0.1 mmol), triphosgene (1 equiv.) and MeOH (1 ml) according to general procedure 2. Yield 12.5 mg (64%), colorless oil. NMR matches previously reported data.⁵

Synthesis of functionalized β-enamido triflates 8


(Z)-2-((methoxycarbonyl)amino)-1-(p-tolyl)vinyl trifluoromethanesulfonate (8a)

To the suspension of NH-triazole 1 (31.8 mg, 0.2 mmol) in dry $CHCl_3$ (1.5 ml) sodium triflate (38 mg, 0.22 mmol, 1.1 equiv.) and triphosgene (59 mg, 0.2 mmol, 1 equiv.) were added. The vial was sealed and resulting mixture was heated at 50°C for 16 hours. After cooling to r.t. MeOH (0.5 ml) was added,

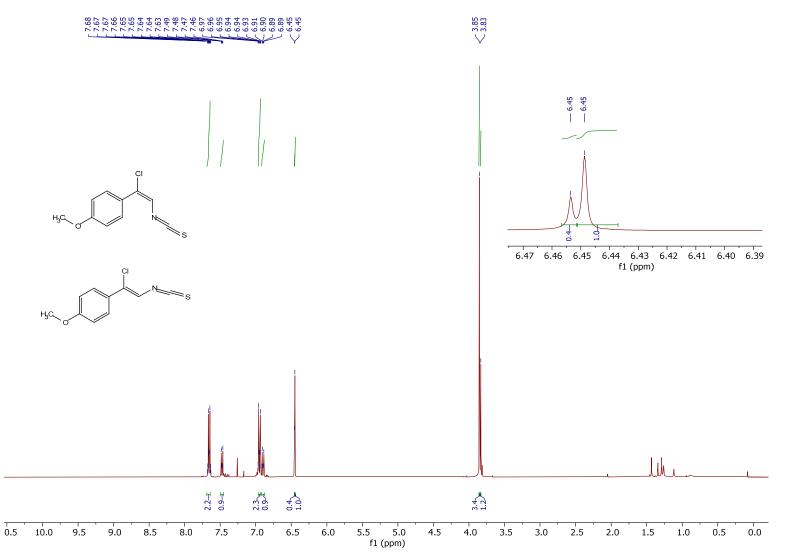
and the mixture was stirred for 10 min, then evaporated under reduced pressure. Crude product was purified by column chromatography (cyclohexane/EtOAc, 19:1 to 9:1) to give product **7a** (32 mg, 47%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.29 (m, 2H, Ar), 7.20-7.17 (m, 2H, Ar), 7.10 (d, *J* = 11.3 Hz, 1H), 6.88 (d, *J* = 11.3 Hz, 1H), 3.82 (s, 3H, CO₂Me), 2.36 (s, 3H, Me); ¹³C NMR (101 MHz, CDCl₃) δ 153.4 (CO₂Me), 139.1, 131.8, 129.5, 128.7, 124.6, 118.3 (q, *J* = 320.6 Hz), 116.3, 53.4 (CO₂Me), 21.2 (Me); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.2 (s, 3F); HRMS (APCl⁺) *m/z* calcd for C₁₂H₁₃NO₅F₃S [M+H]⁺: 340.0461, found 340.0465.

2-(3-butylureido)-1-(p-tolyl)vinyl trifluoromethanesulfonate (8b)

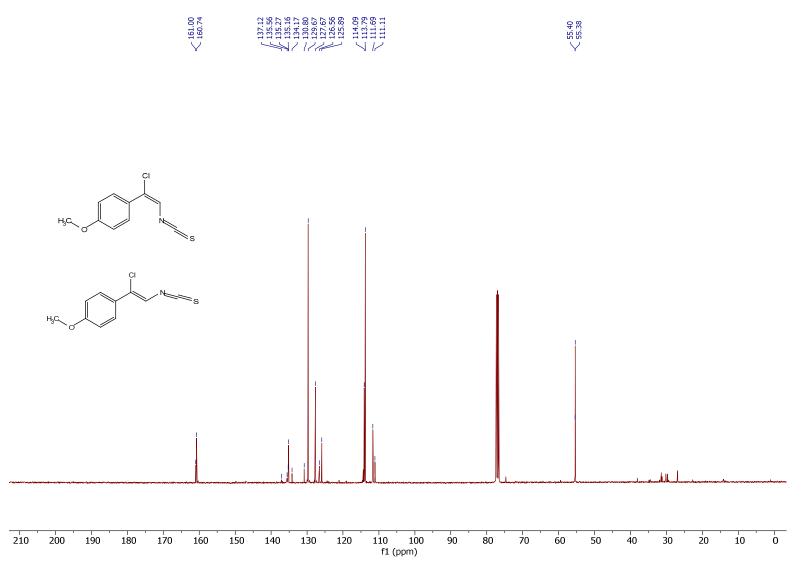
To the suspension of NH-triazole **1** (31.8 mg, 0.2 mmol) in dry CHCl₃ (2 ml) sodium triflate (38 mg, 0.22 mmol, 1.1 equiv.) and triphosgene (59 mg, 0.2 mmol, 1 equiv.) were added. The vial was sealed and resulting mixture was heated at 50°C for 16 hours. After cooling to

r.t. BuNH₂ (0.5 ml) was added, and the mixture was stirred for 10 min, then evaporated under reduced pressure. Crude product was purified by column chromatography (cyclohexane/EtOAc, 9:1 to 6:1) to give product **8b** (33.5 mg, 44%, *E/Z* = 1:1) as a colorless oil, which solidified upon storage. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 10.7 Hz, 1H), 7.51-7.46 (br, 1H, NH), 7.40 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 11.0 Hz, 1H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.3 Hz, 2H), 5.86 (br s, 1H, NH), 3.30-3.25 (m, 2×2H, N-CH₂), 2.35 (s, 3H, Me), 2.34 (s, 3H, Me), 1.57-1.50 (m, 2×2H), 1.42-1.35 (m, 2×2H), 0.96-0.92 (m, 2×3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7 (C=O), 154.0 (C=O), 133.4, 130.2, 129.9, 129.4, 129.1, 128.2, 124.9, 124.4, 119.9, 118.9 (q, *J* = 305.5 Hz, CF₃), 118.3 (q, *J* = 320.6 Hz, CF₃), 111.3, 40.4, 40.2, 32.0, 31.9, 21.2, 21.0, 20.0, 19.9, 13.7, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -74.1 (s, 3F); HRMS (APCI⁺) *m/z* calcd for C₁₅H₂₀N₂O₄F₃S [M+H]⁺: 381.1090, found 381.1087.

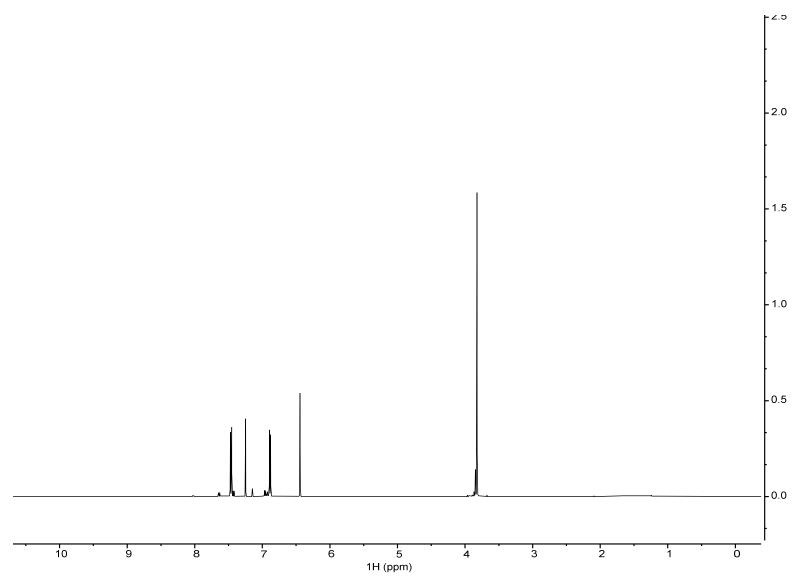
Half-gram scale one-pot three component synthesis of N-vinylurea 6d

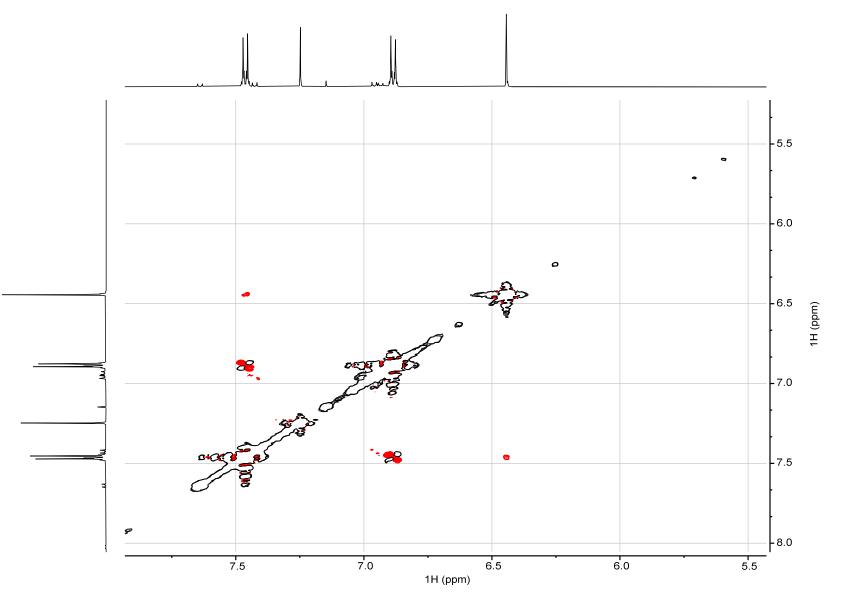

To the suspension of NH-triazole **1** (525 mg, 3 mmol) in DCE (10 ml) triphosgene (890 mg, 3 mmol) was added, and the resulting mixture was heated at 60 °C for 30 min in a closed vial. Then it was evaporated to dryness (1 mbar), then redissolved in DCE (10 ml). A solution of morpholine (0.28 ml, 3.3 mmol, 1.1 equiv.) and triethylamine (0.46 ml, 3.3 mmol, 1.1 equiv.) in DCE (5 ml) was added, and the mixture was stirred for 1 h at room temperature. Then it was evaporated under reduced pressure and crude product was purified by column chromatography (eluent: cyclohexane/EtOAc, 3:1 to 1:1). Yield 735 mg (83%), yellow solid.

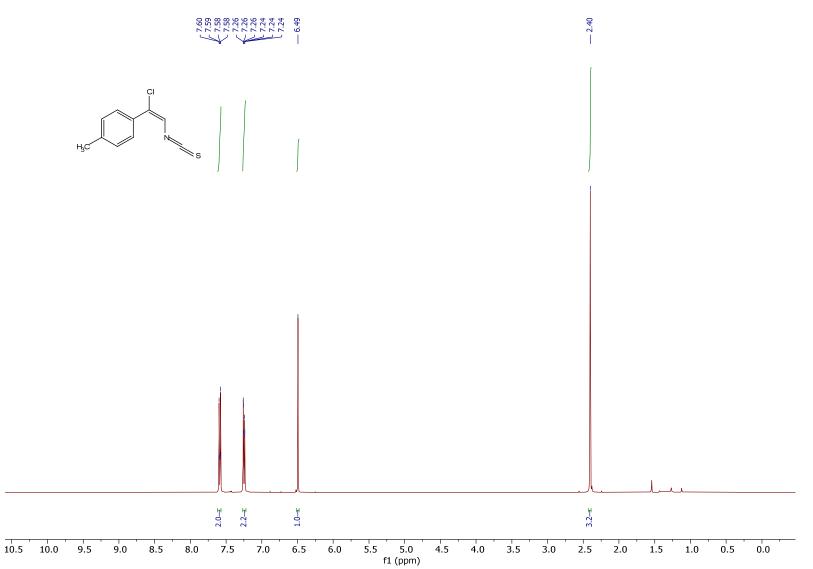
References

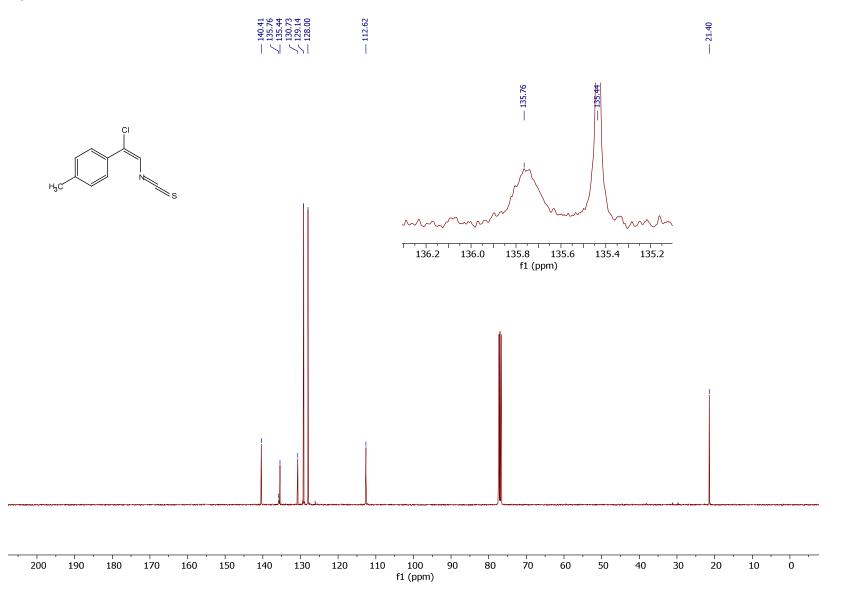

- 1. Hui, R.; Zhao, M.; Chen, M.; Ren, Z.; Guan, Z. Chin. J. Chem. 2017, 35, 1808.
- 2. Jin, T.; Kamijo, S.; Yamamoto, Y. *Eur. J. Org. Chem.* **2004**, 3789.
- 3. Patent WO2012/138877, **2012**, A1.
- 4. Van Rooden, E. J.; Kreekel, R.; Hansen, T.; Janssen, A. P. A.; van Esbroeck, A. C. M.; den Dulk, H.; van den Berg, R. J. B. H. N.; Codee, J. D. C.; van der Stelt, M. *Org. Biomol. Chem.*, **2018**, *16*, 5250.
- 5. M. N. Pennell, P. G. Turner, T. D. Sheppard, *Chem. Eur. J.*, **2012**, *18*, 4748.

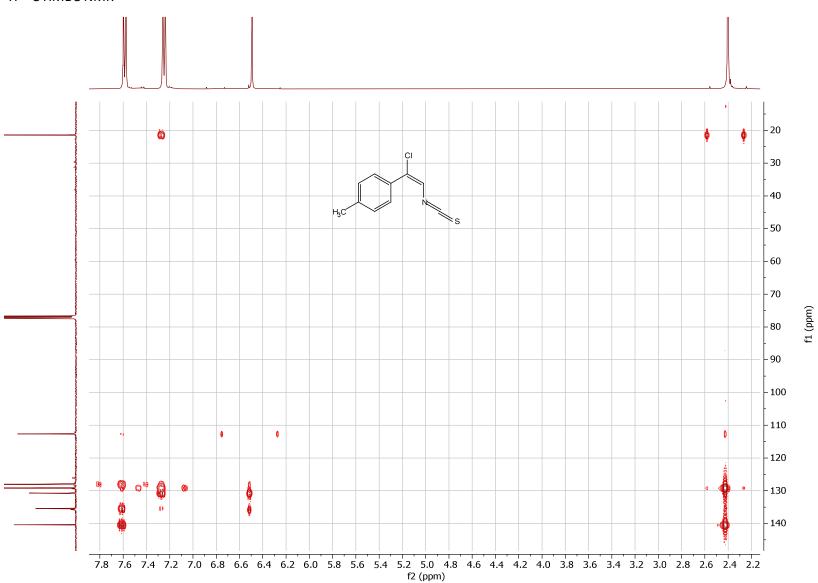
Copies of ¹H, ¹³C and ¹⁹F NMR spectra


1-(1-chloro-2-isothiocyanatovinyl)-4-methoxybenzene (4a)

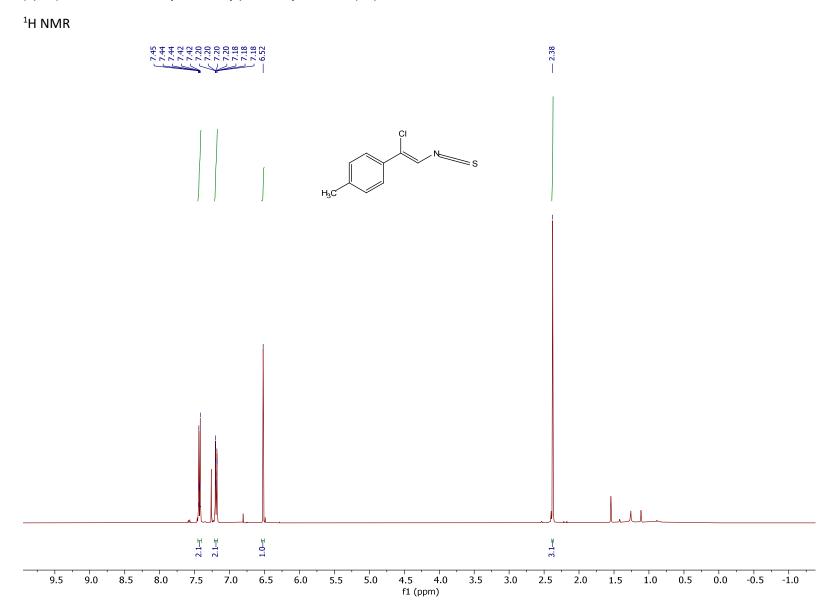

¹³C NMR

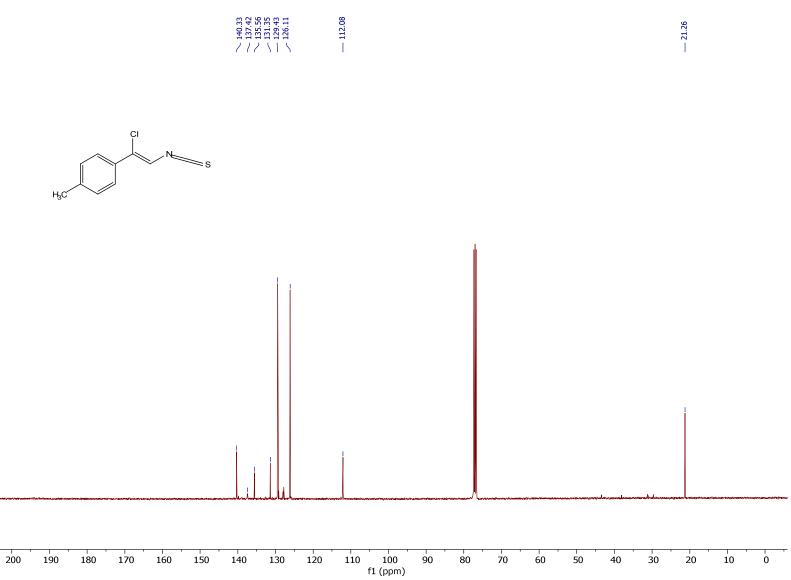

(Z)-1-(1-chloro-2-isothiocyanatovinyl)-4-methoxybenzene (**4a**) (minor isomer)


¹H-¹H ROESY NMR

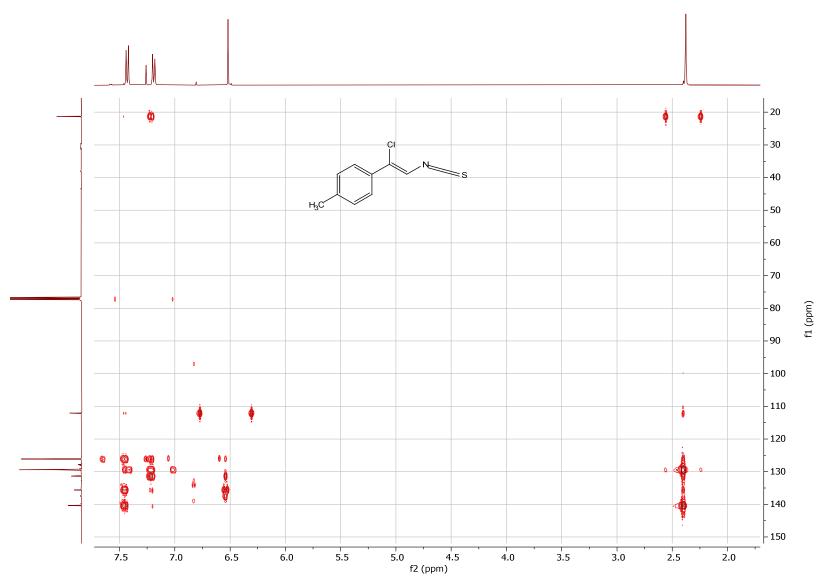


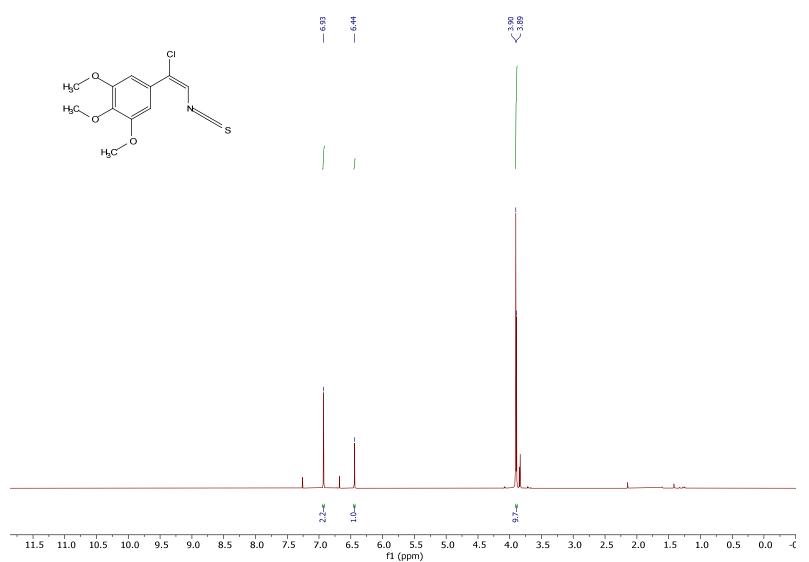
(E)-1-(1-chloro-2-isothiocyanatovinyl)-4-methylbenzene (4b)

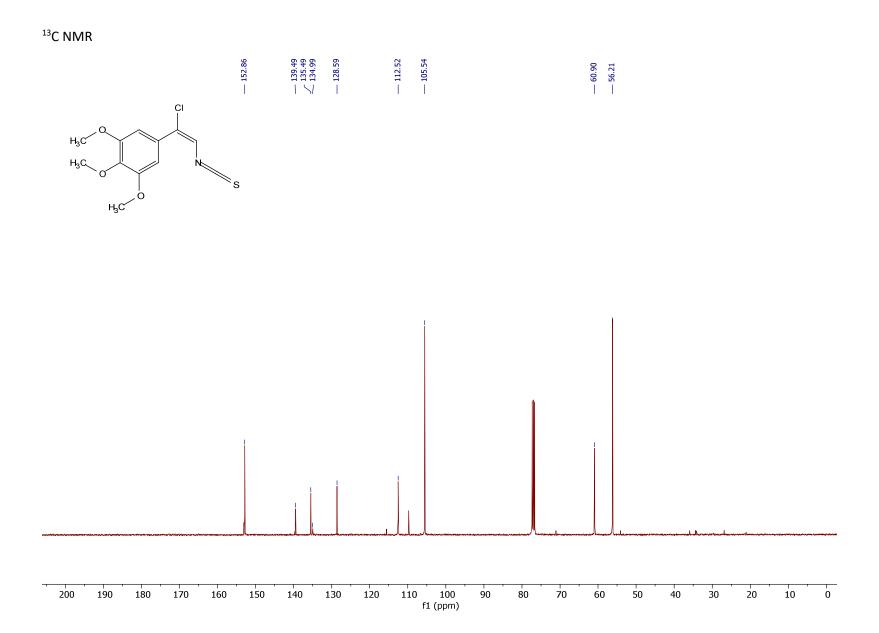

¹³C NMR



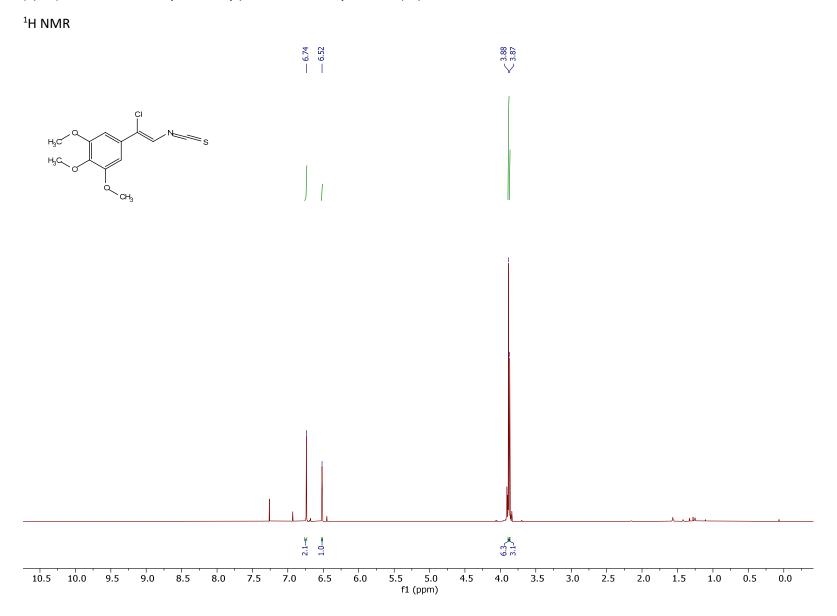
¹H-¹³C HMBC NMR


(Z)-1-(1-chloro-2-isothiocyanatovinyl)-4-methylbenzene (4b)

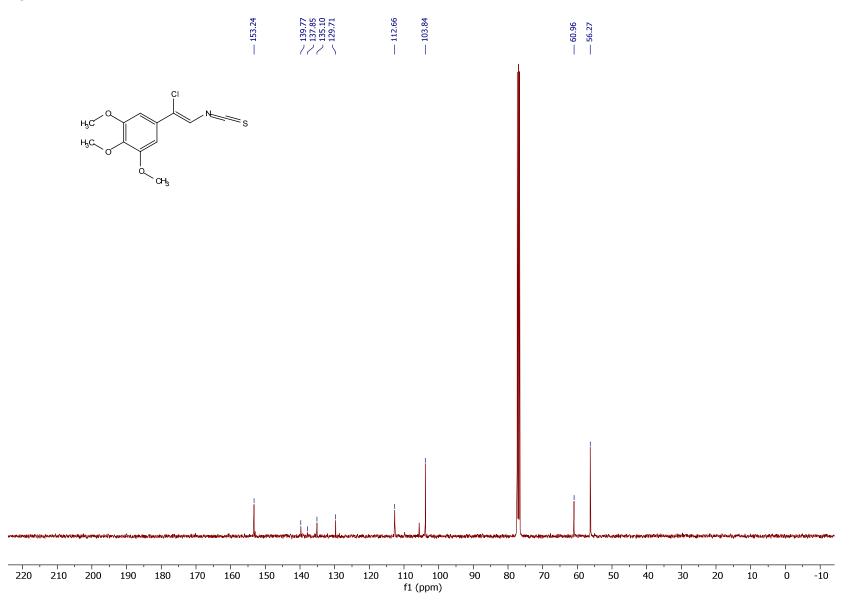

¹³C NMR

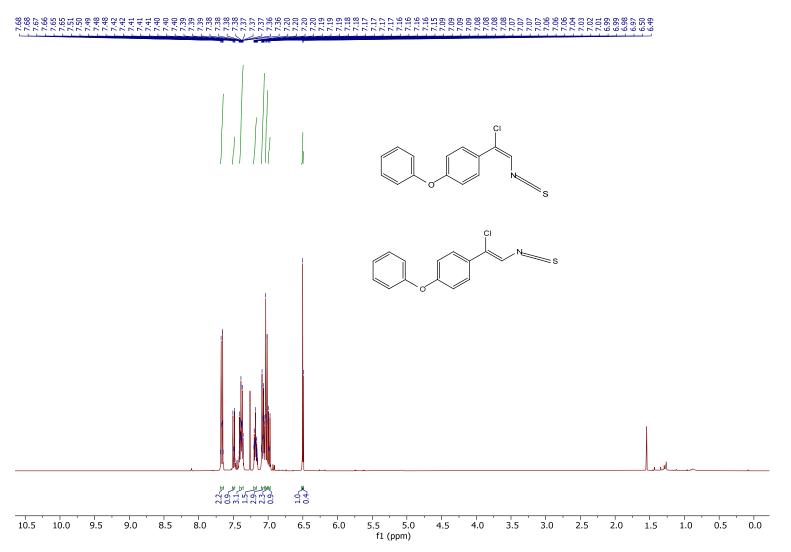


¹H-¹³C HMBC NMR

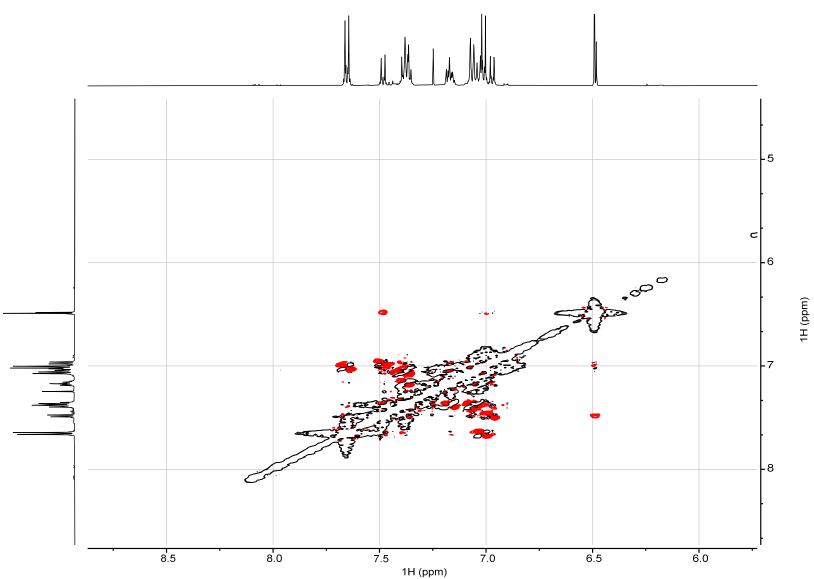


(E)-5-(1-chloro-2-isothiocyanatovinyl)-1,2,3-trimethoxybenzene (4c)

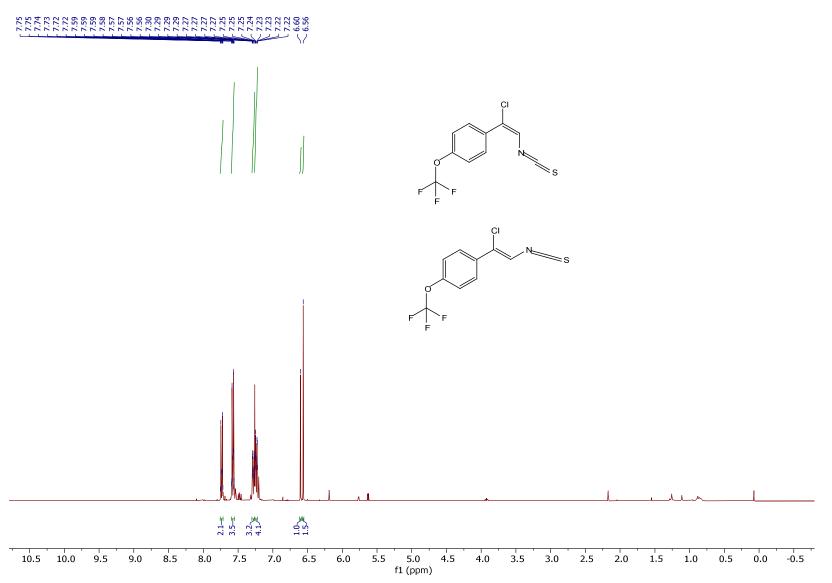



(Z)-5-(1-chloro-2-isothiocyanatovinyl)-1,2,3-trimethoxybenzene (4c)


¹³C NMR

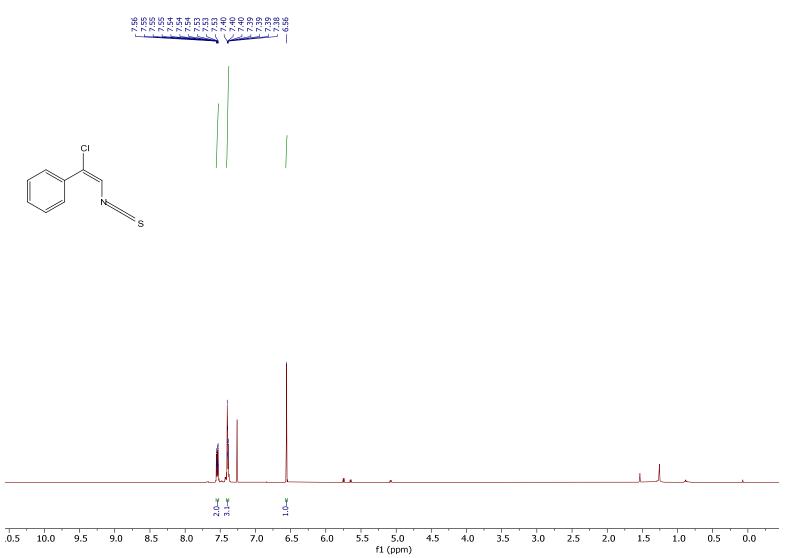


1-(1-chloro-2-isothiocyanatovinyl)-4-(phenyloxy)benzene (4d)



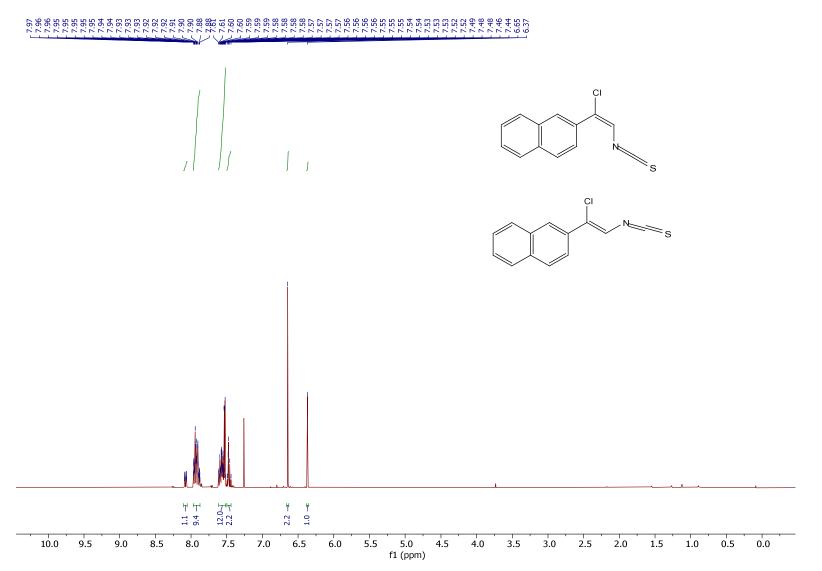
¹H-¹H ROESY NMR

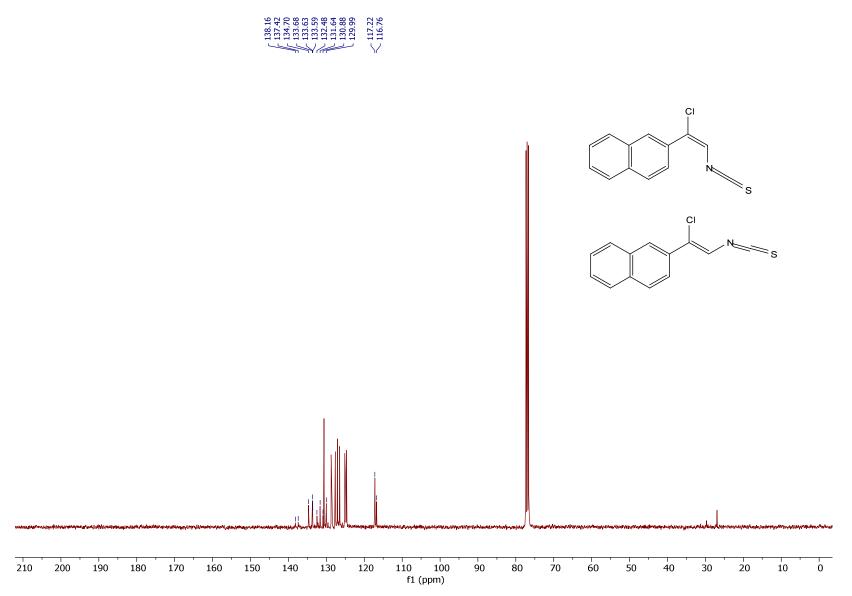
1-(1-chloro-2-isothiocyanatovinyl)-4-(trifluoromethoxy)benzene (4e)

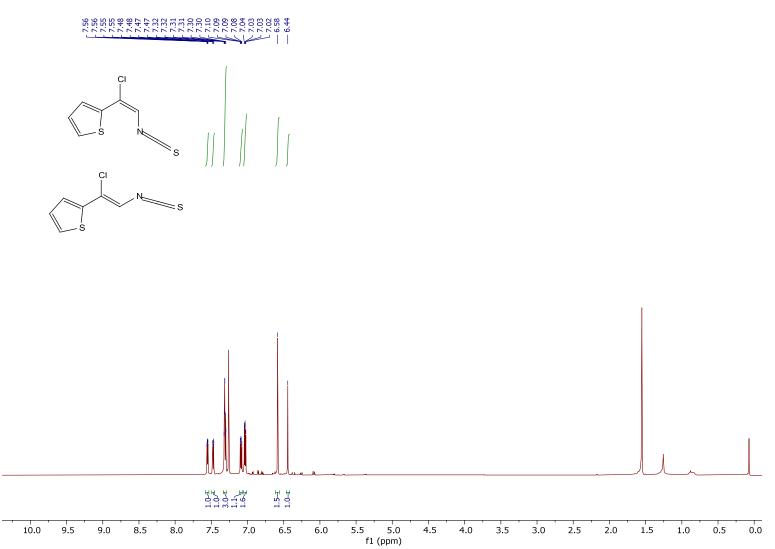


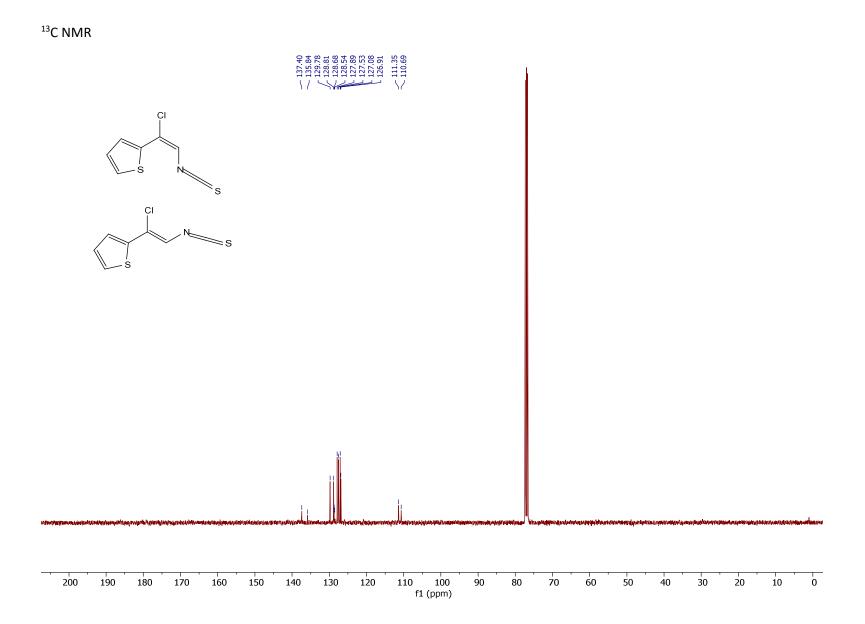


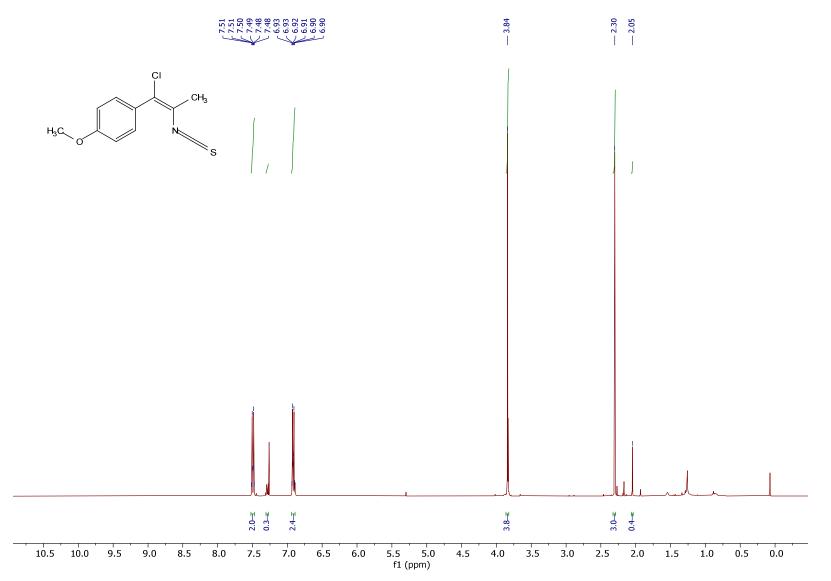
¹H-¹H ROESY NMR

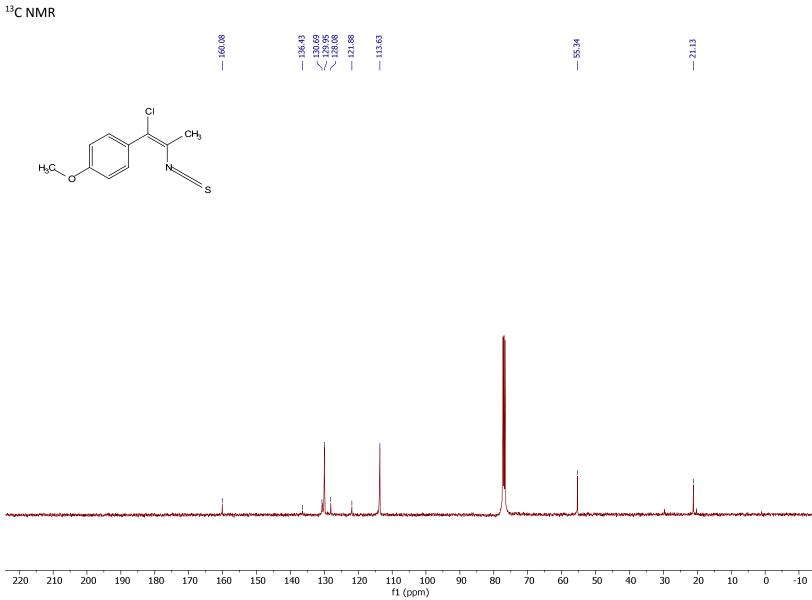

(1-chloro-2-isothiocyanatovinyl)benzene (4f)



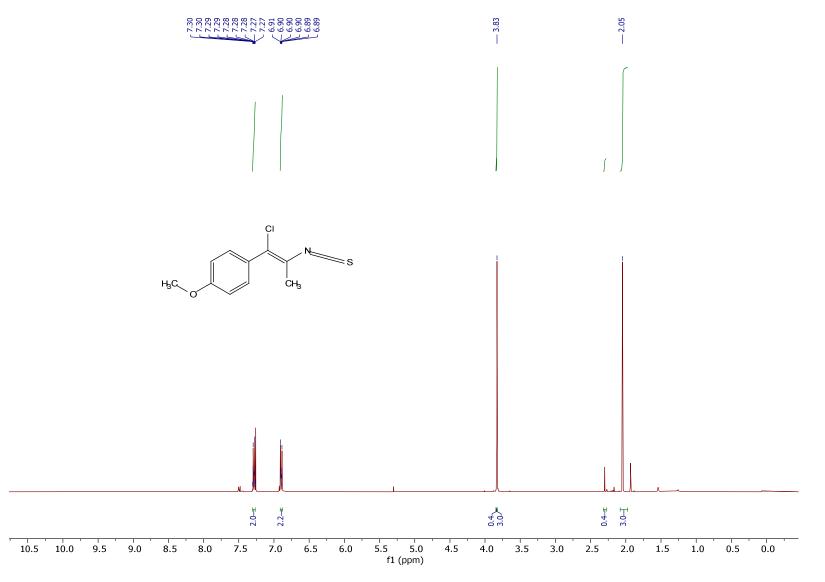

1-(1-chloro-2-isothiocyanatovinyl)naphthalene (4g)

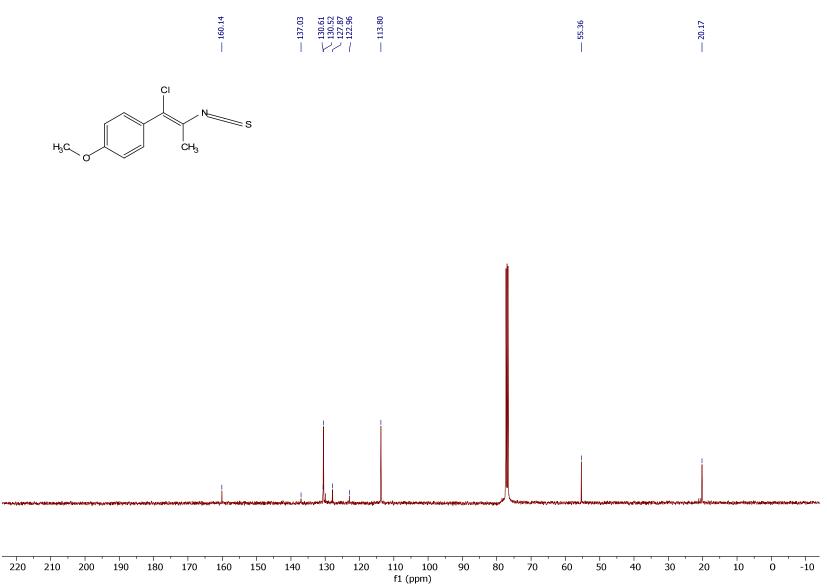


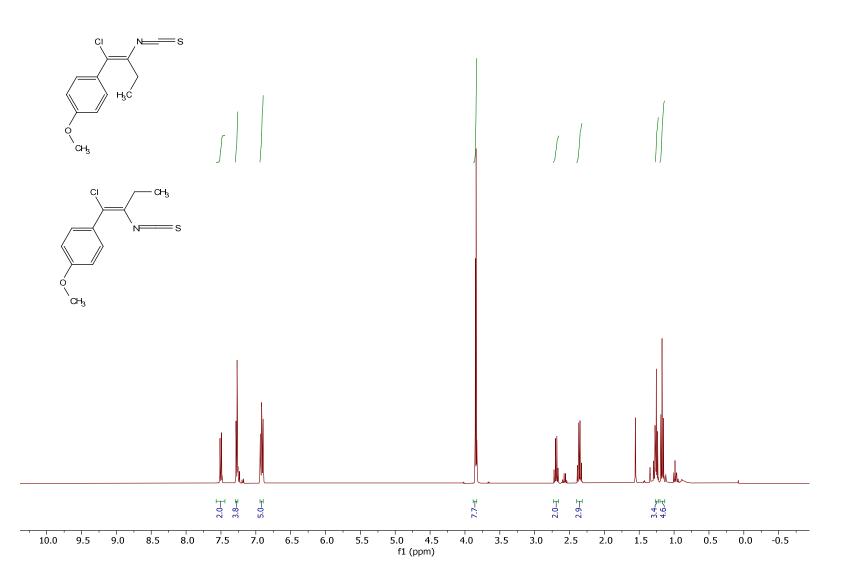

2-(1-chloro-2-isothiocyanatovinyl)thiophene (4h)

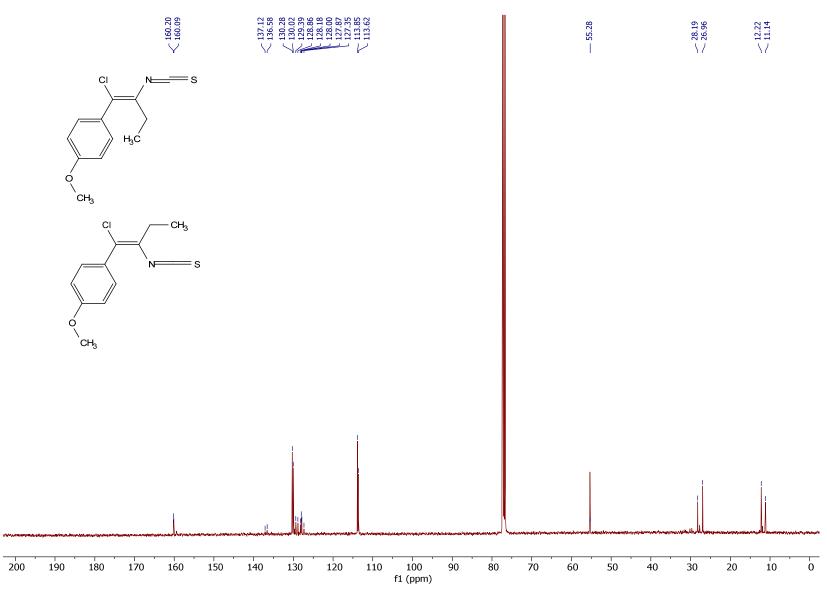


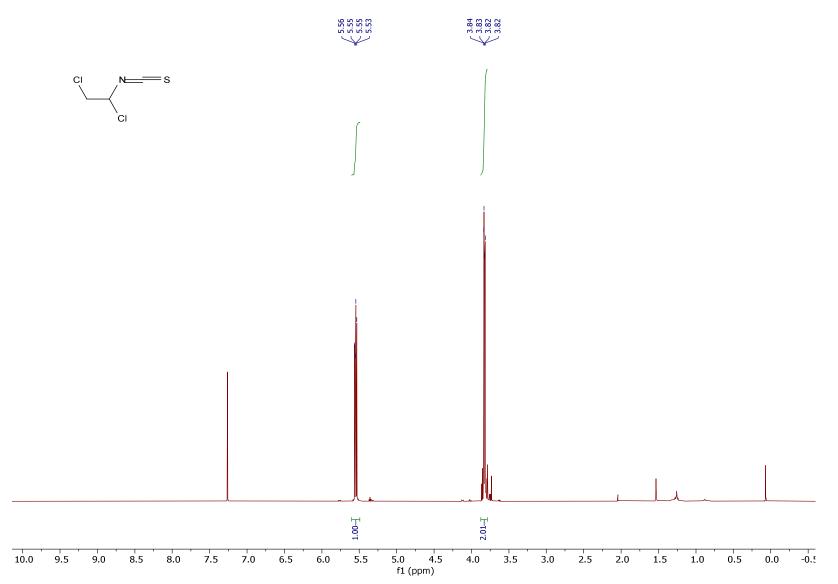
SI35

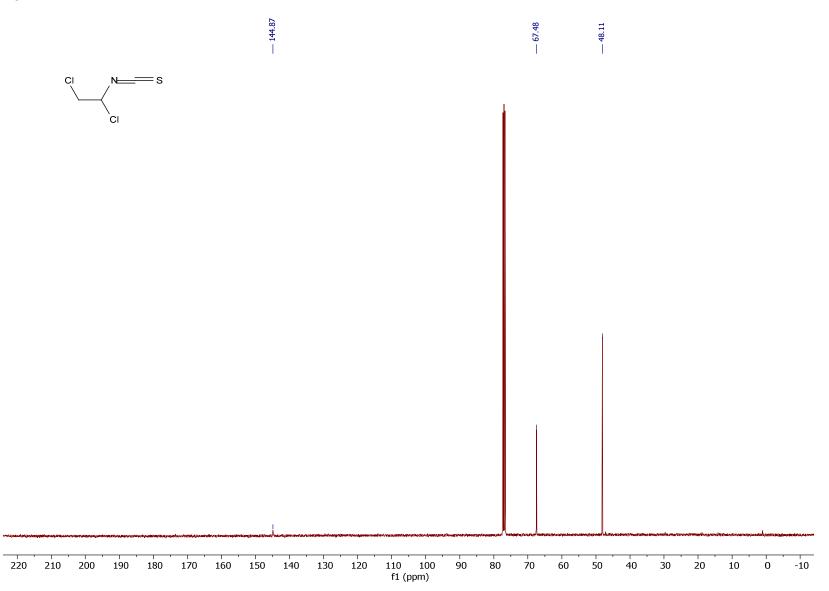

1-(1-chloro-2-isothiocyanatoprop-1-en-1-yl)-4-methoxybenzene (**4i**) (E/Z = 6:1)

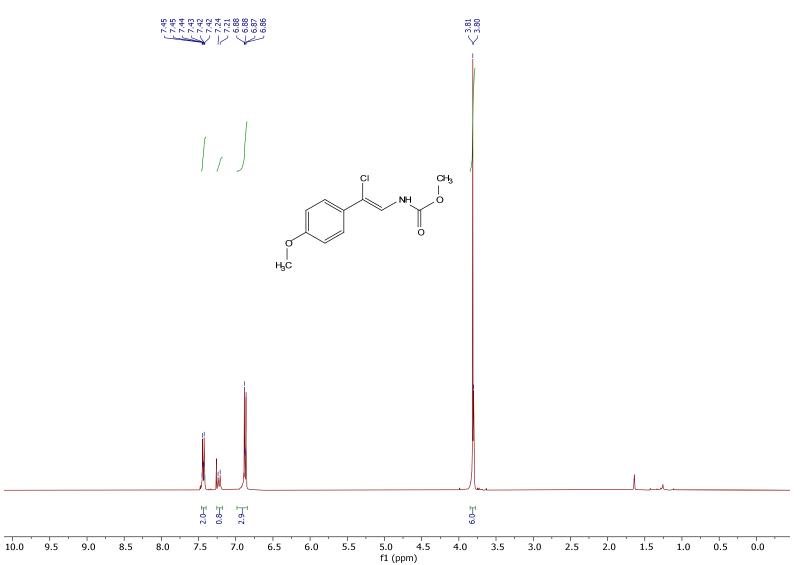


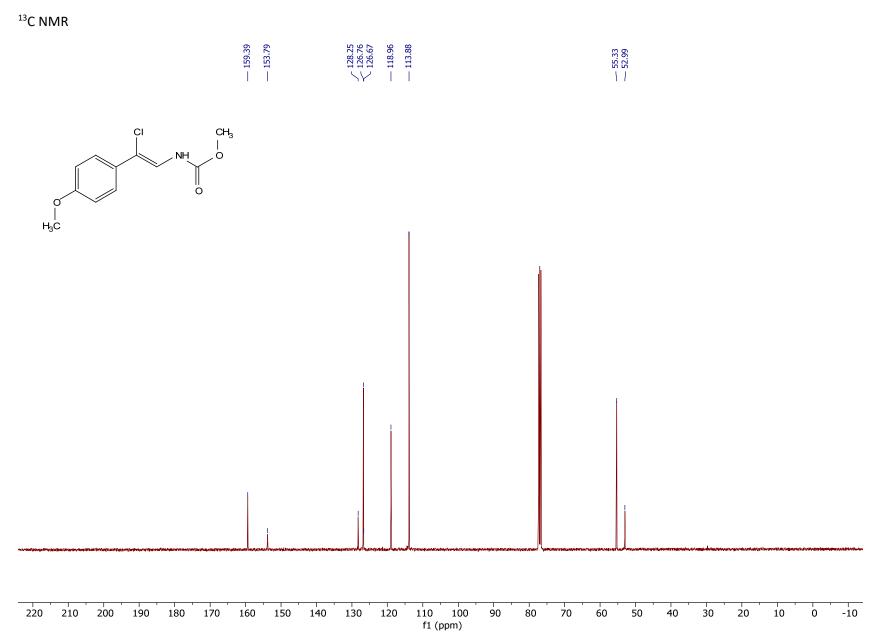

1-(1-chloro-2-isothiocyanatoprop-1-en-1-yl)-4-methoxybenzene (4i) (Z/E = 5:1)

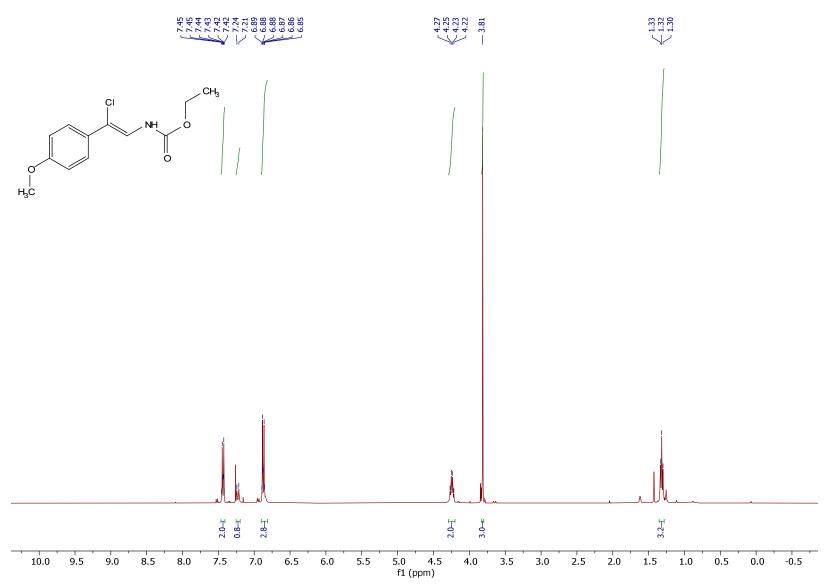


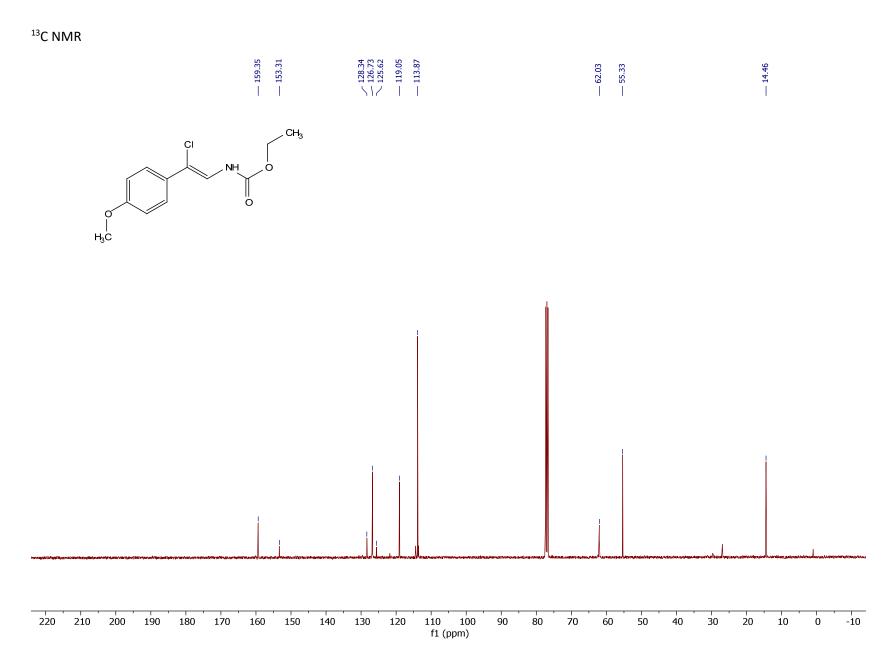

1-(1-chloro-2-isothiocyanatobut-1-en-1-yl)-4-methoxybenzene (4j)

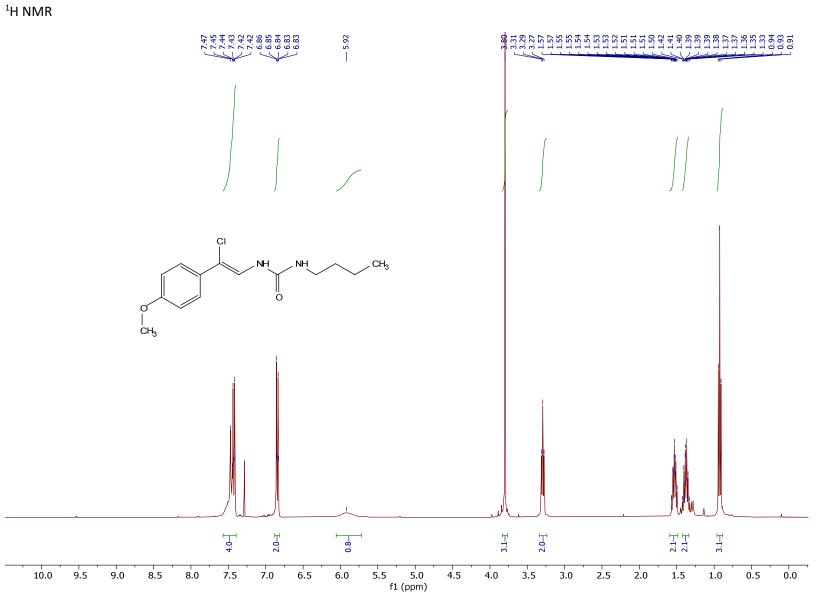



1,2-dichloro-1-isothiocyanatoethane (5)

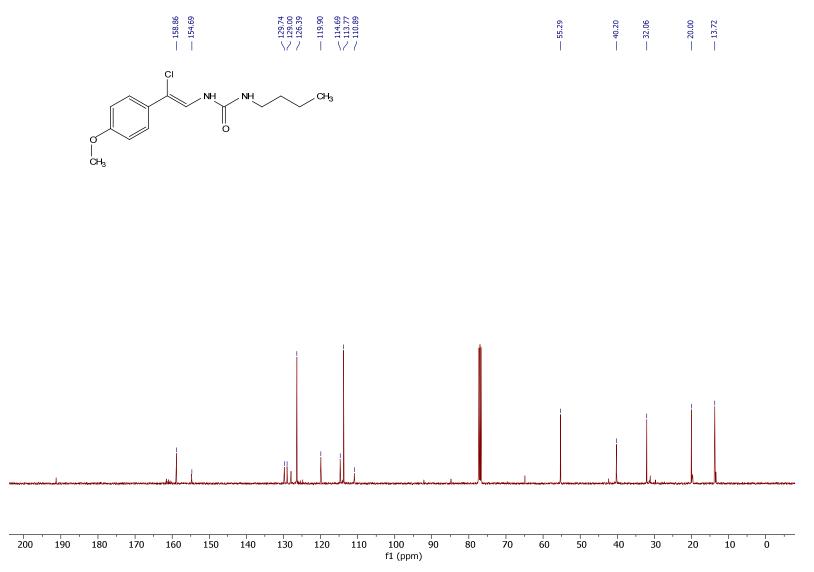


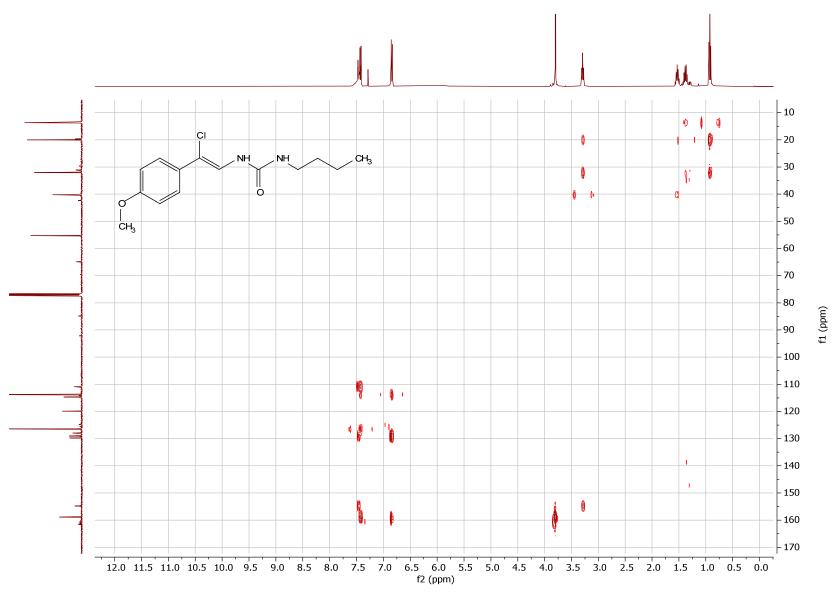



Methyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamate (6a)

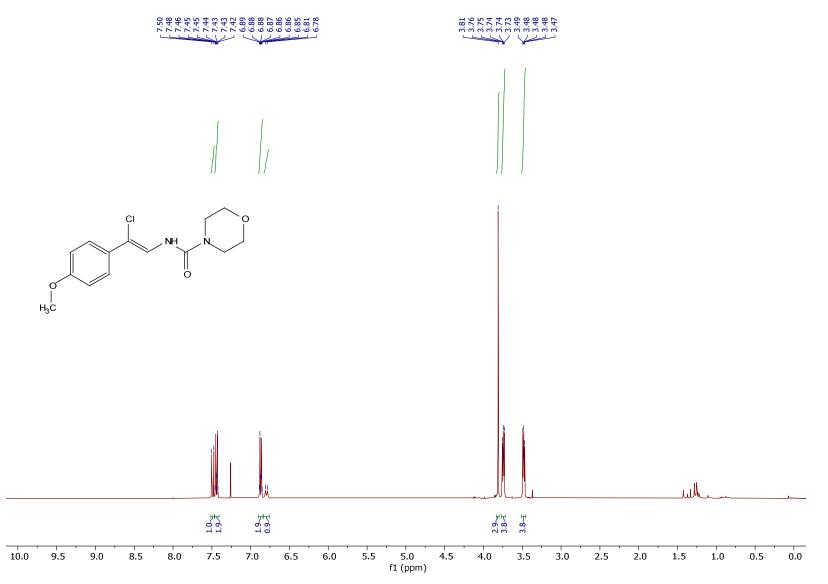


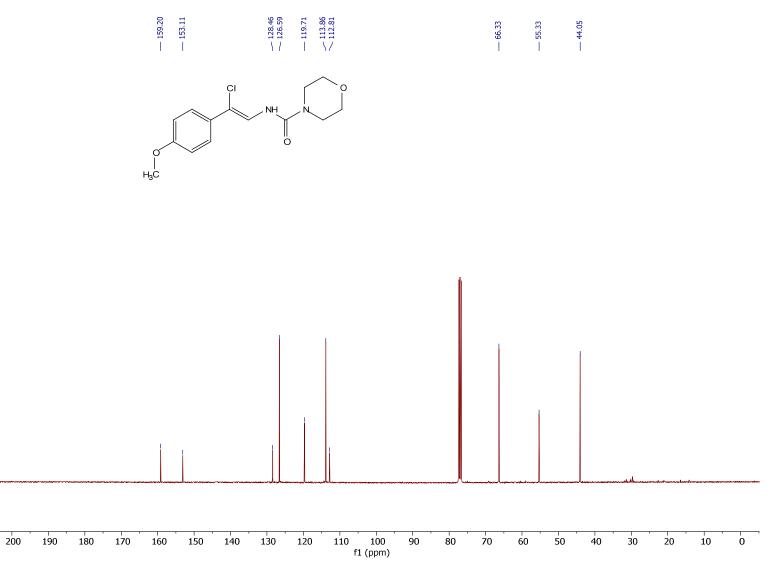
Ethyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamate (6b)

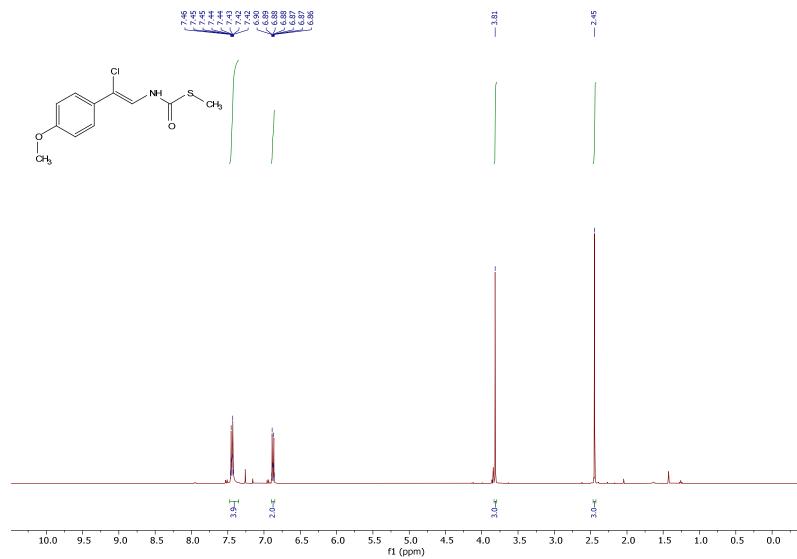


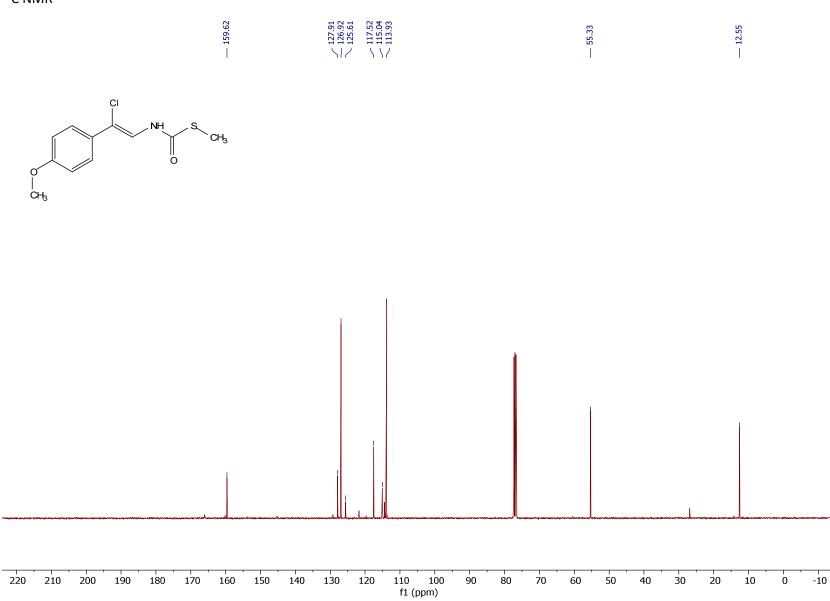


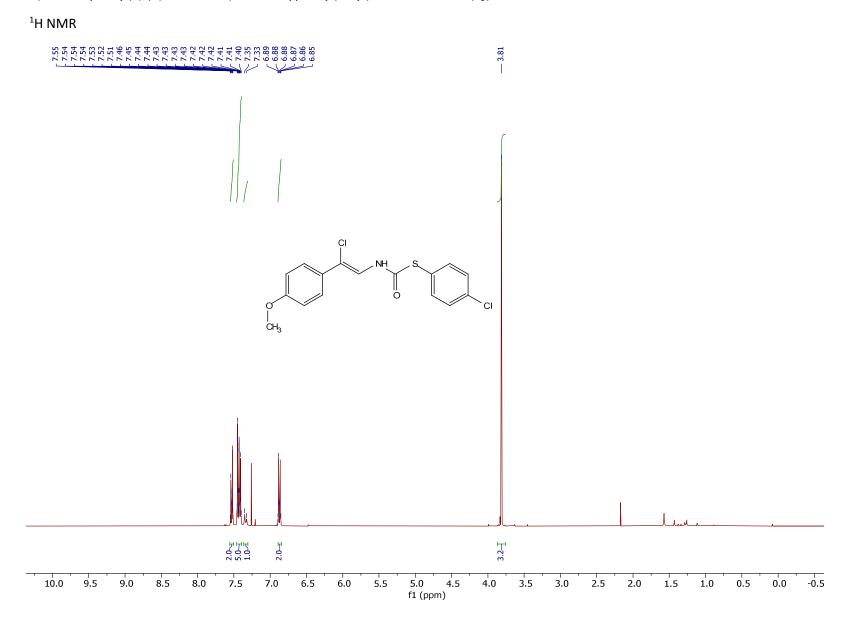
(Z)-1-butyl-3-(2-chloro-2-(4-methoxyphenyl)vinyl)urea (**6c**)

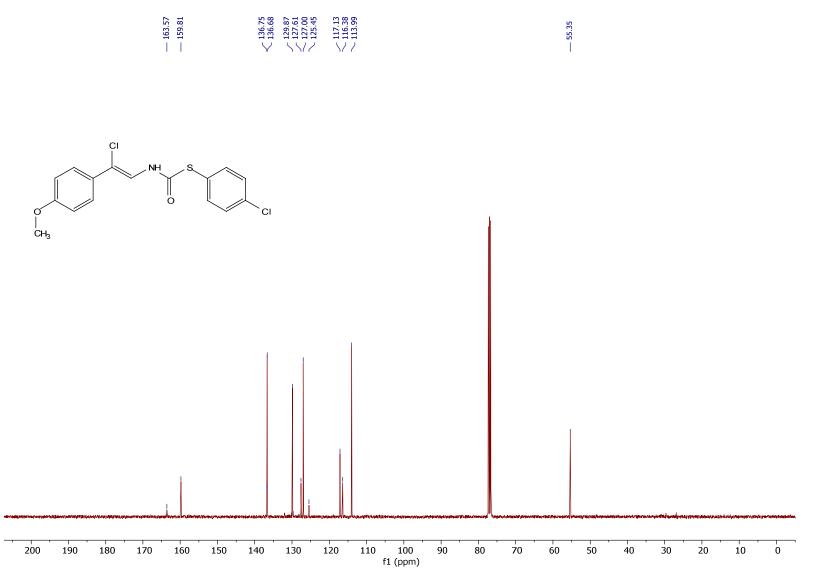




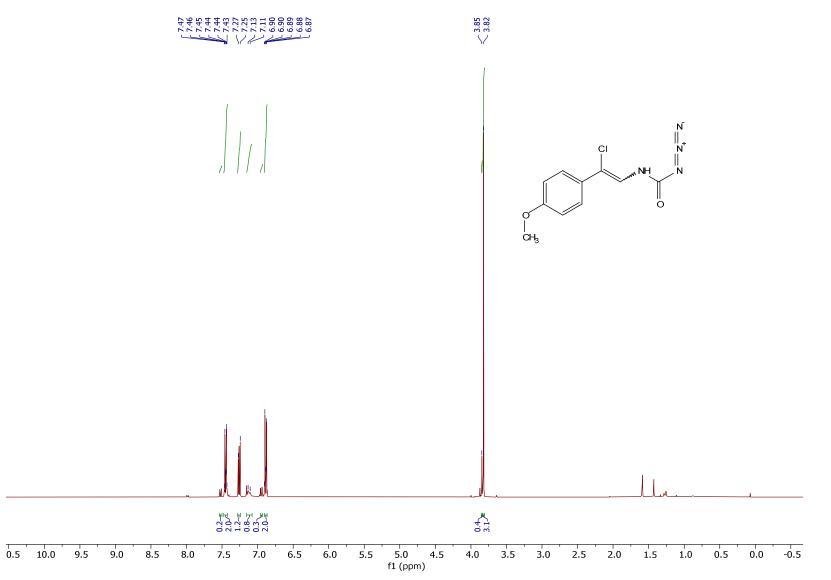

(Z)-N-(2-chloro-2-(4-methoxyphenyl)vinyl)morpholine-4-carboxamide (6d)

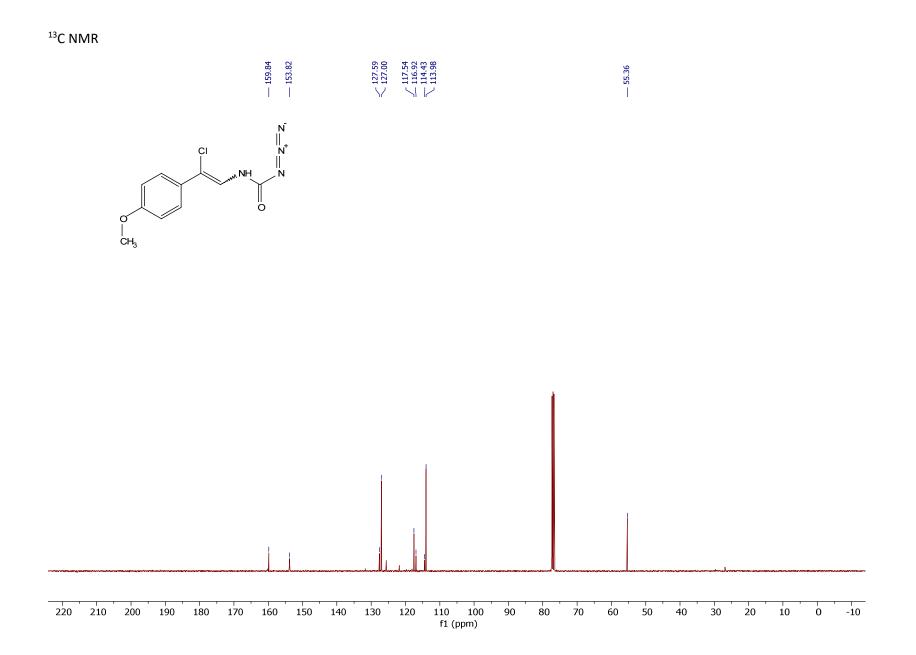



S-methyl (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamothioate (6e)

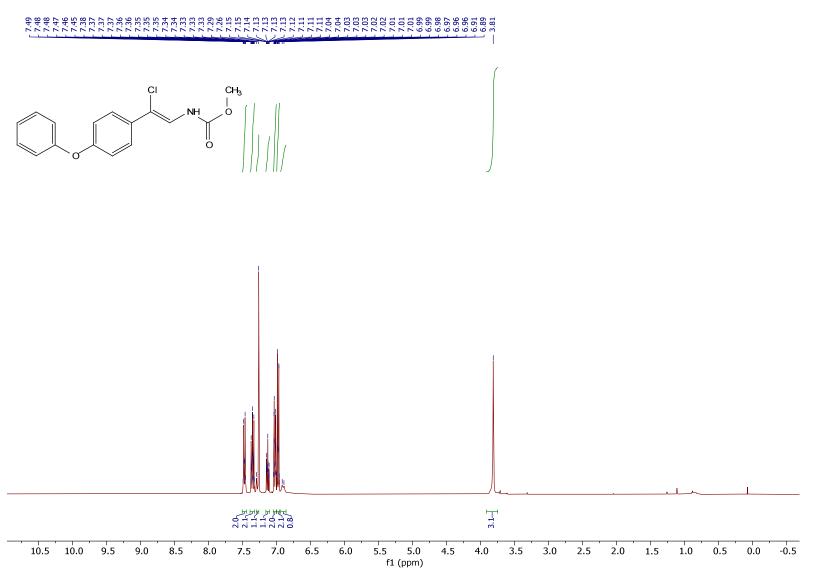


¹³C NMR

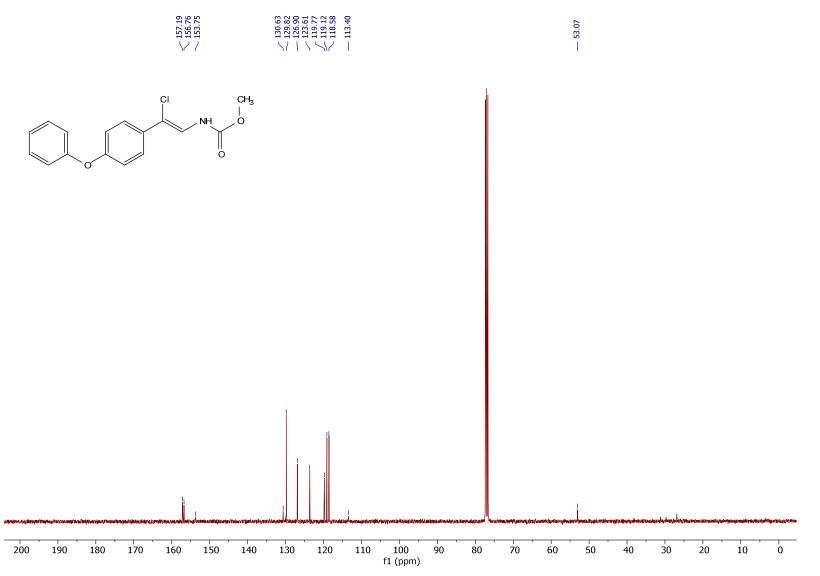

S-(4-chlorophenyl) (Z)-(2-chloro-2-(4-methoxyphenyl)vinyl)carbamothioate (6f)

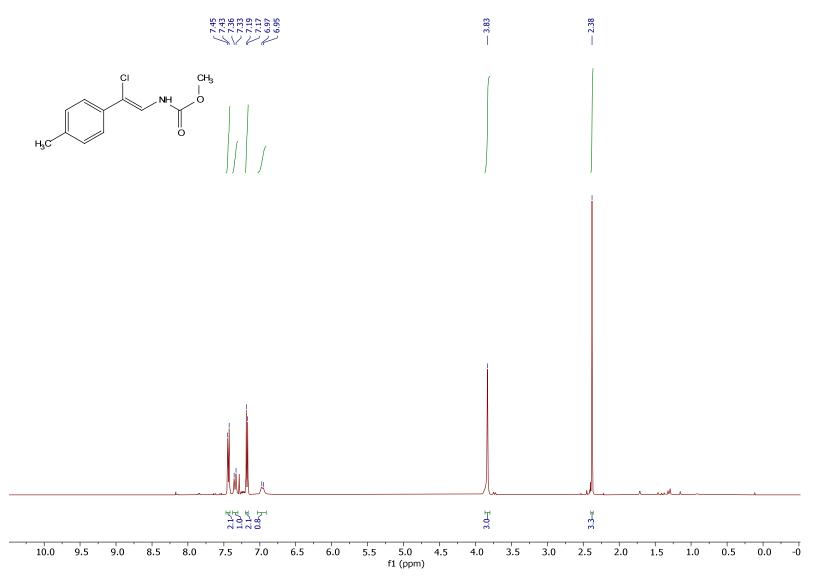


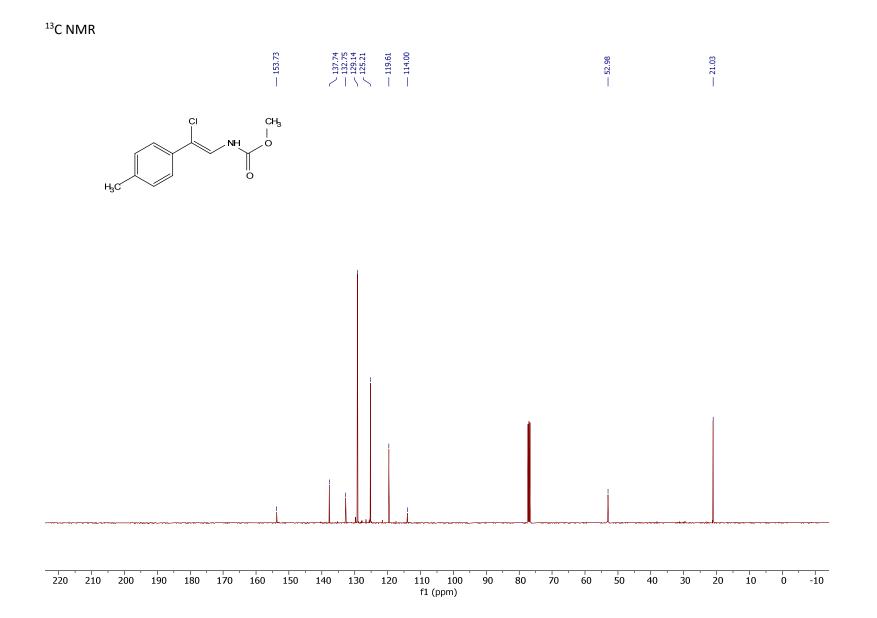
¹³C NMR

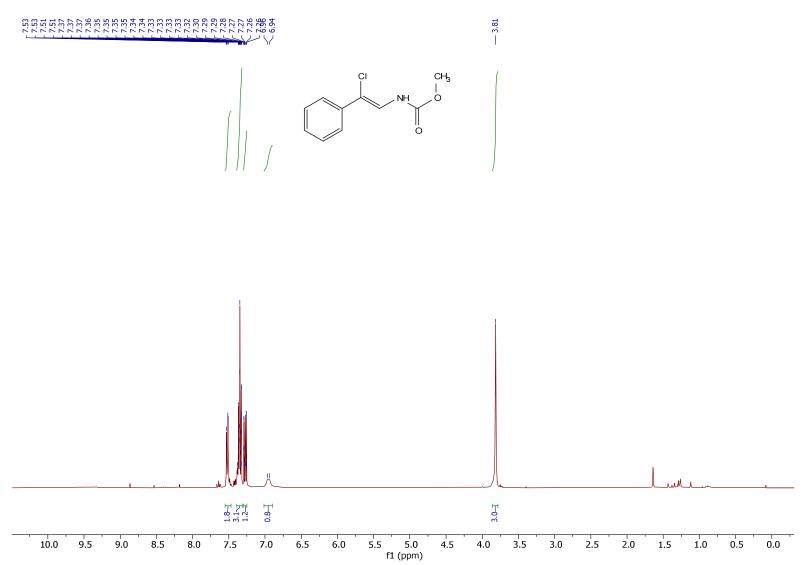


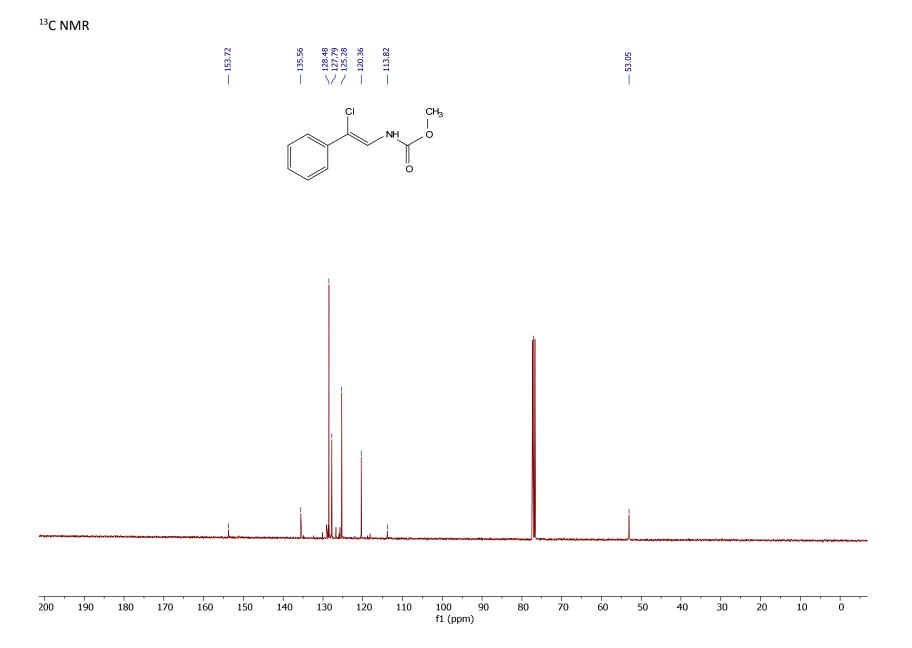
(2-chloro-2-(4-methoxyphenyl)vinyl)carbamoyl azide (6g)

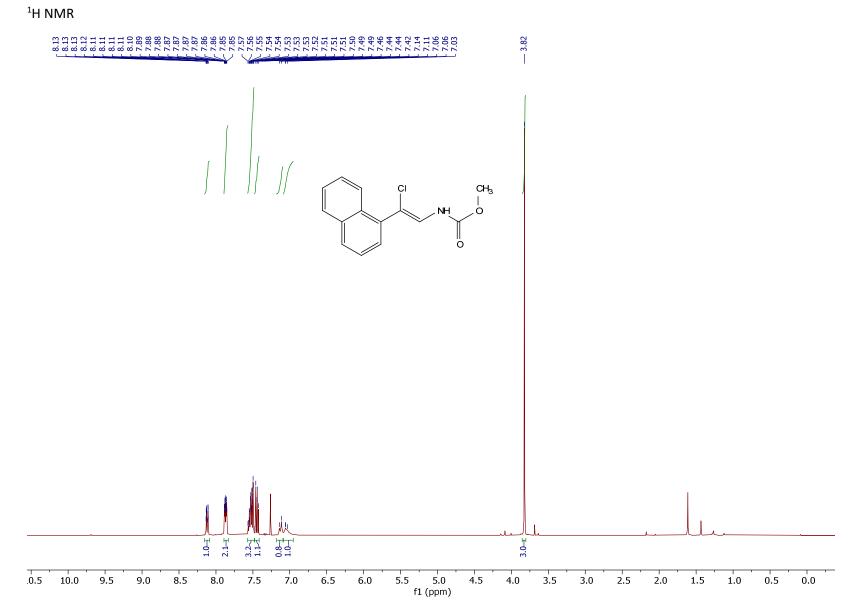



Methyl (Z)-(2-chloro-2-(4-phenoxyphenyl)vinyl)carbamate (6h)

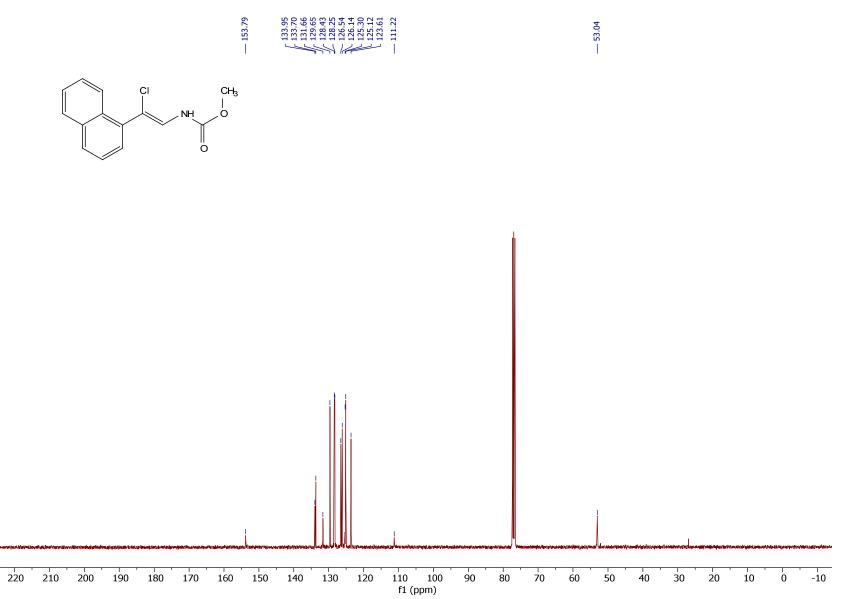




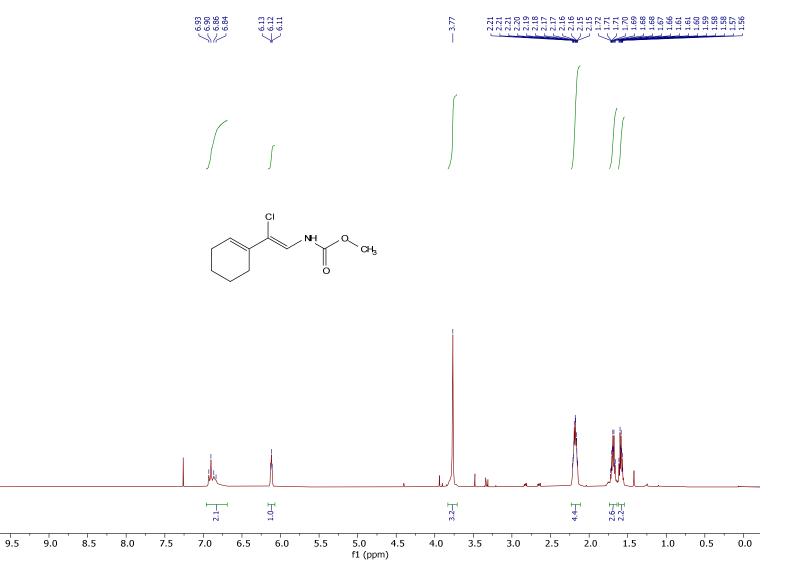

Methyl (Z)-(2-chloro-2-(p-tolyl)vinyl)carbamate (6i)

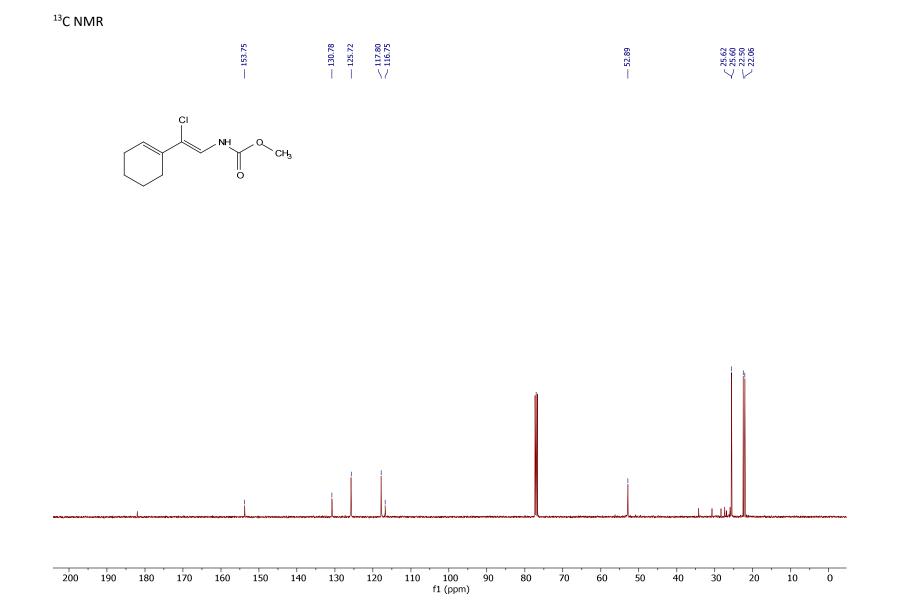


Methyl (Z)-(2-chloro-2-phenylvinyl)carbamate (6j)

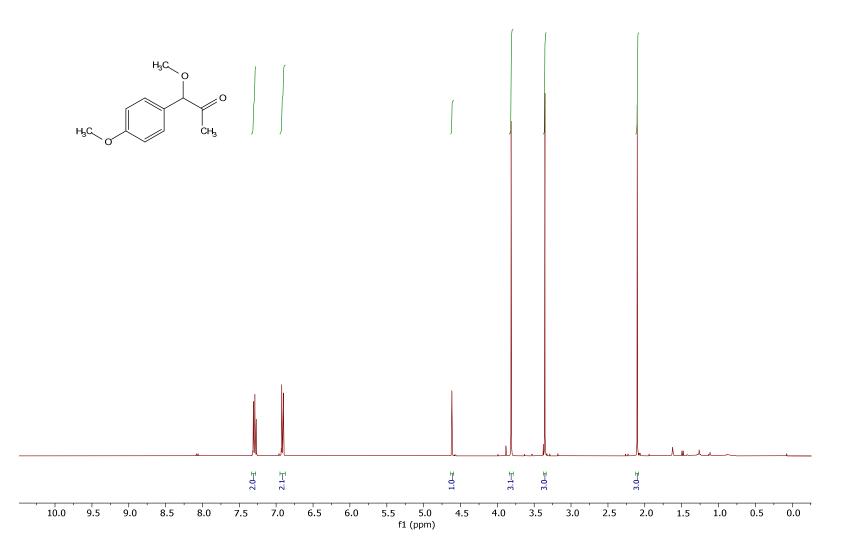


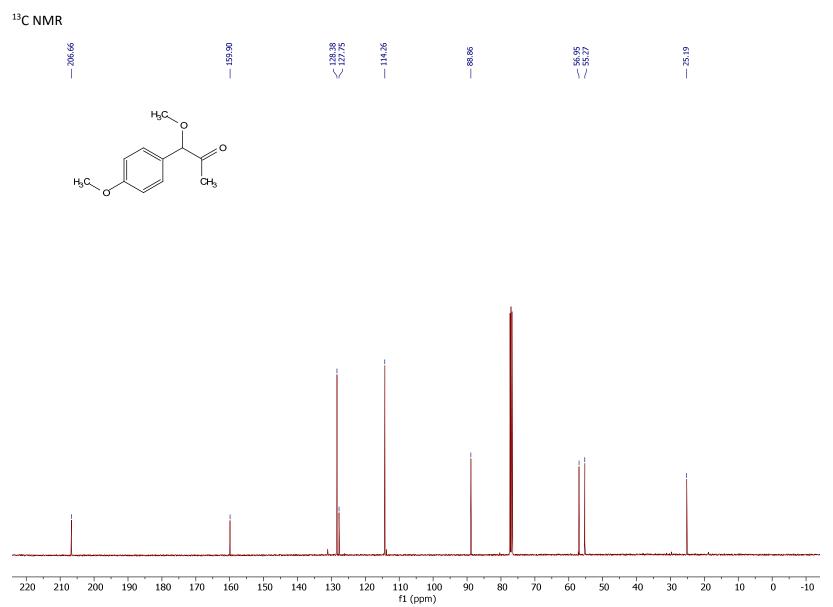
Methyl (Z)-(2-chloro-2-(naphthalen-1-yl)vinyl)carbamate (6k)





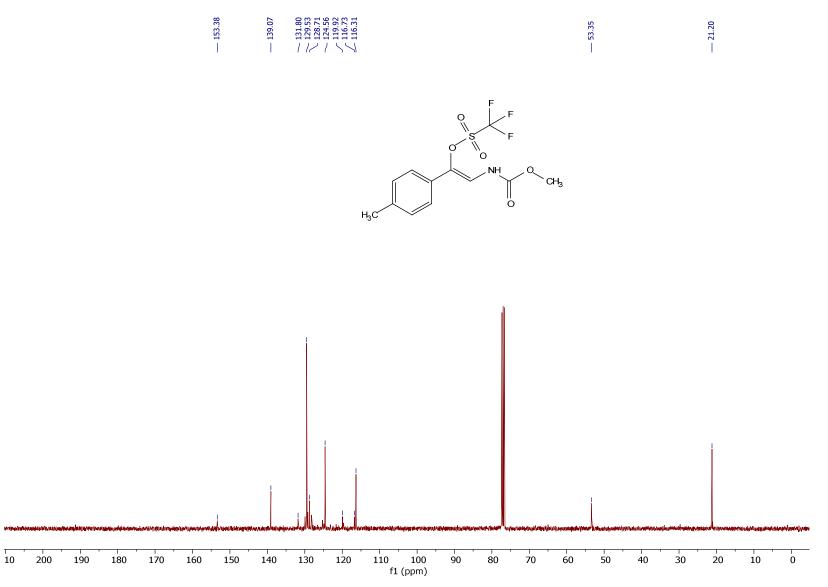
Methyl (Z)-(2-chloro-2-(cyclohex-1-en-1-yl)vinyl)carbamate (61)

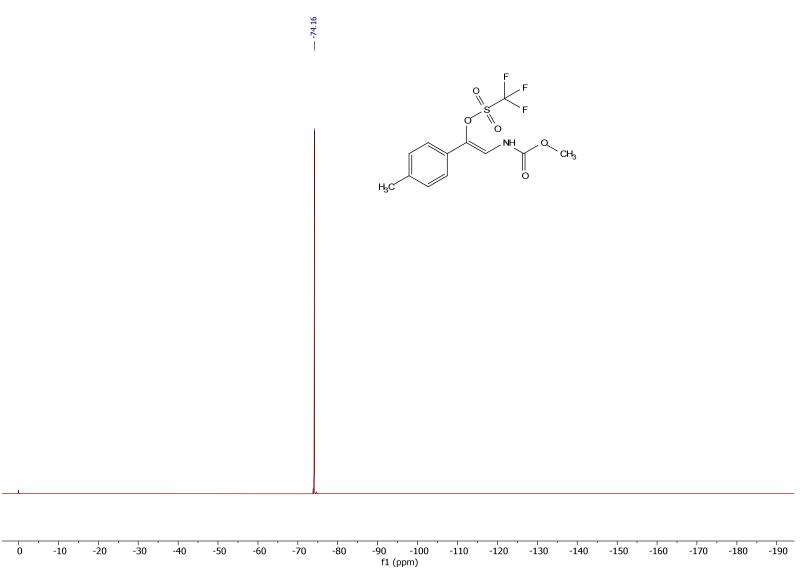




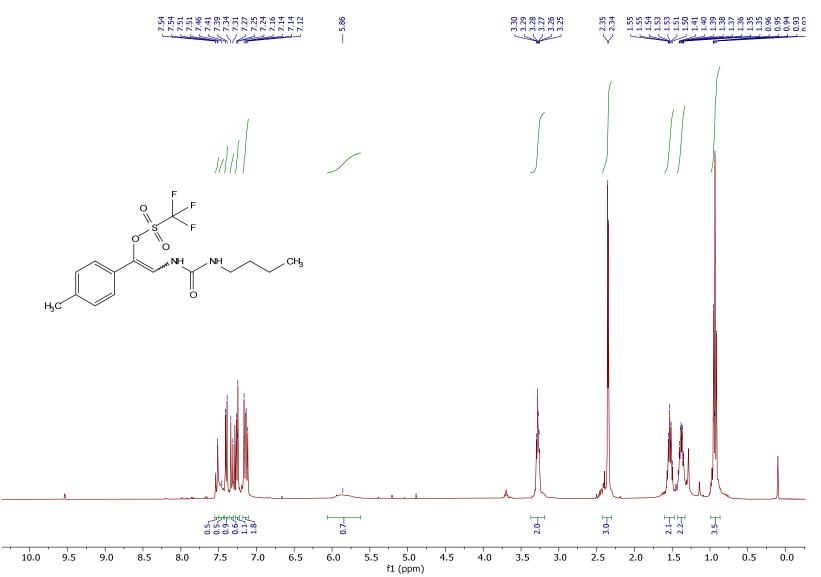
SI68

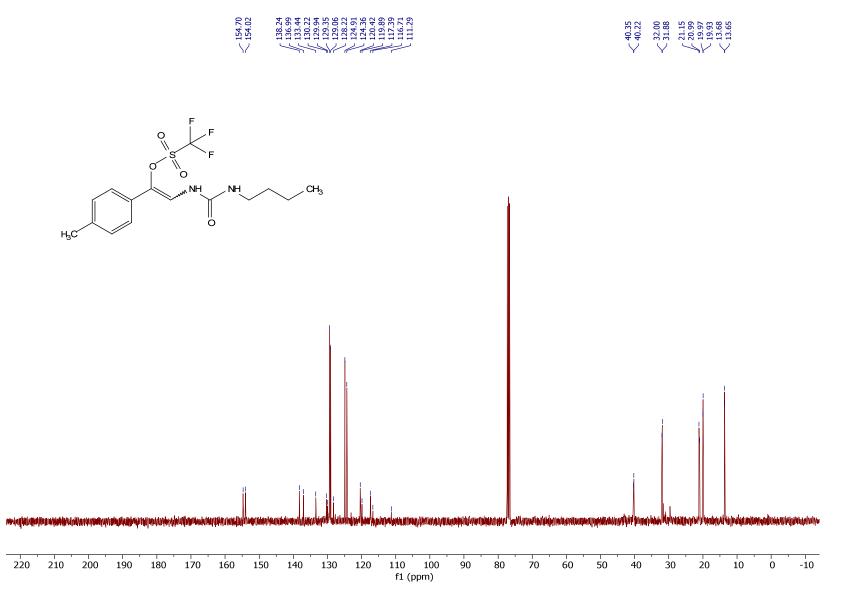
1-methoxy-1-(4-methoxyphenyl)propan-2-one (7)

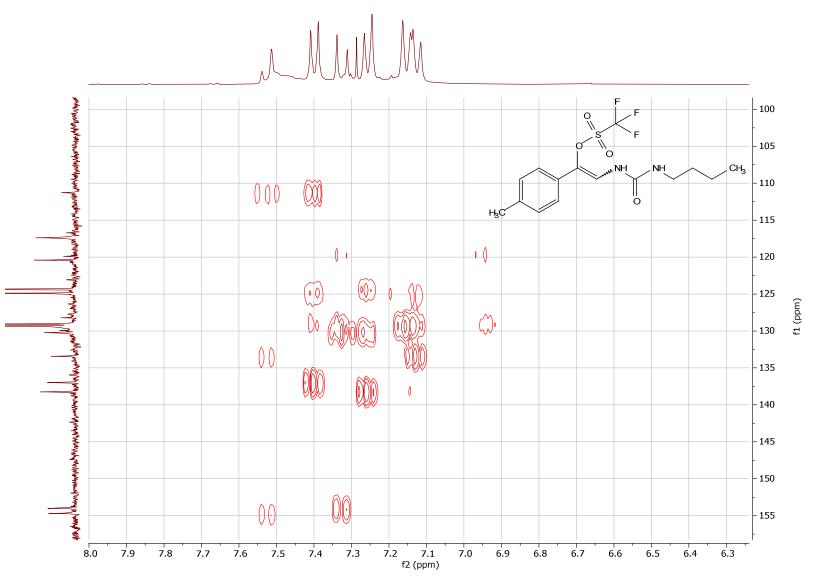



(Z)-2-((methoxycarbonyl)amino)-1-(p-tolyl)vinyl trifluoromethanesulfonate (8a)

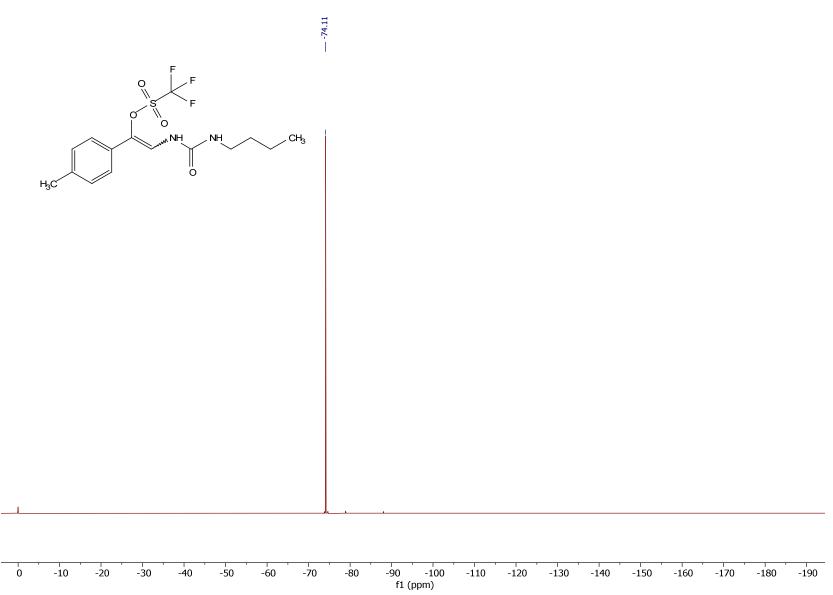
7.31 7.29 7.29 7.20 7.20 7.20 7.20 7.20 7.20 7.19 7.11 7.11 7.11 7.12 7.12 7.10 6.89 6.89 6.89 — 3.82 — 2.36 O آآ ٥ Q . NH Ο. СН₃ ö Ӊ℃ — 7.12 ---- 6.89 ---- 6.86 --- 7.09 н 1.0--6.0 7.10 7.05 7.00 6.95 6.90 6.85 6.80 f1 (ppm) 2.1 × 3.14 3.4≖ 10.0 8.5 7.0 6.5 5.5 5.0 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 7.5 4.5 9.5 9.0 8.0 6.0 1.5 1.0 0.5 0.0 -Ó,


¹³C NMR





2-(3-butylureido)-1-(p-tolyl)vinyl trifluoromethanesulfonate (**8b**)



¹H NMR

