Electronic Supporting Information

Biosynthetic characterization of the antifungal fernane-type

triterpenoid polytolypin for generation of new analogues via

combinatorial biosynthesis

Xin-Yu Li, ‡^a Jian-Ming Lv, ‡^b Zhi-Qin Cao, ‡^b Gao-Qian Wang, ^b Fu-Long Lin, ^b Guo-Dong Chen, ^b Sheng-Ying Qin, ^c Dan Hu, *^{b,d} Hao Gao ^{a,b} and Xin-Sheng Yao *^{a,b}

^a School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China. E-mail: tyaoxs@jnu.edu.cn

^b Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. E-mail: thudan@jnu.edu.cn

° Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China

^d Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

‡ These authors contributed equally to this work.

*Corresponding authors: tyaoxs@jnu.edu.cn (X.-S. Yao); thudan@jnu.edu.cn (D. Hu)

Table of Contents

Supplementary Methods	1
General materials and experimental procedures	1
Strains and media	1
Construction of recombinant plasmids	2
Transformation of <i>A. oryzae</i> NSAR1	2
HPLC-MS analysis of metabolites from A. oryzae NSAR1 transformants	2
Purification procedure of compounds	3
Structural characterization	5
Antifungal assay	7
Supplementary Notes	8
Note S1 The amino acid sequence of EfuA _{TC}	8
Note S2 The amino acid sequence of FsoA _{TC}	8
Supplementary Tables	9
Table S1 Primers used in the study	9
Table S2 Plasmids used in the study	10
Table S3 A. oryzae NSAR1 transformants used in the study	11
Table S4 NMR data of 3 in pyridine-d ₅ (¹ H at 400 MHz and ¹³ C at 100 MHz)	12
Table S5 NMR data of 4 in pyridine-d ₅ (¹ H at 400 MHz and ¹³ C at 100 MHz)	13
Table S6 NMR data of 5 in pyridine-d ₅ (¹ H at 400 MHz and ¹³ C at 100 MHz)	14
Table S7 NMR data of 1 in pyridine-d ₅ (¹ H at 600 MHz and ¹³ C at 150 MHz)	15
Table S8 NMR data of 8 in pyridine-d ₅ (¹ H at 600 MHz and ¹³ C at 150 MHz)	16
Table S9 NMR data of 9 in pyridine-d ₅ (¹ H at 600 MHz and ¹³ C at 150 MHz)	17
Table S10 NMR data of 10 in pyridine- d_5 (¹ H at 600 MHz and ¹³ C at 150 MHz)	18
Table S11 NMR data of 11 in CD ₃ OD (¹ H at 600 MHz and ¹³ C at 150 MHz)	19
Table S12 NMR data of 12 in pyridine- d_5 (¹ H at 600 MHz and ¹³ C at 150 MHz)	20
Table S13 NMR data of 13 in pyridine-d ₅ (¹ H at 600 MHz and ¹³ C at 150 MHz)	21
Supplementary Figures	22
Figure S1 ¹³ C NMR spectrum of 2 in CDCl ₃ at 100 MHz	22
Figure S2 HPLC analysis of A. oryzae NSAR1 transformants expressing two genes in the	e pol
cluster	23
Figure S3 ¹ H NMR spectrum of 3 in pyridine- d_5 at 400 MHz	24
Figure S4 ¹³ C NMR spectrum of 3 in pyridine- <i>d</i> ₅ at 100 MHz	24
Figure S5 1 H- 1 H COSY spectrum of 3 in pyridine- d_{5} at 400 MHz	25
Figure S6 HSQC spectrum of 3 in pyridine-d5 at 400 MHz	25
Figure S7 HMBC spectrum of 3 in pyridine-d ₅ at 400 MHz	26
Figure S8 NOESY spectrum of 3 in pyridine-d5 at 400 MHz	26
Figure S9 HPLC analysis of A. oryzae NSAR1 transformants expressing three genes in the	e pol
cluster	27
Figure S10 ¹ H NMR spectrum of 4 in pyridine-d ₅ at 400 MHz	28

Figure S11 ¹³ C NMR spectrum of 4 in pyridine- <i>d</i> ₅ at 100 MHz	
Figure S12 ¹ H- ¹ H COSY spectrum of 4 in pyridine- <i>d</i> ₅ at 400 MHz	29
Figure S13 HSQC spectrum of 4 in pyridine-d ₅ at 400 MHz	
Figure S14 HMBC spectrum of 4 in pyridine-d ₅ at 400 MHz	
Figure S15 ROESY spectrum of 4 in pyridine-d ₅ at 400 MHz	
Figure S16 ¹ H NMR spectrum of 5 in pyridine- d_5 at 400 MHz	31
Figure S17 ¹³ C NMR spectrum of 5 in pyridine- <i>d</i> ₅ at 100 MHz	31
Figure S18 ¹ H- ¹ H COSY spectrum of 5 in pyridine- <i>d</i> ₅ at 400 MHz	
Figure S19 HSQC spectrum of 5 in pyridine-d ₅ at 400 MHz	
Figure S20 HMBC spectrum of 5 in pyridine-d ₅ at 400 MHz	
Figure S21 ROESY spectrum of 5 in pyridine-d ₅ at 400 MHz	
Figure S22 ¹ H NMR spectrum of 1 in pyridine- <i>d</i> ₅ at 600 MHz	
Figure S23 ¹³ C NMR spectrum of 1 in pyridine- <i>d</i> ₅ at 150 MHz	
Figure S24 ¹ H- ¹ H COSY spectrum of 1 in pyridine- <i>d</i> ₅ at 600 MHz	
Figure S25 HSQC spectrum of 1 in pyridine-d ₅ at 600 MHz	
Figure S26 HMBC spectrum of 1 in pyridine-d ₅ at 600 MHz	
Figure S27 ROESY spectrum of 1 in pyridine-d ₅ at 600 MHz	
Figure S28 HPLC analysis of the A. oryzae NSAR1 transformant expressing all the fiv	e genes
in the <i>pol</i> gene cluster	
Figure S29 ¹³ C NMR spectrum of 6 in CDCl ₃ at 150 MHz	
Figure S30 ¹³ C NMR spectrum of 7 in CDCl ₃ at 100 MHz	
Figure S31 ¹ H NMR spectrum of 8 in pyridine- d_5 at 600 MHz	40
Figure S32 ¹³ C NMR spectrum of 8 in pyridine-d ₅ at 150 MHz	40
Figure S33 ¹ H- ¹ H COSY spectrum of 8 in pyridine-d ₅ at 600 MHz	41
Figure S34 HSQC spectrum of 8 in pyridine-d5 at 600 MHz	41
Figure S35 HMBC spectrum of 8 in pyridine-d ₅ at 600 MHz	42
Figure S36 ROESY spectrum of 8 in pyridine-d ₅ at 600 MHz	42
Figure S37 ¹ H NMR spectrum of 9 in pyridine- <i>d</i> ₅ at 600 MHz	43
Figure S38 ¹³ C NMR spectrum of 9 in pyridine- <i>d</i> ₅ at 150 MHz	43
Figure S39 ¹ H- ¹ H COSY spectrum of 9 in pyridine- <i>d</i> ₅ at 600 MHz	44
Figure S40 HSQC spectrum of 9 in pyridine-d ₅ at 600 MHz	44
Figure S41 HMBC spectrum of 9 in pyridine-d ₅ at 600 MHz	45
Figure S42 ROESY spectrum of 9 in pyridine-d ₅ at 600 MHz	45
Figure S43 ¹ H NMR spectrum of 10 in pyridine- <i>d</i> ₅ at 600 MHz	46
Figure S44 ¹³ C NMR spectrum of 10 in pyridine-d ₅ at 150 MHz	46
Figure S45 ¹ H- ¹ H COSY spectrum of 10 in pyridine- <i>d</i> ₅ at 600 MHz	47
Figure S46 HSQC spectrum of 10 in pyridine-d ₅ at 600 MHz	47
Figure S47 HMBC spectrum of 10 in pyridine-d ₅ at 600 MHz	48
Figure S48 ROESY spectrum of 10 in pyridine-d ₅ at 600 MHz	48
Figure S49 MS analysis of A. oryzae NSAR1 transformants co-expressing $efuA_{TC}$ and	polC/E
Figure S50 ¹ H NMR spectrum of 11 in CD ₃ OD at 600 MHz	
Figure S51 ¹³ C NMR spectrum of 11 in CD ₃ OD at 150 MHz	
Figure S52 ¹ H- ¹ H COSY spectrum of 11 in CD ₃ OD at 600 MHz	51

Figure S53 HSQC spectrum of 11 in CD ₃ OD at 600 MHz	51
Figure S54 HMBC spectrum of 11 in CD ₃ OD at 600 MHz	52
Figure S55 NOESY spectrum of 11 in CD ₃ OD at 600 MHz	52
Figure S56 ¹ H NMR spectrum of 12 in pyridine- d_5 at 600 MHz	53
Figure S57 ¹³ C NMR spectrum of 12 in pyridine- d_5 at 150 MHz	53
Figure S58 1 H- 1 H COSY spectrum of 12 in pyridine- d_{5} at 600 MHz	54
Figure S59 HSQC spectrum of 12 in pyridine-d5 at 600 MHz	54
Figure S60 HMBC spectrum of 12 in pyridine- d_5 at 600 MHz	55
Figure S61 ROESY spectrum of 12 in pyridine-d5 at 600 MHz	55
Figure S62 ¹ H NMR spectrum of 13 in pyridine- d_5 at 600 MHz	56
Figure S63 13 C NMR spectrum of 13 in pyridine- d_5 at 150 MHz	56
Figure S64 1 H- 1 H COSY spectrum of 13 in pyridine- d_{5} at 600 MHz	57
Figure S65 HSQC spectrum of 13 in pyridine-d ₅ at 600 MHz	57
Figure S66 HMBC spectrum of 13 in pyridine- d_5 at 600 MHz	58
Figure S67 ROESY spectrum of 13 in pyridine-d5 at 600 MHz	58
Figure S68 HPLC analysis of A. oryzae NSAR1 transformants co-expressing fs	oA_{TC} and
polB/C/E	59
Supplementary References	60

Supplementary Methods

General materials and experimental procedures

The biochemical reagents and kits were purchased from TaKaRa Bio Inc. (Dalian, China), Thermo Fisher Scientific Inc. (Shenzhen, China), or Sangon Biotech Co., Ltd. (Shanghai, China), unless noted otherwise. The synthesis of biosynthetic genes (*polA-polE* and *EfuA_{TC}*) and oligonucleotide primers were completed by Tsingke Biotech Co., Ltd. (Beijing, China) or Sangon Biotech Co., Ltd. All the chemicals were purchased from Guanghua Sci-Tech Co., Ltd. (Guangdong, China), Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) or Yuwang Industrial Co., Ltd. (Shandong, China).

HPLC-MS analyses were performed on a Dionex UltiMate 3000 HPLC system (Thermo Scientific, USA) with a COSMOSIL $3C_{18}$ -EB Column (4.6 ID × 150 mm) and an amaZon SL ion trap mass spectrometer equipped with an atmospheric pressure chemical ionization (APCI) source (Bruker, USA). The semi-preparative HPLC was performed on a Dionex UltiMate 3000 HPLC system using a YMC-Pack ODS-A column (10.0 mm i.d. ×250 mm, 5 µm). Column chromatography was carried out with silica gel (200–300 mesh) (Qingdao Haiyang Chemical Group Corporation, China). The UV data, IR data and optical rotation values were respectively measured on a JASCO V-550 UV/vis spectrometer, a JASCO FT/IR-4600 plus spectrometer, and a JASCO P1020 digital polarimeter from JASCO International CO., Ltd. (Tokyo, Japan). 1D and 2D NMR spectra were recorded on Bruker AV 400/600 spectrometers (Bruker, USA) using the solvent signals (pyridine- d_5 : $\delta_{\rm H}$ 7.57/ $\delta_{\rm C}$ 135.5; CD₃OD: $\delta_{\rm H}$ 3.30/ $\delta_{\rm C}$ 49.0; CDCl₃: $\delta_{\rm H}$ 7.26/ $\delta_{\rm C}$ 77.0) as the reference.

Strains and media

Humicola fuscoatra NRRL 22980 was provided by the ARS Culture Collection. The quadruple auxotrophic *Aspergillus oryzae* NSAR1 (*niaD*⁻, *sC*⁻, $\Delta argB$, $adeA^{-}$)¹ was used as the host for heterologous expression. The *A. oryzae* NSAR1 transformant was firstly grown in 10 mL DPY medium (2% dextrin, 1% polypeptone, 0.5% yeast extract, 0.05% MgSO₄·7H₂O, 0.5% KH₂PO₄) for 1-2 days at 28 °C and 150 rpm. And then, the mycelia were transferred into the modified Czapek-Dox (CD) medium (0.3% NaNO₃, 0.2% KCl, 0.05% MgSO₄·7H₂O, 0.1% KH₂PO₄, 0.002% FeSO₄·7H₂O, 1% polypeptone, 2% starch, pH 5.5) to induce the expression of exogenous genes under the *amyB* promoter. *Escherichia coli* DH5 α (TaKaRa) was used for construction of recombinant plasmids in LB medium with 100 mg/L ampicillin.

Construction of recombinant plasmids

polA-polE and *EfuA_{TC}* were amplified from the recombinant plasmids containing the chemically synthesized genes using the primers listed in Table S1, and $fsoA_{TC}$ was amplified from the genomic DNA of *H. fuscoatra* NRRL 22980, which were cloned into the linearized pTAex3 vector, respectively (Table S2). And then, the gene cassettes containing the *amyB* promoter and terminator were amplified from the pTAex3 based recombinant plasmids, and inserted into pAdeA or pUSA.

Transformation of A. oryzae NSAR1

The A. oryzae NSAR1 transformants were obtained via PEG-mediated transformation of protoplast. The spore suspension of A. oryzae NASR1 was cultivated in 10 mL DPY medium at 200 rpm and 28 °C for 2 days. Then the culture broth was transferred into 100 mL DPY medium and cultured for 1 day. The mycelia were harvested by filtration, and digested using the Yatalase solution (1% Yatalase, 0.6 M (NH₄)₂SO₄, 50 mM maleic acid, pH 5.5) to remove the cell walls. The protoplast pellet was collected through centrifugation at 1500 rpm for 10 min, and then washed twice with TF Solution 2 (1.2 M sorbitol, 35 mM NaCl, 50 mM CaCl₂·2H₂O, 10 mM Tris-HCl, pH 7.5). After that, TF Solution 2 was added to adjust the protoplast concentration to around 1.0×10^7 cell/mL. 200 μ L protoplast suspension and 10 μ g plasmids (< 20 μ L) were gently mixed and placed on ice for 30 min, followed by addition of 1.35 mL TF Solution 3 (60% PEG4000, 50 mM CaCl2·2H2O, 10 mM Tris-HCl, pH 7.5) in three times. After incubation at room temperature for 20 min, 5 mL TF Solution 2 was added, and the mixture was subjected to centrifugation at 1500 rpm for 10 min. The precipitate was resuspended in 200 µL TF Solution 2 and spread on the selective under-layer medium, which was covered with the selective upper-layer medium. The selective medium was composed of 0.1% (NH₄)₂SO₄, 0.2% NH₄Cl, 0.05% NaCl, 0.05% KCl, 0.1% KH₂PO₄, 0.05% MgSO₄·7H₂O, 0.002% FeSO₄·7H₂O, 1.2 M sorbitol, 2% glucose and 1.5% agar for underlayer (or 0.8% agar for upper-layer) supplemented with appropriate ingredients for auxotrophic complementation. And the transformants could be obtained after incubation at 30 °C for 3-5 days. All the transformants used in the work are listed in Table S3.

HPLC-MS analysis of metabolites from A. oryzae NSAR1 transformants

After growing in the modified CD medium for 6 days, mycelia of the *A. oryzae* NSAR1 transformant were harvested and extracted with ethanol. The crude extract was resuspended in methanol for HPLC-MS analysis. The mobile phase was composed of water with 0.1% formic acid

(A) and acetonitrile with 0.1% formic acid (B). For analysis of metabolites from *A. oryzae* NSAR1 transformants harboring one or two exogenous genes, the samples were subjected to a linear gradient elution of 50–100% B (0–10 min) and 100% B (10–50 min) at the flow rate of 1 mL/min. For analysis of metabolites from *A. oryzae* NSAR1 transformants harboring two to five exogenous genes, the samples were subjected to a linear gradient elution of 10–100% B (0–40 min) and 100% B (40–65 min) at the flow rate of 1 mL/min.

Purification procedure of compounds

Purification process for 1

Mycelia and culture medium from 9.5 L culture of AO-PolA/B/C/E were extracted with ethanol and ethyl acetate, respectively. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **1** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 65% CH₃CN–H₂O containing 0.1% formic acid to yield **1** (7.5 mg).

Purification process for 2

Mycelia from 5 L culture of AO-PolA were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. **2** (10.0 mg) was obtained through recrystallization of the fraction containing **2**.

Purification process for 3

Mycelia from 6 L culture of AO-PolA/C were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **3** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 99% CH₃CN–H₂O containing 0.1% formic acid to yield **3** (8.0 mg).

Purification process for 4

Mycelia from 4 L culture of AO-PolA/B/C were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **4** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 85% CH₃CN–H₂O containing 0.1% formic acid to yield **4** (5.8 mg).

Purification process for 5

Mycelia from 9 L culture of AO-PolA/C/E were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **5** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 75% CH₃CN–H₂O containing 0.1% formic acid to yield **5** (26.4 mg).

Purification process for 6

Mycelia from 1 L culture of AO-Efu A_{TC} were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate to give **6** (14.8 mg).

Purification process for 7

Mycelia from 1 L culture of AO-Fso A_{TC} were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate to give 7 (16.5 mg).

Purification process for 8

Mycelia from 5 L culture of AO-Efu A_{TC} /PolC were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **8** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 90% CH₃CN–H₂O containing 0.1% formic acid to yield **8** (15.0 mg).

Purification process for 9

Mycelia from 10 L culture of AO-EfuA_{TC}/PolB/C were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The crude fraction containing **9** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 75% CH₃CN–H₂O containing 0.1% formic acid to yield **9** (5.0 mg).

Purification process for 10

Mycelia from 20 L culture of AO-EfuA_{TC}/PolC/E were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **10** was further purified by HPLC (COSMOSIL $3C_{18}$ -EB Column, 1 mL/min) with isocratic elution of 55% CH₃CN–H₂O containing 0.1% formic acid to

yield 10 (5.6 mg).

Purification process for 11

Mycelia from 10 L culture of AO-EfuA_{TC}/PolB/C/E were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **11** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 51% CH₃CN–H₂O containing 0.1% formic acid to yield **11** (6.6 mg).

Purification process for 12

Mycelia from 9 L culture of AO-FsoA_{TC}/PolC were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **12** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 90% CH₃CN–H₂O containing 0.1% formic acid to yield **12** (7.0 mg).

Purification process for 13

Mycelia from 7.5 L culture of AO-FsoA_{TC}/PolB/C were extracted with ethanol. The crude extract was subjected to silica gel column chromatography with stepwise elution of cyclohexane and ethyl acetate. The fraction containing **13** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL/min) with isocratic elution of 80% CH₃CN–H₂O containing 0.1% formic acid to yield **13** (5.3 mg).

Structural characterization

Compound 1: white powder; $[a]_D^{29} = +42.2$ (*c* 0.5, C₅H₅N); APCI-MS (positive) *m/z* 519 [M + H]⁺; NMR spectra, see Figs. S22-S27; NMR data, see Table S7. Compound 1 was determined to be the known compound polytolypin (CAS Registry Number: 174158-04-4), and its NMR data in pyridine is firstly reported in this work.

Compound **2**: colorless needle crystal; $[\alpha]_D^{29} = -37.4$ (*c* 0.5, CH₂Cl₂); APCI-MS (positive) *m/z* 409 [M + H – H₂O]⁺; NMR spectra, see Fig. S1; ¹³C NMR (100 MHz, CDCl₃) δ_C 145.1, 116.1, 79.2, 59.5, 54.1, 50.7, 47.9, 42.8, 41.5, 38.9, 36.8, 36.2, 36.0, 35.3, 32.3, 30.6, 30.3, 28.2, 27.7, 27.5, 24.1, 24.0, 22.9, 22.1, 21.0, 20.0, 16.0, 14.6, 14.0, 12.8. The NMR data are in good agreement with those of motiol (CAS Registry Number: 2566-82-7).²⁻⁵

Compound **3**: colorless needle crystal; $[\alpha]_D^{30} = +10.5$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε)

205 (2.48) nm; IR (KBr) v_{max} 3434, 2945, 2885, 2865, 1631, 1469, 1384, 1076 cm⁻¹; APCI-MS (positive) m/z 439 [M + H - H₂O]⁺; NMR spectra, see Figs. S3-S8; NMR data, see Table S4. Compound **3** was identified as 3β-hydroxyfern-7-en-23-oic acid.

Compound 4: colorless powder; $[\alpha]_D^{29} = +11.1$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε) 205 (3.40) nm; IR (KBr) v_{max} 3367, 2947, 2888, 2868, 1706, 1384, 1043 cm⁻¹; APCI-MS (negative) m/z 471 [M - H]⁻;NMR spectra, see Figs. S10-S15; NMR data, see Table S5. Compound 4 was identified as 2α , 3 β -dihydroxyfern-7-en-23-oic acid.

Compound 5: white powder; $[\alpha]_{D}^{29} = +85.7 (c \ 0.2, C_5H_5N)$; UV (CH₃OH) $\lambda_{max} (\log \varepsilon) 205 (3.35)$ nm; IR (KBr) $v_{max} 3485, 2948, 2897, 2871, 1697, 1469, 1401, 1113 cm⁻¹; APCI-MS (positive) <math>m/z$ 503 [M + H]⁺; NMR spectra, see Figs. S16-S21; NMR data, see Table S6. Compound 5 was identified as 1 β ,3 β -dihydroxyfern-7-en-23,25-dioic acid.

Compound 6: colorless needle crystal; $[\alpha]_D^{26} = -9.5$ (*c* 0.63, CHCl₃); NMR spectra, see Fig. S29; APCI-MS (positive) *m/z* 409 [M + H - H₂O]⁺; ¹³C NMR (150 MHz, CDCl₃) δ_C 151.1, 116.2, 79.1, 59.6, 52.0, 44.3, 42.9, 40.0, 39.3, 39.3, 37.8, 37.6, 36.7, 36.7, 36.1, 30.8, 29.3, 28.2, 28.1, 27.4, 25.2, 23.0, 22.1, 20.1, 19.1, 17.9, 15.8, 15.4, 15.0, 14.0. The NMR data are in good agreement with those of fernenol (CAS Registry Number: 4966-00-1).^{6,7}

Compound 7: colorless needle crystal; $[\alpha]_D^{26} = +22.3$ (*c* 0.28, CHCl₃); NMR spectra, see Fig. S30; APCI-MS (positive) *m/z* 409 [M + H - H₂O]⁺; ¹³C NMR (100 MHz, CDCl₃) δ_C 134.3, 134.1, 79.0, 59.8, 52.7, 50.4, 42.9, 41.0, 38.9, 37.6, 36.7, 35.9, 35.4, 30.7, 30.2, 28.3, 28.0, 28.0, 27.2, 26.9, 22.9, 22.1, 22.0, 20.3, 20.2, 19.1, 18.9, 15.8, 15.5, 14.6. The NMR data are in good agreement with those of isomotiol (CAS Registry Number: 4575-73-9).^{8, 9}

Compound 8: colorless needle crystal; $[\alpha]_D^{29} = +59.5$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε) 203 (3.46) nm; IR (KBr) v_{max} 3444, 2946, 2888, 2865, 1713, 1634, 1378, 1079 cm⁻¹; APCI-MS (positive) *m/z* 439 [M + H – H₂O]⁺; NMR spectra, see Figs. S31-S36; NMR data, see Table S8. Compound 8 was identified as fernenolic acid.

Compound 9: white powder; $[\alpha]_D^{29} = +22.9$ (*c* 0.5, C₅H₅N); APCI-MS (negative) *m/z* 471 [M -H]⁻; NMR spectra, see Figs. S37-S42; NMR data, see Table S9. Compound 9 was identified as the known compound retigeric acid A (CAS Registry Number: 35591-41-4).Compound 10: white powder; $[\alpha]_D^{29} = +25.0$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε) 205 (3.39) nm; IR (KBr) v_{max} 3390, 2948, 2884, 1631, 1384, 1083, 1035 cm⁻¹; APCI-MS (positive) *m/z* 471 [M + H – H₂O]⁺; NMR spectra, see Figs. S43-S48; NMR data, see Table S10. Compound **10** was identified as 1β , 3β ,25-trihydroxyfern-9(11)-en-23-oic acid.

Compound 11: white powder; $[\alpha]_{D}^{29} = -110.1$ (*c* 0.5, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 (3.61) nm; IR (KBr) v_{max} 3371, 2925, 2885, 1728, 1643, 1424, 1385, 1159, 1059 cm⁻¹; APCI-MS (positive) *m/z* 519 [M + H]⁺; NMR spectra, see Figs. S50-S55; NMR data, see Table S11. Compound 11 was identified as 1 β , 2 α , 3 β -trihydroxyfern-9(11)-en-23, 25-dioic acid.

Compound 12: colorless needle crystal; $[\alpha]_{D}^{30} = +35.1$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε) 205 (3.59) nm; IR (KBr) v_{max} 3515, 2966, 2940, 2873, 1698, 1386, 1099 cm⁻¹; APCI-MS (positive) m/z 439 [M + H – H₂O]⁺; NMR spectra, see Figs. S56-S61; NMR data, see Table S12. Compound 12 was identified as 3 β -hydroxyfern-8-en-23-oic acid.

Compound **13**: white powder; $[\alpha]_{D}^{29} = +10.7$ (*c* 0.5, C₅H₅N); UV (CH₃OH) λ_{max} (log ε) 204 (3.37) nm; IR (KBr) v_{max} 3363, 2934, 2885, 1701, 1456, 1381, 1054 cm⁻¹; APCI-MS (negative) m/z 471 [M - H]⁻; NMR spectra, see Figs. S62-S67; NMR data, see Table S13. Compound **13** was identified as 2α , 3 β -dihydroxyfern-8-en-23-oic acid.

Antifungal assay

Antifungal activity was measured in 96-well microtiter plates using the 2-fold dilution assay. Two fungi strains *Candida albicans* FIM709 and *Aspergillus niger* R330 were cultivated on sabouraud dextrose agar medium (2% glucose, 1% peptone and 1.8% agar) at 32 °C for 4–7 days. The spores were collected and adjusted to a concentration of 10^7 - 10^9 /mL with 0.9% saline. Subsequently, 100 µL of mixtures was added to 200 mL sabouraud dextrose broth as spore solution. Compounds were dissolved in DMSO to a concentration of 12.5 mg/mL. 2 µL of sample solution was mixed with 200 µL of spore solution, which was then further half diluted with spore solution until the concentration reaching 0.06 µg/mL. Amphotericin B was used as the positive control and DMSO as the negative control. The 96-well microtiter plates were placed at 32 °C for 48 hours. The minimum inhibition concentration (MIC) was defined based on the minimal concentration in which fungi cannot grow.

Supplementary Notes

MPSYHNTDKTLLGDARQSLQQAVDYSLGCQQPDGHWVAPVMADATFTAQYVFFKHQIP ELSLDEDGPEIQRWLLGEQTADGSWTLAPDLPGNLSTTVEAYLALRILGVPKSDQAMLRA RDFVVRNGGVEGVRFFTRFFLATFGLVPWTAIPQMPAELILLPTFMFLNIYVLSSWARSTLI PILLVRHHEPVYALPNGQSANNNFLDELWCNPGEKNIPFALPLWDLLRRYQWIEFAFTLLD HILALFGGLRRWPCRHMALKRCTAWLLEHQEESGDWAGFFPPIHGSIWALLLDGFSFQSE VIRLGMEALERLVVIDPKGKWVQSTVSPCWDTALMANALCDAGMSGDTRLAKATQWLR DRQLMVSHGDWRNYANTQQAGGWSFQYFNSFYPDVDDTAVVIMTLIKEDPNCTNSDCV MNGVEWMLGMQSRDGGWGAFDVNNNARWLHKIPFSDMDSLVDPSTSDVTGRILECLGL LLSQRKSPLSPRWRHRLQASSAKAIAFLAKEQESSGAWWGRWGNNYHYGTANVLRGLA WFAQTDPSAQMMCMRTLSWIDETQNADGGWGETLASYVDKSLAGLGRSTAAHTAWALE SLLRFRLPSDQAIERGVRWLIDNQQPNVDGYYYGTKWQAGAGQGASWRFDHAYVGTGF PSVLYLGYPYYHHLFPIQALSRYIDKASRQGIETLRIPSSSAVILDRPNVLL

Note S1 The amino acid sequence of $EfuA_{TC}$

MDMAPDELDELRGSAQRALEQAIDFSFSCQQDDGHWVAPVSADATFTAQYVMFKHAIPA LNLDISGAEAAALRHWLLGDQNAAEGSWGLAPGLPGNLSTTVEAYLALRLLGVPSSNPA LQQARRFVLAHGGISRVRFFTRFFLATFGLFPWSAIPQMPAELILMPKWAPLNIYVLSSWAR STLIPILVVRHHEPLYPLPNAQSDPNSGFLDELWLDPTNKEVPFAPPLWDMFHGRDRDVVK LAFTLGDKALAQIGGLKKGPQRRLALRRCIEWLLEHQEETGDWAGFFPPMHGSVWALLL EGFSLEHDVVKRGLEALERLAVNDESGKWLQSTVSPCWDTALMVKALCDAGLGLGGAE AAKGNRHARVTTAVDWVRSLQLLGPQGDWRVYSRNQRPGGWSFEYNNTWYPDVDDTA VVVMMLVTHDPAAVESNAVEMGIEWILGMQNHDGGWGAFDTNNDALWLHKIPFSDMDS LVDPSTSDVTGRMLECFGMLLTHRKGGLRLRPELSQRLHESAQKALAFLFREQTASGAW WGRWGCNYNYGTTNVLRGLPAFCGDKEVARAALRAVLWLEKCQNKDGGWGETLLSYG HPDLAGKGPSTAAHTAWALDALLRFRPASDPALQKGVQWLVSNQVPKTEEKRHWASWPS DLYVGTGFPNVLYLGYPFYHHHFAISALARFLDRTDEPDQDRDLPLL

Note S2 The amino acid sequence of $FsoA_{TC}$

Supplementary Tables

Primer	Sequence (5' to 3')	Usage	
Inf- <i>polA</i> -pTAex3-SmaI-F	TCGAGCTCGGTACCCATGATGCCCACCAAATCTTT	Cloning <i>polA</i> from the recombinant plasmid	
Inf- <i>polA</i> -pTAex3-SmaI-R	CTACTACAGATCCCCTCACACGACAGGTTCAGGAA	construct pTAex3-polA	
Inf- <i>polB</i> -pTAex3-SmaI-F	CGAATTCGAGCTCGGTACCCATGTACAGCTTCTTCCTAGT	Cloning <i>polB</i> from the recombinant plasmid	
Inf- <i>polB</i> -pTAex3-SmaI-R	ACGAGCTACTACAGATCCCCTCAGCCTTGTTTCCGTCTCC	construct pTAex3-polB and pUSA- polB	
Inf- <i>polC</i> -pTAex3-SmaI-F	CGAATTCGAGCTCGGTACCCATGGCAGTGTTCAAACTCGA	Cloning <i>polC</i> from the recombinant plasmid	
Inf- <i>polC</i> -pTAex3-SmaI-R	ACGAGCTACTACAGATCCCCTCAGGGTATCTCTCTCCCT	construct pTAex3-polC and pUSA- polC	
Inf- <i>polD</i> -pTAex3-SmaI-F	CGAATTCGAGCTCGGTACCCATGCAACTTACTGTGGTGTT	Cloning <i>polD</i> from the recombinant plasmid	
Inf- <i>polD</i> -pTAex3-SmaI-R	ACGAGCTACTACAGATCCCCTTAAACAAAGTGGACGTCAT	construct pTAex3-polD and pUSA- polD	
Inf- <i>polE</i> -pTAex3-SmaI-F	CGAATTCGAGCTCGGTACCCATGTCTGGGGAAACAGCCTT	Cloning <i>polE</i> from the recombinant plasmid	
Inf- <i>polE</i> -pTAex3-SmaI-R	ACGAGCTACTACAGATCCCCCTAGTGCTTCCTCCGACGAA	construct pTAex3- <i>polE</i> and pUSA- <i>polE</i>	
Inf- <i>efuA_{TC}</i> -pTAex3-SmaI-F	TCGAGCTCGGTACCCATGCCGTCTTACCACAACAC	Cloning $efuA_{TC}$ from the recombinant plasmid	
Inf- <i>efuA_{TC}</i> -pTAex3-SmaI-R	CTACTACAGATCCCCCTACAAGAGTACGTTCGGAC	to construct pTAex3- $efuA_{TC}$	
Inf- <i>fsoA_{TC}</i> -pTAex3-SmaI-F	TCGAGCTCGGTACCCACACACAATGGACATGGCGC	Cloning $fsoA_{TC}$ from Humicola fuscoatra	
Inf- <i>fsoA_{TC}</i> -pTAex3-SmaI-R	CTACTACAGATCCCCTCAAACGTGCCGAGTCATGAG	fsoA _{TC}	
Inf- <i>polD</i> -pUSA-BamHI-F	GTCTATTATAGGAAAGGATCCCAATCTTCAAGAGCAGAAT	Cloning <i>polD</i> from pTAex3- <i>polD</i> to construct	
Inf- <i>polD</i> -pUSA-BamHI-R	CAAGATGACTCTAGAGGATCGTAAGATACATGAGCTTCGG	pUSA- <i>polC-polD</i>	
Inf-pAdeA-Parm-F	GCAGGTCGACTCTAGACGACTCCAATCTTCAAGAGC		
Inf-pTA-Tamy-R1	AACGCGCTCGCGAGCAAGTACCATACAGTACCGCG	Cloning target genes from pTAex3-based	
Inf-pTA-Parm-F1	GCTCGCGAGCGCGTTCCACTGCATCATCAGTCTAG	plasmids	
Inf-pAdeA-Tamy-R	TAGTAGATCCTCTAGAGTAAGATACATGAGCTTCGG		

Table S1 Primers used in the study

Plasmid	Characteristic	Source	
	Plasmid containing argB marker gene cassette for gene expression in A. oryzae NSAR1		
pTAex3	along with the ampicillin resistance gene cassette	Fuj11 <i>et al</i> . ¹⁰	
	Plasmid containing sC marker gene cassette for gene expression in A. oryzae NSAR1	** 4 111	
pUSA	along with the ampicillin resistance gene cassette	Yamada <i>et al</i> . ¹¹	
	Plasmid containing <i>adeA</i> marker gene cassette for gene expression in <i>A. oryzae</i> NSAR1	T. , 112	
pAdeA	along with the ampicillin resistance gene cassette	Jin <i>et al.</i> ¹²	
pTAex3-polA	pTAex3 containing <i>polA</i> under the <i>amyB</i> promoter	This work	
pTAex3-polB	pTAex3 containing <i>polB</i> under the <i>amyB</i> promoter	This work	
pTAex3-polC	pTAex3 containing <i>polC</i> under the <i>amyB</i> promoter	This work	
pTAex3-polD	pTAex3 containing <i>polD</i> under the <i>amyB</i> promoter	This work	
pTAex3-polE	pTAex3 containing <i>polE</i> under the <i>amyB</i> promoter	This work	
pTAex3-efuA _{TC}	pTAex3 containing <i>efuA_{TC}</i> under the <i>amyB</i> promoter	This work	
pTAex3-fsoA _{TC}	pTAex3 containing <i>fsoA</i> _{TC} under the <i>amyB</i> promoter	This work	
pUSA-polB	pUSA containing <i>polB</i> under the <i>amyB</i> promoter	This work	
pUSA-polC	pUSA containing <i>polC</i> under the <i>amyB</i> promoter	This work	
pUSA-polD	pUSA containing <i>polD</i> under the <i>amyB</i> promoter	This work	
pUSA-polE	pUSA containing <i>polE</i> under the <i>amyB</i> promoter	This work	
pUSA-polC-polD	pUSA containing <i>polC</i> and <i>polD</i> under the <i>amyB</i> promoter	This work	
pAdeA-polB	pAdeA containing <i>polB</i> under the <i>amyB</i> promoter	This work	
pAdeA-polD	pAdeA containing <i>polD</i> under the <i>amyB</i> promoter	This work	
pAdeA-polE	pAdeA containing <i>polE</i> under the <i>amyB</i> promoter	This work	
pAdeA-polB-polE	pAdeA containing <i>polB</i> and <i>polE</i> under the <i>amyB</i> promoter	This work	

Table S2 Plasmids used in the study

Strain	Description
AO-PolA	The A. oryzae NSAR1 transformant harboring pTAex3-polA
AO-PolA/B	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polB
AO-PolA/C	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC
AO-PolA/D	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polD
AO-PolA/E	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polE
AO-PolA/B/C	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC and pAdeA-polB
AO-PolA/C/D	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC and pAdeA-polD
AO-PolA/C/E	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC and pAdeA-polE
AO-PolA/B/C/E	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC and pAdeA-polB-polE
AO-PolA/B/C/D/E	The A. oryzae NSAR1 transformant harboring pTAex3-polA and pUSA-polC-polD and pAdeA-polB-polE
AO -Efu A_{TC}	The A. oryzae NSAR1 transformant harboring pTAex3-efuA _{TC}
AO-EfuA _{TC} /PolC	The A. oryzae NSAR1 transformant harboring pTAex3-efuA _{TC} and pUSA-polC
AO-EfuA _{TC} /PolB/C	The A. oryzae NSAR1 transformant harboring pTAex3-efuA _{TC} and pUSA-polC and pAdeA-polB
AO-EfuA _{TC} /PolC/E	The A. oryzae NSAR1 transformant harboring pTAex3-efuA _{TC} and pUSA-polC and pAdeA-polE
AO-EfuA _{TC} /PolB/C/E	The A. oryzae NSAR1 transformant harboring pTAex3-efuA _{TC} and pUSA-polC and pAdeA-polB-polE
AO-FsoA _{TC}	The A. oryzae NSAR1 transformant harboring pTAex3-fsoA _{TC}
AO-FsoA _{TC} /PolC	The A. oryzae NSAR1 transformant harboring pTAex3-fsoA _{TC} and pUSA-polC
AO-FsoA _{TC} /PolB/C	The A. oryzae NSAR1 transformant harboring pTAex3-fsoA _{TC} and pUSA-polC and pAdeA-polB
AO-FsoA _{TC} /PolC/E	The A. oryzae NSAR1 transformant harboring pTAex3-fsoA _{TC} and pUSA-polC and pAdeA-polE
AO-FsoA _{TC} /PolB/C/E	The A. oryzae NSAR1 transformant harboring pTAex3-fsoATC and pUSA-polC and pAdeA-polB-polE

Table S3 A. oryzae NSAR1 transformants used in the study

Table S4 NMR data of **3** in pyridine- d_5 (¹H at 400 MHz and ¹³C at 100 MHz)

			1.		,
No.	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^a$	¹ H- ¹ H COSY	HMBC	NOESY
1	37.1, CH ₂	a: 1.68	1b, 2	3, 5, 10	25
		b: 1.28	1a, 2	2, 3, 9, 25	3, 5, 9
2	28.5 ^b , CH ₂	2.02	1a, 1b, 3	1, 3, 4, 10	24, 25
3	75.5, CH	4.70	2	1, 2, 4, 23, 24	1b, 5
4	53.7, C				
5	48.0, CH	2.58	6a, 6b	3, 4, 6, 7, 9, 10, 23, 24, 25	1b, 3
6	26.4, CH ₂	a: 2.39	5, 6b, 7	5, 7, 8	
		b: 2.32	5, 6a, 7	5, 7, 8	
7	116.4, CH	5.42	6a, 6b, 9	5, 6, 9, 14	15b, 26
8	145.7, C				
9	48.4, CH	2.58	7, 11a, 11b	5, 7, 8, 10, 25	1b, 27
10	35.2, C				
11	16.4, CH ₂	a: 1.58	9, 11b, 12	12	
		b: 1.46	9, 11a, 12	9, 12	
12	$32.5, CH_2$	1.34	11a, 11b	9, 13, 14, 18, 27	
13	36.2, C				
14	41.8, C				
15	$30.5, CH_2$	a: 1.60	15b, 16a, 16b	8, 26	28
		b: 1.47	15a, 16a, 16b	16, 17	7
16	36.5, CH ₂	a: 1.66	15a, 15b, 16b	14, 15, 18	28, 29
		b: 1.43	15a, 15b, 16a	15	29
17	43.0, C				
18	54.3, CH	1.42	19a, 19b	19, 21	21, 26
19	20.2, CH ₂	a: 1.36	18, 19b, 20a, 20b	18	
		b: 1.20	18, 19a, 20a, 20b	21	
20	$28.4^{b}, CH_{2}$	a: 1.75	19a, 19b, 20b, 21		30
		b: 1.15	19a, 19b, 20a, 21		
21	59.5, CH	0.87	20a, 20b, 22	22	18
22	30.8, CH	1.37	21, 29, 30	21	28
23	180.1, C				
24	11.3, CH ₃	1.74, s		3, 4, 5, 23	2, 25
25	13.5, CH ₃	0.92, s		1, 5, 9, 10	1a, 2, 24
26	24.2, CH ₃	1.07, s		8, 13, 14, 15	7, 18
27	21.2, CH ₃	0.90, s		12, 13, 14, 18	9
28	14.1, CH ₃	0.70, s		16, 17, 18, 21	15a, 16a, 22
29	22.2, CH ₃	0.89, d (6.4)	22	21, 22, 30	16a, 16b
30	23.1, CH ₃	0.83, d (6.4)	22	21, 22, 29	20a

^b The assignments could be interchanged.

Table S5 NMR data of **4** in pyridine- d_5 (¹H at 400 MHz and ¹³C at 100 MHz)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	46.2, CH ₂	a: 2.35	1b, 2	3, 5	25
		b: 1.64	1a, 2	2,25	3, 5
2	68.7, CH	4.32, td (10.4, 4.0)	1a, 1b, 3		24, 25
3	80.7, CH	4.65, d (9.6)	2	2, 4, 23, 24	1b, 5
4	54.0, C				
5	48.2, CH	2.75	6	4, 6, 10, 24, 25	1b, 3
6	26.1, CH ₂	2.35	5,7	5	
7	116.5, CH	5.43	6, 9	5, 9, 14	15b
8	145.4, C				
9	48.8, CH	2.73	7, 11a, 11b	10, 25	27
10	36.9, C				
11	16.5, CH ₂	a: 1.66	9, 11b, 12		27
		b: 1.56	9, 11a, 12		25
12	32.5, CH ₂	1.30	11a, 11b		
13	36.2, C				
14	41.8, C				
15	30.5, CH ₂	a: 1.60	15b, 16a, 16b		27, 28
		b: 1.45	15a, 16a, 16b	13, 16, 17	7
16	36.4, CH ₂	a: 1.65	15a, 15b, 16b	14	28
		b: 1.41	15a, 15b, 16a		
17	42.9, C				
18	54.2, CH	1.40	19a, 19b	19	21, 26
19	20.2, CH ₂	a: 1.36	18, 19b, 20a, 20b		
		b: 1.23	18, 19a, 20a, 20b		
20	28.4, CH ₂	a: 1.73	19a, 19b, 20b, 21		
		b: 1.15	19a, 19b, 20a, 21		
21	59.5, CH	0.85	20a, 20b, 22		18
22	30.8, CH	1.35	21, 29, 30		28
23	179.7, C				
24	12.5, CH ₃	1.80, s		3, 4, 5, 23	2, 25
25	14.6, CH ₃	1.02, s		1, 5, 9, 10	1a, 2, 11b, 24
26	24.2, CH ₃	1.05, s		8, 13, 14, 15	18
27	21.2, CH ₃	0.87, s		12, 13, 14, 18	9, 11a, 15a
28	14.1, CH ₃	0.68, s		16, 17, 18, 21	15a, 16a, 22
29	22.2, CH ₃	0.88, d (6.4)	22	21, 22, 30	
30	23.1, CH ₃	0.83, d (6.4)	22	21, 22, 29	

No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	78.5, CH	3.98, dd (12.0, 4.0)	2a, 2b	2, 9, 25	3, 5
2	40.9, CH ₂	a: 2.84, q (12.0)	1, 2b, 3	1, 3, 4, 10	24
		b: 2.71	1, 2a, 3	1, 3, 4, 10	
3	73.0, CH	4.92, dd (12.0, 4.4)	2a, 2b	23, 24	1, 5
4	54.0, C				
5	44.8, CH	2.66, dd (10.4, 5.6)	6a, 6b	4, 6, 10, 24, 25	1, 3
6	27.2, CH ₂	a: 3.21	5, 6b, 7	5, 7, 8	
		b: 2.53, dt (16.8, 4.8)	5, 6a, 7	10	
7	118.6, CH	5.78	6a, 6b	5, 6, 9, 14	26
8	143.4, C				
9	47.2, CH	3.28	11a, 11b	1, 8, 10, 12, 13, 25	27
10	51.1, C				
11	$21.1, CH_2$	a: 3.27	9, 11b, 12a, 12b	8, 12, 13	
		b: 1.92	9, 11a, 12a, 12b	12	26
12	33.2, CH ₂	a: 1.43	11a, 11b, 12b	13, 27	
		b: 1.35	11a, 11b, 12a	9, 27	
13	35.8, C				
14	42.6, C				
15	30.9, CH ₂	a: 1.69	15b, 16a, 16b	14, 26	
		b: 1.60	15a, 16a, 16b	13, 16	
16	36.4, CH ₂	a: 1.64	15a, 15b, 16b	17, 18, 28	29
		b: 1.42	15a, 15b, 16a	15, 17, 28	
17	42.8, C				
18	54.2, CH	1.40	19a, 19b	13, 17, 19, 27, 28	21
19	$20.0, CH_2$	a: 1.31	18, 19b, 20a, 20b	18	
		b: 1.21	18, 19a, 20a, 20b		
20	$28.3, CH_2$	a: 1.70	19a, 19b, 20b, 21		30
		b: 1.11	19a, 19b, 20a, 21	19, 21	
21	59.4, CH	0.81	20a, 20b, 22	16, 17, 20	18
22	30.6, CH	1.32	21, 29, 30		
23	179.3, C				
24	$10.2, CH_3$	1.91, s		3, 4, 5, 23	2a
25	178.4, C	1.05			
26	24.7, CH ₃	1.25, s		8, 13, 14, 15	7, 11b
27	21.6, CH ₃	1.00, s		12, 13, 14, 18	9, 28
28	14.2, CH ₃	0.70, s		16, 17, 18, 21	27
29	22.0, CH ₃	0.85, d (6.4)	22	21, 22, 30	16a
30	23.0, CH ₃	0.79, d (6.4)	22	21, 22, 29	20a

Table S7 NMR data of **1** in pyridine- d_5 (¹H at 600 MHz and ¹³C at 150 MHz)

			15 5(1
No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	83.8, CH	3.97, d (8.4)	2	2, 9, 10, 25	3, 5,
2	75.4, CH	4.66, t (9.0)	1, 3	1, 3	24
3	77.9, CH	4.84, d (9.0)	2	2, 4, 23, 24	1, 5
4	53.5, C				
5	44.6, CH	2.84	6a, 6b	3, 4, 6, 9, 10, 24	1, 3, 9
6	$27.1, CH_2$	a: 3.31	5, 6b, 7		24
		b: 2.55, br d (17.4)	5, 6a, 7	7, 8, 10	
7	118.7, CH	5.80	6a, 6b	5, 9	26
8	143.4, C				
9	48.0, CH	3.35	11a, 11b		5,27
10	51.7, C				
11	21.1, CH ₂	a: 3.33	9, 11b, 12a, 12b		
		b: 2.01	9, 11a, 12a, 12b		26
12	33.3, CH ₂	a: 1.45	11a, 11b, 12b	14	27
		b: 1.37	11a, 11b, 12a		
13	35.9, C				
14	42.6, C				
15	31.0, CH ₂	a: 1.66	15b, 16a, 16b	14, 17	27, 28
		b: 1.58	15a, 16a, 16b		26
16	36.5, CH ₂	a: 1.65	15a, 15b, 16b	14, 17, 18	29
		b: 1.43	15a, 15b, 16a	14, 17, 21, 28	
17	42.8, C				
18	54.3, CH	1.42	19a, 19b	13, 17, 21, 27, 28	21, 26
19	20.1, CH ₂	a: 1.31	18, 19b, 20a, 20b		
		b: 1.21	18, 19a, 20a, 20b		27, 28
20	28.4, CH ₂	a: 1.71	19a, 19b, 20b, 21		30
		b: 1.13	19a, 19b, 20a, 21		22, 28, 30
21	59.4, CH	0.81	20a, 20b, 22	16, 17	18
22	30.7, CH	1.34	21, 29, 30	21, 29, 30	20b, 28
23	178.8, C				
24	11.7, CH ₃	1.98, s		3, 4, 5, 23	2, 6a
25	178.4, C				
26	24.7, CH ₃	1.27, s		8, 13, 14, 15	7, 11b, 15b, 18
27	21.7, CH ₃	0.99, s		12, 13, 14, 18	9, 12a, 15a, 19b, 28
28	14.2, CH ₃	0.70, s		16, 17, 18, 21	15a, 19b, 20b, 22, 27
29	22.1, CH ₃	0.86, d (6.0)	22	21, 22, 30	16a
30	23.0, CH ₃	0.80, d (6.0)	22	21, 22, 29	20a, 20b

Table S8 NMR data of **8** in pyridine- d_5 (¹H at 600 MHz and ¹³C at 150 MHz)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	40.0, CH ₂	a: 2.05	1b, 2a, 2b	3, 5, 10, 25	11
		b: 1.62	1a, 2a, 2b	2, 3, 10, 25	3, 5
2	28.8, CH ₂	a: 2.04	1a, 1b, 2b, 3	1, 3, 4, 10	
		b: 2.00	1a, 1b, 2a, 3	1, 3, 4, 10	
3	75.7, CH	4.67, dd (10.2, 6.0)	2a, 2b	4, 23, 24	1b, 5
4	53.7, C				
5	41.9, CH	2.56, dd (12.6, 7.2)	6a, 6b	3, 4, 6, 9, 10, 23, 24, 25	1b, 3, 8
6	20.9, CH ₂	a: 2.02	5, 6b, 7a, 7b	4, 5, 7, 8, 10	
		b: 1.92	5, 6a, 7a, 7b	5, 7, 10	
7	18.1, CH ₂	a: 1.63	6a, 6b, 7b, 8	6	
		b: 1.40	6a, 6b, 7a, 8	6, 8, 9	
8	40.1, CH	2.21, br d (13.2)	7a, 7b, 11		5, 27
9	151.7, C				
10	37.7, C				
11	116.7, CH	5.42	8, 12a, 12b	8, 9, 12, 13	1a
12	36.9, CH ₂	a: 1.65	11, 12b	9, 11, 18, 27	26
		b: 1.56, dd (17.4, 4.2)	11, 12a	9, 11, 13, 14, 27	
13	36.9, C				
14	37.9, C				
15	29.3, CH ₂	a: 1.25	15b, 16a, 16b		
		b: 1.19	15a, 16a, 16b	16, 26	
16	36.4, CH ₂	a: 1.60	15a, 15b, 16b	14, 17, 28	28, 29
		b: 1.34	15a, 15b, 16a	17, 28	
17	43.1, C				
18	52.1, CH	1.50, dd (12.6, 7.2)	19a, 19b	12, 17, 19, 20, 21, 27, 28	21, 26
19	$20.3, CH_2$	a: 1.32	18, 19b, 20a, 20b		
		b: 1.26	18, 19a, 20a, 20b	18	
20	28.4, CH ₂	a: 1.74	19a, 19b, 20b, 21	17, 19, 21	30
		b: 1.14	19a, 19b, 20a, 21	19	22
21	59.6, CH	0.88	20a, 20b, 22	16, 17, 20, 28	18
22	30.9, CH	1.37	21, 29, 30	21, 30	20b, 28
23	180.6, C				
24	11.9, CH ₃	1.76, s		3, 4, 5, 23	25
25	25.8, CH ₃	1.23, s		1, 5, 9, 10	24
26	15.7, CH ₃	0.80, s		8, 13, 14, 15	12a, 18
27	16.0, CH ₃	0.78, s		12, 13, 14, 18	8
28	14.0, CH ₃	0.72, s		16, 17, 18, 21	16a, 22
29	22.2, CH ₃	0.88, d (6.6)	22	21, 22, 30	16a
30	23.1, CH ₃	0.84, d (6.6)	22	21, 22, 29	20a

Table S9 NMR data of 9 in pyridine- d_5 (¹H at 600 MHz and ¹³C at 150 MHz)

			1.		,
No.	$\delta_{ m C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	48.8, CH ₂	a: 2.72, dd (12.6, 4.2)	1b, 2	2, 3, 5, 10, 25	11, 25
		b: 1.93	1a, 2	2, 3, 9, 10, 25	3, 5
2	68.8, CH	4.29, td (10.2, 4.2)	1a, 1b, 3	1, 3	24, 25
3	80.8, CH	4.60, d (9.6)	2	1, 2, 4, 5, 23, 24	1b, 5
4	53.6, C				
5	42.1, CH	2.70, dd (11.4, 7.8)	6a, 6b	1, 3, 4, 6, 9, 10, 24, 25	1b, 3, 8
6	20.6, CH ₂	a: 2.02, br q (12.0)	5, 6b, 7a, 7b	4, 5, 7, 8, 10	
		b: 1.89	5, 6a, 7a, 7b		
7	18.0, CH ₂	a: 1.61	6a, 6b, 8	9	
		b: 1.39	6a, 6b, 8		
8	39.9, CH	2.21, br d (13.8)	7a, 7b, 11		5, 27
9	151.2, C				
10	39.5, C				
11	116.9, CH	5.49	8, 12a, 12b	8, 10, 12	1a, 25
12	36.8, CH ₂	a: 1.61, br d (17.4)	11, 12b	9, 11, 13, 18	
		b: 1.49	11, 12a	9, 11, 13, 27	
13	36.9, C				
14	37.8, C				
15	29.2, CH ₂	1.17	16a, 16b		27, 28
16	$36.3, CH_2$	a: 1.57	15, 16b	15, 17, 28	28, 29
		b: 1.31	15, 16a		26
17	43.0, C				
18	52.0, CH	1.46	19a, 19b	12, 13, 14, 17, 19, 21, 27, 28	21, 26
19	$20.2, CH_2$	a: 1.27	18, 19b, 20a, 20b		
		b: 1.21	18, 19a, 20a, 20b	13	
20	$28.3, CH_2$	a: 1.72	19a, 19b, 20b, 21	17, 19, 21	30
		b: 1.12	19a, 19b, 20a, 21	19	
21	59.6, CH	0.84	20a, 20b, 22		18
22	30.8, CH	1.35	21, 29, 30	21, 29, 30	28
23	179.6, C				
24	13.0, CH ₃	1.80, s		3, 4, 5, 23	2
25	26.7, CH ₃	1.30, s		1, 5, 9, 10	1a, 2, 11
26	15.6, CH ₃	0.77, s		8, 13, 14, 15	16b, 18
27	15.8, CH ₃	0.73, s		12, 13, 14, 18	8, 15
28	13.9, CH ₃	0.68, s		16, 17, 18, 21	15, 16a, 22
29	22.2, CH ₃	0.86, d (6.6)	22	21, 22, 30	16a
30	23.1, CH ₃	0.82, d (6.6)	22	21, 22, 29	20a

Table S10 NMR data of **10** in pyridine- d_5 (¹H at 600 MHz and ¹³C at 150 MHz)

			15		,
No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	NOESY
1	78.7, CH	4.51	2	2, 3, 9, 10, 25	5
2	$39.5, CH_2$	2.61	1, 3	1, 3, 4, 10	24, 25a
3	72.8, CH	4.83	2	1, 2, 4, 5, 23, 24	5
4	53.5, C				
5	40.9, CH	2.75, dd (12.6, 7.2)	6a, 6b	1, 3, 4, 6, 9, 10, 23, 24, 25	1, 3, 8
6	21.8, CH ₂	a: 2.18	5, 6b, 7a, 7b	4, 5, 7, 8	24, 25b
		b: 2.01	5, 6a, 7a, 7b	5, 7, 10	
7	17.8, CH ₂	a: 1.67	6a, 6b, 7b, 8		
		b: 1.63	6a, 6b, 7a, 8		
8	40.9, CH	2.35, br d (12.6)	7a, 7b, 11	9	5, 27
9	143.9, C				
10	48.6, C				
11	122.7, CH	6.98	8, 12a, 12b	8, 10, 13	
12	37.6, CH ₂	a: 1.89, br d (17.4)	11, 12b	9, 11, 13, 18, 27	18, 26
		b: 1.67	11, 12a	9, 11, 13, 14, 27	27
13	36.8, C				
14	38.4, C				
15	29.4, CH ₂	1.25	16a, 16b	13, 14, 16, 17	27, 28
16	36.4, CH ₂	a: 1.59	15, 16b	14, 15, 17, 28	28, 29
		b: 1.35	15, 16a	15, 28	26
17	43.1, C				
18	52.0, CH	1.52, dd (13.2, 7.2)	19a, 19b	13, 14, 17, 19, 20, 21, 27, 28	12a, 21, 26
19	20.3, CH ₂	a: 1.27	18, 19b, 20a, 20b	17, 18, 21	
		b: 1.22	18, 19a, 20a, 20b	17, 18, 21	
20	28.4, CH ₂	a: 1.71	19a, 19b, 20b, 21	17, 19	30
		b: 1.12	19a, 19b, 20a, 21	19, 21	22, 28, 30
21	59.6, CH	0.85	20a, 20b, 22	17, 20, 28	18
22	30.9, CH	1.36	21, 29, 30	17, 21, 29, 30	20b, 28
23	180.0, C				
24	12.0, CH ₃	1.83, s		3, 4, 5, 23	2, 6a
25	63.3, CH ₂	a: 4.67, d (10.8)	25b	1, 5, 9, 10	2
		b: 3.98, d (10.8)	25a	1, 5, 9, 10	6a
26	15.8, CH ₃	1.02, s		8, 13, 14, 15	12a, 16b, 18
27	16.4, CH ₃	0.88, s		12, 13, 14, 18	8, 12b, 15, 28
28	14.0, CH ₃	0.71, s		16, 17, 18, 21	15, 16a, 20b, 22, 27
29	22.2, CH ₃	0.87, d (6.6)	22	21, 22, 30	16a
30	23.1, CH ₃	0.82, d (6.6)	22	21, 22, 29	20a, 20b

Table S11 NMR data of 11 in CD₃OD (¹H at 600 MHz and ¹³C at 150 MHz)

No.	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^a$	¹ H- ¹ H COSY	HMBC	NOESY
1	82.7. CH	3.11. d (9.0)	2	2, 9, 10, 25	3, 5, 11
2	76.3, CH	3.68	- 1. 3	1.3	24
3	78.7, CH	3.77, d (8.4)	2	2, 4, 23, 24	1.5
4	53.8, C			, , -,	, -
5	41.4, CH	1.98, dd (11.4, 7.2)	6a, 6b	1, 3, 4, 6, 9, 10, 23, 24, 25	1, 3
6	22.3, CH ₂	a: 2.18	5, 6b, 7a, 7b	4, 5, 7, 8	24
		b: 1.44	5, 6a, 7a, 7b	7	
7	19.9, CH ₂	a: 1.93	6a, 6b, 7b, 8	8	26
		b: 1.54	6a, 6b, 7a, 8	6	
8	40.9, CH	2.17	7a, 7b, 11	15	27
9	143.1, C				
10	52.9, C				
11	122.5, CH	6.46	8, 12a, 12b	8, 9, 10, 13	1
12	37.9, CH ₂	a: 1.69	11, 12b, 27	9, 11, 13, 14, 27	26
		b: 1.56	11, 12a	9, 11, 13, 14, 27	27
13	37.5, C				
14	39.1, C				
15	30.7, CH ₂	a: 1.48	15b, 16a, 16b	16	
		b: 1.34	15a, 16a, 16b	13, 17	26
16	$37.3, CH_2$	a: 1.66	15a, 15b, 16b	15, 17, 18, 28	28, 29
		b: 1.42	15a, 15b, 16a	17, 28	
17	44.1, C				
18	53.4, CH	1.62	19a, 19b	16, 17, 19, 20, 21, 27, 28	21, 26
19	21.1, CH ₂	a: 1.39	18, 19b, 20a, 20b		
		b: 1.34	18, 19a, 20a, 20b	13, 17, 18, 20	27, 28
20	29.3, CH ₂	a: 1.85	19a, 19b, 20b, 21	17, 19, 21	30
		b: 1.24	19a, 19b, 20a, 21		22, 28, 30
21	61.0, CH	0.97	20a, 20b, 22	20, 22, 28	18
22	32.1, CH	1.45	21, 29, 30	21, 29, 30	20b, 28
23	181.4, C				
24	11.8, CH ₃	1.12, s		3, 4, 5, 23	2, 6a
25	181.6, C				
26	16.4, CH ₃	0.76, s		8, 13, 14, 15	7a, 12a, 15b, 18
27	16.0, CH ₃	0.89, s	12a	12, 13, 14, 18	8, 12b, 19b
28	14.5, CH ₃	0.80, s		16, 17, 18, 21	16a, 19b, 20b, 22
29	22.6, CH ₃	0.90, d (6.6)	22	21, 22, 30	16a
30	23.4, CH ₃	0.84, d (6.6)	22	21, 22, 29	20a, 20b

Table S12 NMR data of **12** in pyridine- d_5 (¹H at 600 MHz and ¹³C at 150 MHz)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	36.0, CH ₂	a: 1.85, dt (13.2, 3.0)	1b, 2a, 2b	2, 3, 5, 9, 10, 25	11a, 25
		b: 1.41	1a, 2a, 2b	2, 3, 5, 9, 10, 25	3, 5
2	28.6, CH ₂	a: 2.04	1a, 1b, 2b, 3	1, 3, 4, 10	
		b: 2.00	1a, 1b, 2a, 3	1, 3, 4, 10	24, 25
3	75.3, CH	4.71, dd (11.4, 4.8)	2a, 2b	1, 2, 4, 5, 23, 24	1b, 5
4	54.6, C				
5	47.2, CH	2.38, dd (10.2, 4.2)	6a, 6b	1, 3, 4, 6, 7, 9, 10, 24, 25	1b, 3
6	22.1, CH ₂	a: 1.79	5, 6b, 7a, 7b	4, 5, 7, 8, 10	
		b: 1.77	5, 6a, 7a, 7b	4, 5, 7, 8, 10	
7	$27.1, CH_2$	a: 2.14	6a, 6b, 7b	8,9	26
		b: 2.08	6a, 6b, 7a	8,9	
8	134.4, C				
9	134.6, C				
10	37.2, C				
11	19.2, CH ₂	a: 2.13	11b, 12a, 12b	8, 9, 12	1a, 27
		b: 1.91	11a, 12a, 12b	8, 9, 12, 13	25
12	$30.5, CH_2$	a: 1.44	11a, 11b, 12b	9, 11, 13, 18, 27	
		b: 1.27	11a, 11b, 12a	9, 11, 13, 14, 18, 27	
13	36.9, C				
14	41.3, C				
15	$27.1, CH_2$	a: 1.61	15b, 16a, 16b	16, 26	
		b: 1.25	15a, 16a, 16b	13, 17	
16	36.1, CH ₂	a: 1.59	15a, 15b, 16b	14, 15, 17, 18, 28	29
		b: 1.41	15a, 15b, 16a	15, 17, 21, 28	26
17	43.0, C				
18	52.9, CH	1.47	19a, 19b	13, 14, 17, 19, 21, 27, 28	21, 26
19	20.6, CH ₂	a: 1.38	18, 19b, 20a, 20b	17, 18, 21	
		b: 1.26	18, 19a, 20a, 20b	13, 17, 18	
20	28.6, CH ₂	a: 1.76	19a, 19b, 20b, 21	17, 18, 19, 21	30
		b: 1.17	19a, 19b, 20a, 21	18, 19, 21, 22	
21	59.8, CH	0.89	20a, 20b, 22	16, 17, 20, 22, 28, 29, 30	18
22	30.9, CH	1.38	21, 29, 30	17, 21, 30	
23	180.6, C				
24	12.2, CH ₃	1.69, s		3, 4, 5, 23	2b, 25
25	20.6, CH3	1.11, s		1, 5, 9, 10	1a, 2b, 11b, 24
26	22.3, CH ₃	1.00, s		8, 13, 14, 15	7a, 16b, 18
27	16.0, CH ₃	0.77, s		12, 13, 14, 18	11a
28	14.7, CH ₃	0.74, s		16, 17, 18, 21	
29	22.2, CH ₃	0.88, d (6.0)	22	21, 22, 30	16a
30	23.1, CH ₃	0.84, d (6.0)	22	21, 22, 29	20a

Table S13 NMR data of 13 in pyridine- d_5 (¹ H at 600 MHz and ¹³ C	³ C at 150 MHz)
---	----------------------------

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^a$	¹ H- ¹ H COSY	HMBC	ROESY
1	44.9, CH ₂	a: 2.52	1b, 2	2, 3, 5	11a, 11b, 25
		b: 1.75	1a, 2	2, 3, 9, 10, 25	3
2	69.3, CH	4.33, br t (9.0)	1a, 1b, 3	3	24, 25
3	80.7, CH	4.67, d (9.0)	2	1, 2, 4, 23, 24	1b, 5
4	54.6, C				
5	47.3, CH	2.55	6a, 6b	4, 7, 9, 10, 23, 24, 25	3
6	21.5, CH ₂	a: 1.83	5, 6b, 7a, 7b	8, 10	
		b: 1.77	5, 6a, 7a, 7b		
7	27.0, CH ₂	a: 2.12	6a, 6b, 7b	5, 8, 9	15b, 26
		b: 2.06	6a, 6b, 7a	8,	
8	134.2, C				
9	134.5, C				
10	38.8, C				
11	19.3, CH ₂	a: 2.19	11b, 12a, 12b	8, 9, 12	1a, 27
		b: 1.93	11a, 12a, 12b	8, 9, 12, 13	1a, 25
12	$30.3, CH_2$	a: 1.39	11a, 11b, 12b	11, 13, 18, 27	
		b: 1.21	11a, 11b, 12a	9, 11, 13, 14, 18, 27	
13	36.8, C				
14	41.2, C				
15	$27.0, CH_2$	a: 1.58	15b, 16a, 16b		27, 28
		b: 1.22	15a, 16a, 16b	13, 14	7a
16	36.1, CH ₂	a: 1.56	15a, 15b, 16b	14, 17, 18, 28	
		b: 1.39	15a, 15b, 16a		
17	42.9, C				
18	52.8, CH	1.43	19a, 19b	12, 13, 14, 16, 17, 19, 21, 27, 28	21, 26
19	$20.5, CH_2$	a: 1.33	18, 19b, 20a, 20b	17	
		b: 1.21	18, 19a, 20a, 20b	20	
20	$28.5, CH_2$	a: 1.74	19a, 19b, 20b, 21	17, 21	30
21	50 7 CH	b: 1.13	19a, 19b, 20a, 21		22
21	59.7, CH	0.86	20a, 20b, 22	16, 17, 28	18
22	30.8, CH	1.36	21, 29, 30	21, 29, 30	20b, 28
23	180.2, C	1 75			
24	13.3, CH ₃	1./5, s		3, 4, 5, 23	2
25	21.8, CH ₃	1.18, s		1, 5, 9, 10	1a, 2, 11b
20	22.2, CH3	0.9/, s		8, 13, 14, 15	7/a, 18
21	15.8, CH3	0.71, s		12, 13, 14, 18	11a, 15a
∠o 20	14.0, CH3	0.71, 8	22	16, 17, 18, 21	15a, 22
29 20	$22.1, CH_3$	0.80, 0(0.0)	22	21, 22, 30	20
30	23.0, CH3	0.82, a (0.0)	22	21, 22, 29	20a

Supplementary Figures

Figure S1 ¹³C NMR spectrum of 2 in CDCl₃ at 100 MHz

Figure S2 HPLC analysis of *A. oryzae* NSAR1 transformants expressing two genes in the *pol* cluster

Figure S3 ¹H NMR spectrum of 3 in pyridine-*d*₅ at 400 MHz

Figure S4 ¹³C NMR spectrum of 3 in pyridine-*d*₅ at 100 MHz

Figure S5 ¹H-¹H COSY spectrum of 3 in pyridine-*d*₅ at 400 MHz

Figure S6 HSQC spectrum of 3 in pyridine-d₅ at 400 MHz

Figure S7 HMBC spectrum of 3 in pyridine-d₅ at 400 MHz

Figure S8 NOESY spectrum of 3 in pyridine-d₅ at 400 MHz

Figure S9 HPLC analysis of *A. oryzae* NSAR1 transformants expressing three genes in the *pol* cluster

Figure S12 ¹H-¹H COSY spectrum of **4** in pyridine-*d*₅ at 400 MHz

Figure S13 HSQC spectrum of 4 in pyridine-*d*₅ at 400 MHz

Figure S14 HMBC spectrum of 4 in pyridine-d₅ at 400 MHz

Figure S15 ROESY spectrum of 4 in pyridine-d₅ at 400 MHz

Figure S16¹H NMR spectrum of 5 in pyridine-*d*₅ at 400 MHz

Figure S17 ¹³C NMR spectrum of 5 in pyridine-*d*₅ at 100 MHz

Figure S18 ¹H-¹H COSY spectrum of 5 in pyridine-*d*₅ at 400 MHz

Figure S19 HSQC spectrum of 5 in pyridine-d₅ at 400 MHz

Figure S20 HMBC spectrum of 5 in pyridine-d₅ at 400 MHz

Figure S21 ROESY spectrum of 5 in pyridine-*d*₅ at 400 MHz

Figure S22 ¹H NMR spectrum of 1 in pyridine-*d*₅ at 600 MHz

Figure S23 ¹³C NMR spectrum of 1 in pyridine-*d*₅ at 150 MHz

Figure S24 ¹H-¹H COSY spectrum of 1 in pyridine-*d*₅ at 600 MHz

Figure S25 HSQC spectrum of 1 in pyridine-d₅ at 600 MHz

Figure S26 HMBC spectrum of 1 in pyridine-d₅ at 600 MHz

Figure S27 ROESY spectrum of 1 in pyridine-*d*₅ at 600 MHz

Figure S28 HPLC analysis of the *A. oryzae* NSAR1 transformant expressing all the five genes in the *pol* gene cluster

Figure S31 ¹H NMR spectrum of 8 in pyridine-d₅ at 600 MHz

Figure S32 ¹³C NMR spectrum of 8 in pyridine- d_5 at 150 MHz

Figure S33 ¹H-¹H COSY spectrum of 8 in pyridine-*d*₅ at 600 MHz

Figure S34 HSQC spectrum of 8 in pyridine-d₅ at 600 MHz

Figure S35 HMBC spectrum of 8 in pyridine-d₅ at 600 MHz

Figure S36 ROESY spectrum of 8 in pyridine-d₅ at 600 MHz

Figure S37 ¹H NMR spectrum of 9 in pyridine-*d*₅ at 600 MHz

Figure S38 13 C NMR spectrum of 9 in pyridine- d_5 at 150 MHz

Figure S39 ¹H-¹H COSY spectrum of 9 in pyridine-*d*₅ at 600 MHz

Figure S40 HSQC spectrum of 9 in pyridine-d₅ at 600 MHz

Figure S41 HMBC spectrum of 9 in pyridine-d₅ at 600 MHz

Figure S42 ROESY spectrum of 9 in pyridine-d₅ at 600 MHz

Figure S43 ¹H NMR spectrum of 10 in pyridine-*d*₅ at 600 MHz

Figure S44 ¹³C NMR spectrum of 10 in pyridine-*d*₅ at 150 MHz

Figure S45 1 H- 1 H COSY spectrum of **10** in pyridine- d_{5} at 600 MHz

Figure S46 HSQC spectrum of 10 in pyridine-d₅ at 600 MHz

Figure S47 HMBC spectrum of 10 in pyridine- d_5 at 600 MHz

Figure S48 ROESY spectrum of 10 in pyridine-d₅ at 600 MHz

Figure S49 MS analysis of *A. oryzae* NSAR1 transformants co-expressing $efuA_{TC}$ and polC/E (A) Extracted ion chromatogram of 10 and the presumed product; (B) APCI-MS of 10; (C) APCI-MS of the presumed product

Figure S50 ¹H NMR spectrum of 11 in CD₃OD at 600 MHz

Figure S51 ¹³C NMR spectrum of 11 in CD₃OD at 150 MHz

Figure S52 ¹H-¹H COSY spectrum of 11 in CD₃OD at 600 MHz

Figure S53 HSQC spectrum of 11 in CD₃OD at 600 MHz

Figure S54 HMBC spectrum of 11in CD₃OD at 600 MHz

Figure S55 NOESY spectrum of 11 in CD₃OD at 600 MHz

Figure S56 ¹H NMR spectrum of 12 in pyridine-d₅ at 600 MHz

Figure S57 ¹³C NMR spectrum of **12** in pyridine-*d*₅ at 150 MHz

Figure S58 ¹H-¹H COSY spectrum of 12 in pyridine-*d*₅ at 600 MHz

Figure S59 HSQC spectrum of 12 in pyridine-d₅ at 600 MHz

Figure S60 HMBC spectrum of 12 in pyridine-d5 at 600 MHz

Figure S61 ROESY spectrum of 12 in pyridine- d_5 at 600 MHz

Figure S62 ¹H NMR spectrum of 13 in pyridine-*d*₅ at 600 MHz

Figure S63 ¹³C NMR spectrum of 13 in pyridine-*d*₅ at 150 MHz

Figure S64 1 H- 1 H COSY spectrum of **13** in pyridine- d_{5} at 600 MHz

Figure S65 HSQC spectrum of 13 in pyridine-d₅ at 600 MHz

Figure S66 HMBC spectrum of 13 in pyridine-d₅ at 600 MHz

Figure S67 ROESY spectrum of 13 in pyridine-d₅ at 600 MHz

Figure S68 HPLC analysis of A. oryzae NSAR1 transformants co-expressing fsoATC and polB/C/E

Supplementary References

- F. J. Jin, J.-i. Maruyama, P. R. Juvvadi, M. Arioka and K. Kitamoto, *FEMS Microbiol Lett*, 2004, 239, 79-85.
- A. M. L. Seca, A. M. S. Silva, A. J. D. Silvestre, J. A. S. Cavaleiro, F. M. J. Domingues and C. P. Neto, *Phytochem Anal*, 2000, 11, 345-350.
- 3. S. Nakamura, T. Yamada, H. Wada, Y. Inoue, T. Goto and Y. Hirata, *Tetrahedron Lett*, 1965, 6, 2017-2022.
- 4. H. Ageta and T. Ageta, *Chem Pharm Bull*, 1984, **32**, 369-372.
- 5. W. D. Nes, R. Y. Wong, J. F. Griffin and W. L. Duax, *Lipids*, 1991, 26, 649-655.
- 6. A. K. Chakravarty, K. Masuda, H. Suzuki and H. Ageta, *Tetrahedron*, 1994, 50, 2865-2876.
- 7. K. Nishimoto, M. Ito, S. Natori and T. Ohmoto, *Tetrahedron*, 1968, 24, 735-752.
- 8. R. Tanaka and S. Matsunaga, *Phytochemistry*, 1991, **30**, 4093-4097.
- 9. R. Tanaka and S. Matsunaga, Phytochemistry, 1988, 27, 3579-3584.
- T. Fujii, H. Yamaoka, K. Gomi, K. Kitamoto and C. Kumagai, *Biosci Biotech Biochem*, 1995, 59, 1869-1874.
- O. Yamada, S. Na Nan, T. Akao, M. Tominaga, H. Watanabe, T. Satoh, H. Enei and O. Akita, J Biosci Bioeng, 2003, 95, 82-88.
- F. J. Jin, J. Maruyama, P. R. Juvvadi, M. Arioka and K. Kitamoto, *Biosci Biotechnol Biochem*, 2004, 68, 656-662.