Supporting Information

A Facile and Light-Controllable Drug Combination for enhanced
Photopharmacology
Guangxi Du, Jielin Fu, Yuanqin Zheng, Fuqiang Hu, Xin Shen, Baolin Li, Xiaohu Zhao * and Zhipeng Yu^{*}
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
E-mail addresses: xhzhao@scu.edu.cn; zhipengy@scu.edu.cn.

1. Materials and Methods

1.1 Bacterial strain and growth conditions

The bacterial strains used in this study were E. coli BL21 (DE3) And S. aureus ATCC 23350. E. coli were grown in Luria Bertani (LB) medium ($5 \mathrm{~g} / \mathrm{L}$ yeast extract; $10 \mathrm{~g} / \mathrm{L}$ tryptone; $5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}$) at $37^{\circ} \mathrm{C}$ and S. aureus were grown in Luria Bertani (LB) medium $(5 \mathrm{~g} / \mathrm{L}$ yeast extract; $10 \mathrm{~g} / \mathrm{L}$ tryptone; $5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl})$ at $37^{\circ} \mathrm{C}$.

1.2 Solid medium

For bacterial patterning LB Agar (40 g/L Agar) was used. The required concentration of only 1A $(5 \mu \mathrm{M})$, only 1B $(100 \mu \mathrm{M})$ and a combination of $1 \mathrm{~A}(5 \mu \mathrm{M})$ and 1B (100 $\mu \mathrm{M})$ were dissolved in 12 mL LB Agar after which it was mixed and solidified in a plate. Subsequently, the plate was partly covered with a sterile thin cardboard and irradiated with $\lambda=532 \mathrm{~nm}$ for 30 minutes. The plate was then streaked with approximately $10^{8} \mathrm{CFU} / \mathrm{ml}$ of S. aureus ATCC 23350 and incubated for $12 \mathrm{~h}(1 \mathrm{~A})$ or $36 \mathrm{~h}(1 \mathrm{~B}$, combination of 1 A and 1 B$)$ at $37^{\circ} \mathrm{C}$.
1.3 Antibacterial activity and bacterial growth curves.

Overnight cultures of E. coli BL21 (DE3) and S. aureus ATCC 23350 were diluted to an OD_{600} of 0.1 and $100 \mu \mathrm{l}$ of this cell suspension was added to $100 \mu \mathrm{l}$ medium containing antibiotics at the corresponding concentration. Cells were grown in a microtiter plate at $37^{\circ} \mathrm{C}$, for E. coli and S. aureus and cell density (600 nm) was measured every 1 h for 12 h , with a 10 sec shaking step before each measurement, in a microplate reader (iMarks, BIO-RAD). The OD_{600} collected every hour will be subtracted from the OD_{600} at 0 h to get the corrected OD_{600}. MIC is the minimum concentration when bacteria are no longer growing over time and the cell suspension is transparent after OD_{600} test.

1.4 Drug combination and methodology of irradiation

Method of irradiation: in order to reduce the influence of blue light on bacterial growth and maintain the photo-stationary state of 1 A and 1 C , we decided to expose 10 s every 1 minute with illumination at $\lambda=405 \mathrm{~nm}$ rather than a long period of continuous illumination in 12 hours. The half-life of 1B is long enough, so 1B can be illuminated before adding to the cell suspension.

Drug combination: considering the effect of dilution, two drugs with corresponding concentrations were added directly into the cell suspension and mixed to reach their target concentration. The details are as follows:

The combination of 1A-cis and 1B-trans: Two drugs were directly added to the cell suspension without illumination;

The combination of 1A-cis and 1B-532 nm-PSS: After 1B was exposed to 532 nm light for $5 \mathrm{~min}, 1 \mathrm{~A}$ and 1B were together added to the cell suspension;

The combination of 1A-405 nm-PSS and 1B-405 nm-PSS: After 1A and 1B were added to the cell suspension, the mixture was alternately illuminated at $\lambda=405 \mathrm{~nm}$; The combination of 1 A -cis and 1B-trans: Two drugs were directly added to the cell suspension without illumination;

The combination of 1C-cis and 1B-532 nm-PSS: After 1B was exposed to 532 nm light for $5 \mathrm{~min}, 1 \mathrm{C}$ and 1B were together added to the cell suspension;

The combination of 1C-405 nm-PSS and 1B-405 nm-PSS: After 1A and 1B were added to the cell suspension, the mixture was alternately illuminated at $\lambda=405 \mathrm{~nm}$.

Table S1 Photostationary States (PSS) and half-lives of 1B, 1C, commercial ciprofloxacin and sulfadiazine.

Compound	PSS thermally adapted	PSS irradiated ${ }^{\mathrm{a}}$	Half-life in $\mathrm{ACN}^{\circ} / \mathrm{H}_{2} \mathrm{O}(1 / 1)$ at 25 ${ }^{\circ} \mathrm{C}$
1B	$4: 96^{\mathrm{b}}$	$76: 24^{\mathrm{b}}\left(25: 75^{\mathrm{c}}\right)$	$47.2 \mathrm{~h}^{\mathrm{d}}$
1C	$100: 0^{\mathrm{b}}$	$25: 75^{\mathrm{b}}$	37 s
Ciprofloxacin	N/A	N/A	N/A
Sulfadiazine	N/A	N/A	N/A

a. 1C was irradiated with $\lambda=405 \mathrm{~nm}$ LED; 1B was irradiated with $\lambda=532 \mathrm{~nm}$ laser for 3 min . ${ }^{\text {b. The ratio is cis: trans content in }}$ the case of compounds $\mathbf{1 B}$ and 1C, respectively. ${ }^{\text {c. The ratio is given in parentheses with illumination at } \lambda=405 \mathrm{~nm} \text { LED. d. The }}$ half-life of 1 B was determined in DMSO at $25^{\circ} \mathrm{C}$.

Table S2 MIC values of 1B, 1C, commercial ciprofloxacin and sulfadiazine.

Compound	MIC thermally adapted on E. coli $(\mu \mathrm{M})$	MIC irradiated on a. coli $(\mu \mathrm{M})$	MIC thermally adapted on S. aureus $(\mu \mathrm{M})$	MIC irradiated ${ }^{\text {a }}$ on S. aureus $(\mu \mathrm{M})$
1B	200^{*}	200^{*}	200^{*}	200^{*}
1C	0.8	1	0.8	1
Ciprofloxacin	0.025	0.025	0.025	0.025
Sulfadiazine	4000^{*}	4000^{*}	4000^{*}	4000^{*}

a. 1C was irradiated with $\lambda=405 \mathrm{~nm}$ LED; 1B was irradiated with $\lambda=532 \mathrm{~nm}$ laser for 3 min . ${ }^{*}$ MIC values were determined up to limited solubility.
2. Synthesis procedure

S1-1 S1-2

S4
1A
Scheme. S1 Synthesis of 1A.

1-(4-bromo-2-fluoro-5-methylphenyl) ethan-1-one(S1-1)

To an oven-dried flask under nitrogen was weighed $\mathrm{AlCl}_{3}(7.76$ $\mathrm{g}, 58.20 \mathrm{mmol})$. To this was added DCM $(30 \mathrm{~mL})$ and 2-brloro-4fluorotoluene $(5.00 \mathrm{~g}, 26.46 \mathrm{mmol})$. Acetyl chloride (2.82 mL , 39.68 mmol) was added dropwise over 30 min . After stirring for three hours at room temperature, the solution was cooled with an ice bath and the excess AlCl_{3} was
destroyed by the slow addition of cold water. The aqueous and organic layers were separated. The water layer was extracted with DCM. The combined organic layers were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure followed by silica sol gel column chromatography $($ Petroleum $/$ Ethyl acetate $=20 / 1)$ to furnish the product $\mathbf{S 1 - 1}(4.93 \mathrm{~g}$, $21.43 \mathrm{mmol}, 81 \%$) as a yellow liquid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.73(\mathrm{dd}, \mathrm{J}=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, 1H), 2.61 (d, J = $4.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $195.00(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 159.79(\mathrm{~d}, \mathrm{~J}=256.5 \mathrm{~Hz}), 134.48(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 131.55(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}), 130.31(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}), 124.32(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}), 120.63(\mathrm{~d}, \mathrm{~J}=27.0 \mathrm{~Hz}), 31.40$ (d, $\mathrm{J}=7.8 \mathrm{~Hz}$), 21.91. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.13$. HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrFO}^{+} 230.9815\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 230.9821.
ethyl 3-(4-bromo-2-fluoro-5-methylphenyl)-3-oxopropanoate (S1-2)

Added diethyl carbonate $(4.85 \mathrm{~g}, 41.04 \mathrm{mmol})$ to a 150 mL reaction flask, sodium hydride ($60 \%, 2.05 \mathrm{~g}, 51.3$ mmol), 50 mL of anhydrous toluene, Raised the temperature to reflux, then slowly added $\mathbf{S 1 - 1}(4.72 \mathrm{~g}, 20.52 \mathrm{mmol})$ dropwise 20 mL of toluene solution. The dripping was completed in about 2 h , and the reaction was continued for 3 h after the dripping was completed. After the reaction was completed, slowly cooled to room temperature, Adjusted the pH to neutral with dilute $5 \% \mathrm{HCl}$ and removed the solvent. Then extracted the aqueous layer with DCM and the combined organic layers were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure followed by silica sol gel column chromatography (Petroleum/Ethyl acetate $=15 / 1$) to furnish the product S1-2 ($6.86 \mathrm{~g}, 9.94 \mathrm{mmol}, 47 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{dd}, \mathrm{J}=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.62,189.58,167.27,167.25$, 160.91, 158.37, 131.83, 131.80, 131.31, 131.21, 127.38, 127.28, 123.27, 123.14,
$120.80,120.52,61.39,49.77,49.69,21.96,14.08 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 112.84. HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrFO}_{3}{ }^{+} 303.0027\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 303.0021.
methyl 7-bromo-1-cyclopropyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylate (S1)

A solution of S1-2 $(6.06 \mathrm{~g}, 20 \mathrm{mmol})$ and N ' N dimethylformamide dimethyl acetal ($3.01 \mathrm{~g}, 20 \mathrm{mmol}$) in 30 mL of THF was stirred overnight at room temperature. The mixture was concentrated under vacuum to give the mixture as a yellow oil. The oil was taken up in 90 mL of THF, cyclopropylamine $(1.14 \mathrm{~g}, 20 \mathrm{mmol})$ was added, and then the mixture was stirred in an ice bath for 1 h . The mixture was concentrated under vacuum to give a yellow oil. This oil was combined with $\mathrm{K}_{2} \mathrm{CO}_{3}(3.75 \mathrm{~g}, 27.2 \mathrm{mmol})$ in 90 mL of DMF and heated for 1 h (steam bath). After this time the mixture was added to ice water and the precipitate filtered was dried and then recrystallized from DCM to give white solid $\mathbf{S 1}(4.17 \mathrm{~g}$, $11.95 \mathrm{mmol}, 62 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H})$, $4.38(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{tt}, \mathrm{J}=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.43(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{tdd}, \mathrm{J}=6.4,5.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.82,165.59,148.53,139.29,135.41,130.22,128.81,127.54$, 120.08, 111.20, 60.94, 34.44, 22.56, 14.44, 8.15. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{3}{ }^{+} 350.0386\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 350.0378 .
ethyl 7-bromo-6-(bromomethyl)-1-cyclopropyl-4-oxo-1,4-dihydroquinoline-3carboxylate (S2)

Compound $\mathbf{S 1}(1.68 \mathrm{~g}, \quad 5 \mathrm{mmol})$, tetrachloromethane (25 mL), benzoyl peroxide $(0.12 \mathrm{~g}$, 0.5 mmol) and NBS ($1.07 \mathrm{~g}, 6 \mathrm{mmol}$) were added sequentially to a round-bottomed flask equipped with a reflux condenser. The reaction mixture was stirred for reflux overnight. After cooling
to $20^{\circ} \mathrm{C}$, the reaction mixture was quenched with water (40 mL), extracted with DCM ($3 \times 30 \mathrm{~mL}$), washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure followed by silica sol gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to furnish the product $\mathbf{S 2}$ as a white solid ($1.16 \mathrm{~g}, 2.7 \mathrm{mmol}, 54 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H})$, $4.37(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{tt}, \mathrm{J}=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ $(\mathrm{td}, \mathrm{J}=6.4,5.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.37, 165.13, 148.96, 140.95, 134.26, 130.07, 129.18, 127.82, 121.40, 111.87, 61.08, 34.56, 32.51, 14.41, 8.28. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NO}_{3}{ }^{+} 427.9491$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 427.9485 .
ethyl 7-bromo-6-(((2-bromophenyl) thio) methyl)-1-cyclopropyl-4-oxo-1,4-dihydroquinoline-3-carboxylate (S5)

A 50 mL flask was charged with $\mathbf{S 2}(0.86 \mathrm{~g}$, $2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{~g}, 2.4 \mathrm{mmol})$ in DMF (3 mL). Then thiophenols $(0.38 \mathrm{~g}, 2 \mathrm{mmol})$ was added at room temperature with constantly stirring, and this mixture was kept at $110^{\circ} \mathrm{C}$ for 2
h. And then 30 mL of water was added to this reaction mixture, and the precipitated solids are washed several times with water and then dried. The dry precipitate filtered was washed with DCM ($3 \times 10 \mathrm{~mL}$) to give $\mathbf{S 3}$ as a white solid ($0.69 \mathrm{~g}, 1.3 \mathrm{mmol}, 65$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H})$, 7.57 (dd, J = 7.9, 1.6 Hz, 1H), 7.28 (d, J = $1.6 \mathrm{~Hz}, 0 \mathrm{H}$), 7.26 - 7.22 (m, 1H), 6.98 (dd, $\mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{tt}, \mathrm{J}=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.34(\mathrm{~m}$, 2 H), 1.16 (tdd, $\mathrm{J}=5.4,4.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.53$, $165.58,154.69,148.92,140.78,133.66,132.98,128.59,128.40,127.74,127.32$, $122.64,120.65,113.85,112.84,111.83,70.03,61.11,34.51,14.46,8.27$. HRMS (ESI)
calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+} 535.9525\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 535.9535 .
ethyl (Z)-1-cyclopropyl-4-oxo-1,6-dihydro-4H-benzo[2,3][1,4,5]thiadiazocino[7,6-g]quinoline-3-carboxylate (S4)

In a glovebox, $\mathbf{S 3}(269 \mathrm{mg}, 0.5 \mathrm{mmol})$, di-tert-butyl hydrazine-1,2-dicarboxylate (140 mg , $0.6 \mathrm{mmol})$, CuI ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (319 $\mathrm{mg}, 1.5 \mathrm{mmol}$), acetonitrile (5 mL) and 1,2-dimethyl-ethylenediamine ($9 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added sequentially to a pressure tube. The tube was capped with a crimp cap equipped with a PTFE septum, transferred out of the glovebox and stirred at $82{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was quenched with water, extracted with DCM, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure and the crude residue (1 equiv) was treated with 10 mL of DCM and 5 mL of TFA. The reaction was stirred at $\mathrm{r} . \mathrm{t}$ for 2 h . It was traced with TLC till the conversion was completed. Then it was neutralized with saturated NaHCO_{3}, the organic layer was separated and the water layer was extracted 3 x with 15 mL of DCM. The combined organic layers were dried over MgSO_{4}. After filtration, the organic phase was concentrated under reduced pressure. The resulting residue, DCM $(10 \mathrm{~mL})$ and pyridine (1.24 equiv) were added sequentially to a round-bottomed flask. NBS (1.2 equiv) was added portionwise over the course of 2 min under stirring and the reaction mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to furnish the cyclic azobenzene product $\mathbf{S 4}$ as a yellow solid (32 mg , $0.079 \mathrm{mmol}, 16 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (dd, J = 7.9, 1.2 Hz, 1H), $6.91(\mathrm{td}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{tt}, \mathrm{J}=$ 7.2, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (t, J = 7.1 Hz, 3H), 1.32 - 1.19 (m, 2H), 1.07 (ddt, J = 10.5, 5.8, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.47, 165.42,
$160.35,157.98,148.89,140.27,134.84,129.37,128.13,127.67,127.46,123.05$, $121.79,118.71,111.71,104.79,77.48,77.36,77.16,76.84,61.10,34.68,34.53,14.52$, 8.46, 8.10. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+} 406.1220\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 406.1213. (Z)-1-cyclopropyl-4-oxo-1,6-dihydro-4H-benzo[2,3][1,4,5]thiadiazocino[7,6-g]quinoline-3-carboxylic acid (1A)

Ethanol (3 mL) and $2 \mathrm{M} \mathrm{NaOH}(3 \mathrm{~mL})$ were added to the $\mathbf{S 4}$ and stirred at reflux until total conversion, as indicated by TLC. The mixtures were acidified to pH 2-3 with diluted hydrochloric acid. The resultant precipitates were collected, washed and dried in vacuo to afford the product $\mathbf{1 A}$ (72%) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 14.77(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.28(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, \mathrm{J}=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{tt}, \mathrm{J}=7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{ddd}, \mathrm{J}=8.9,4.6,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $_{6}$) δ 177.60, 165.94, 161.21, 157.66, 149.92, $141.08,134.30,129.03,128.37,127.79,124.71,124.40,121.04$, 119.71, 108.07, 107.24, 36.46, 33.82, 8.11. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$ $379.0991\left[\mathrm{M}+\mathrm{H}^{-}\right]$, found 379.0998 .

Scheme. S2 Synthesis of 1B.
(E)-1-(2,6-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-2-(2,6difluorophenyl) diazene (S6)

S5 (333 mg, 1 mmol), which was prepared from the previous literature [1], potassium acetate (294 mg ,
$3 \mathrm{mmol}), 4,4,5,5$-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxa-borolan-2-yl)-1,3,2dioxaborolane ($762 \mathrm{mg}, 3 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(44 \mathrm{mg}, 0.06 \mathrm{mmol})$ were dissolved in deoxygenated 1,4-dioxane (6 mL). The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred overnight under N_{2}. After removal of the solvent under reduced pressure, the residue was extracted with DCM and water. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (Petroleum/Ethyl acetate $=10 / 1$) to furnish the red product $\mathbf{T} 2(274 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.69-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}$, 12H) ppm.

4-amino-N-(5-bromopyrimidin-2-yl) benzenesulfonamide

4-acetamidobenzenesulfonyl chloride ($1.402 \mathrm{~g}, 6$ mmol) was treated with 2-Amino-5-bromopyrimidine ($0.870 \mathrm{~g}, 5 \mathrm{mmol}$) in 5 mL pyridine at $40^{\circ} \mathrm{C}$ for 2 h . Then, 30 mL of 1 M hydrochloric acid was added and a lot of precipitation was precipitated for filtration. The crude solid was washed with water and directly used in the next step. All the intermediates were dissolved in $20 \% \mathrm{NaOH}$ solution and the reaction mixtures were heated to reflux in an oil bath for 2 h . Then the reaction solution was quenched with 1 M hydrochloric acid to pH 7.4 , resulting yellow solid. The precipitation was obtained and washed with water, then dried overnight in a vacuum desiccator, and recrystallized from DCM as a white solid ($0.592 \mathrm{~g}, 1.8 \mathrm{mmol}$, 36 \%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.51$ (s, 1H), 8.64 (s, 2H), 7.67-7.55 (m, 2H), 6.62 - 6.51 (m, 2H), $6.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) δ 159.07, 156.23, 153.71, 130.34, 124.71, 112.66, 112.52, 55.38. HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+} 328.9702\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 328.9697.
(E)-4-amino-N-(5-(4-((2,6-difluorophenyl) diazenyl)-3,5-difluorophenyl)-pyrimi-din-2-yl) benzenesulfonamide (1B)

S6 (228 mg, 0.6 mmol), 4-aminoN -(5-bromopyrimidin-2-yl) benzenesulfonamide ($165 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(22 \mathrm{mg}, 0.03 \mathrm{mmol})$, and potassium carbonate ($207 \mathrm{mg}, 1.5$ mmol) were dissolved in deoxygenated 1,4-dioxane (3 mL). The reaction mixture was heated to $90{ }^{\circ} \mathrm{C}$ and stirred overnight under N_{2}. After removal of the solvent under reduced pressure, the residue was extracted with DCM and water. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$ $=20 / 1)$ to furnish the red product $\mathbf{1 B}(103 \mathrm{mg}, 0.205 \mathrm{mmol}, 41 \%)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) 11.63 (s, 1H), 9.02 (s, 2H), 7.91 - 7.79 (m, 2H), $7.71-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 157.00,156.20,156.13,156.08,155.54,155.50,153.55$, $153.50,152.96,152.74,138.58,130.34,129.43,129.07,124.20,123.36,112.92$, 112.72, 112.69, 111.75, 110.13, 109.92. ${ }^{19}$ F NMR (376 MHz, DMSO-d $_{6}$) $\delta-120.28,-$ 121.70. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}^{+} 503.0908\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 503.0905.

Scheme. S3 Synthesis of 1C.
methyl 4-bromo-3-((2-bromobenzyl) oxy) benzoate (S7-1)

A 50 mL flask was charged with 1-bromo-2(bromomethyl) benzene ($2.50 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.66 \mathrm{~g}, 12 \mathrm{mmol})$ in DMF (10 mL). Then methyl 4-bromo-3-hydroxybenzoate $(2.30 \mathrm{~g}, 10 \mathrm{mmol})$ was added portionwise at room temperature with constantly stirring, and this mixture was kept at $110^{\circ} \mathrm{C}$ for 2 h . After
cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was quenched with water, extracted with EA, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography (Petroleum/Ethyl acetate $=20 / 1$) to give $\mathbf{S 7 - 1}$ as a white solid ($3.66 \mathrm{~g}, 9.2 \mathrm{mmol}, 92$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, J $=16.7,8.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, \mathrm{J}=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.23 (s, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.30, 154.74, 135.43, 133.47, 132.57, 130.66, 129.39, 128.70, 127.70, 123.41, 121.93, 118.17, 113.94, 70.19, 52.43. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{O}_{3}{ }^{+} 398.9226\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 398.9234.

5,6-di-tert-butyl $\quad 9$-methyl $\quad 6 \mathrm{H}$-dibenzo $[b, f][1,4,5]$ oxadiazocine- $5,6,9(12 \mathrm{H})$ tricarboxylate (S7-2)

In a glovebox, $\mathbf{S 7 - 1}(832 \mathrm{mg}, 2 \mathrm{mmol})$, di-tert-butyl hydrazine-1,2-dicarboxylate ($558 \mathrm{mg}, 2.4 \mathrm{mmol}$), CuI ($380 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(1.27 \mathrm{~g}, 6 \mathrm{mmol}$), acetonitrile $(10 \mathrm{~mL})$ and 1,2-dimethylethylenediamine $(35 \mathrm{mg}, 0.4$ mmol) were added sequentially to a pressure tube. The tube was capped with a crimp cap equipped with a PTFE septum, transferred out of the glovebox and stirred at 82 ${ }^{\circ} \mathrm{C}$ for 18 h . After cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was quenched with water, extracted with DCM, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography (Petroleum/Ethyl acetate $=5 / 1$) to furnish $\mathbf{S 7 - 2}$ product as a white solid ($351 \mathrm{mg}, 0.72 \mathrm{mmol}, 36 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.06$ (m, 2H), $5.22(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=$ $6.0 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.43,153.33,152.45,151.88,138.49$, 134.82, 129.94, $128.74,128.24,128.20,128.09,126.13,125.39,122.82,122.27$, 83.34, 82.95, 74.04, 52.30, 28.19, 28.14. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+}$
$471.2126\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 472.2122 .
methyl (Z)-12H-dibenzo[b,f][1,4,5]oxadiazocine-9-carboxylate (S7-3)

In a glovebox, S7-2 (243 mg, 0.5 mmol$)$, DCM (10 mL) and trimethylsilyl iodide ($200 \mathrm{mg}, 1 \mathrm{mmol}$) were added sequentially to a round-bottomed flask equipped with a magnetic stirring bar. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 10 min before it was treated with triethylamine ($101 \mathrm{mg}, 1 \mathrm{mmol}$). The flask was capped, transferred out of the glovebox where the reaction mixture was quenched with water $(5 \mathrm{~mL} / \mathrm{mmol})$, extracted with DCM, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the organic phase was concentrated under reduced pressure. The resulting residue, $\mathrm{DCM}(10 \mathrm{~mL})$ and pyridine $(49 \mathrm{mg}, 0.64 \mathrm{mmol})$ were added sequentially to a round-bottomed flask. NBS ($107 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added portionwise over the course of 1 min under stirring and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to furnish the cyclic azobenzene product S7-3 as a yellow solid ($68 \mathrm{mg}, 0.24 \mathrm{mmol}, 48 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{td}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{dd}, \mathrm{J}=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.70$ (dd, J = 7.9, 1.4 Hz, 1H), 4.09 (d, J = $11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.88,160.78,157.65,133.99,130.92,129.75$, 129.33, 128.06, 127.38, 124.77, 121.56, 119.10, 117.22, 52.28, 34.73. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 269.0921\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 269.0916.
(Z)-12H-dibenzo[b,f][1,4,5]thiadiazocine-2-carboxylic acid (S8)

A mixture of $\mathbf{S 7 - 3}(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ $(1 / 1), \mathrm{LiOH}(15 \mathrm{mg}, 0.6 \mathrm{mmol})$ was stirred vigorous at room temperature over 30 min and was traced with TLC till the conversion was completed. The mixture was then evaporated to remove organic solution in vacuum and was basified with 1 M aq. HCl to adjust the pH
around 2 and extracted twice with DCM. The organic layer was separated, dried over magnesium sulfate and concentrated in vacuo. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=16 / 1$) to furnish the product $\mathbf{S 8}(23 \mathrm{mg}, 0.05 \mathrm{mmol}$, 81 \%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.11$ ($\mathrm{s}, 1 \mathrm{H}$), $7.53(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dd, $J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 166.01, 156.19, 149.14, 142.97, 131.69, 130.51, 130.07, 128.76, 123.44, 122.25, 122.09, 121.02, 119.78, 71.25, 39.52. HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}-255.0775$ [$\mathrm{M}+\mathrm{H}^{-}$], found 255.0782.
(Z)-7-(4-(12H-dibenzo[b,f][1,4,5]oxadiazocine-9-carbonyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (1C)

Compound S8 (565 mg, 2.5 mmol) was suspended in SOCl_{2} $(10 \mathrm{~mL})$. The resulting mixture was stirred for 2 h under reflux.

Next, the mixture was concentrated in vacuo and the resulting residue was redissolved in DCM (5 mL). This solution was added dropwise to an ice-cooled solution of ciprofloxacin ($331 \mathrm{mg}, 1$ $\mathrm{mmol})$ and TEA ($111 \mathrm{mg}, 1.1 \mathrm{mmol}$) in DCM (20 mL) and stirred for 1 h on ice. Next, the mixture was stirred for an additional 16 h at room temperature. The volatiles were evaporated and the crude product was purified by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}=97 / 3$) resulting in a yellow solid ($410 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.90(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{q}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H})$, $3.54(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=57.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.26,169.21,167.01,157.18,147.80,146.28$,
143.44, 139.10, 135.74, 130.88, 130.34, 129.02, 123.71, 120.63, 120.47, 120.26, $112.95,108.44,105.39,70.83,35.46,29.84,8.44 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 121.11. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{FN}_{5} \mathrm{O}_{5}-568.2002$ [$\mathrm{M}+\mathrm{H}^{-}$], found 568.1994 .

Reference

1 Mutruc D, Goulet-Hanssens A, Fairman S, Wahl S, Zimathies A, Knie C, Hecht S, Angew Chem Int Ed, 2019, 58: 12862.

3. Photostationary states of $1 \mathrm{~A}, ~ 1 \mathrm{~B}$ and 1 C

Fig. S1 Aromatic regions of the ${ }^{1}$ NMR spectra of $\mathbf{1 A}$ before (red) and after irradiation (blue).

after irradiation at

Fig. S2 Aromatic regions of the ${ }^{1}$ NMR spectra of 1B before (red) and after irradiation at 532 nm (blue) and after irradiation at 405 nm (pink).

Fig. S3 Aromatic regions of the ${ }^{1}$ NMR spectra of 1C before (red) and after irradiation (blue).

4. MIC determination

Fig. S4 Bacterial growth curves of E. coli BL21 (DE3) at increasing concentrations of ciprofloxacin (CPFX). A) Thermally-adapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.
A

B

Fig. S5 Bacterial growth curves of E. coli BL21 (DE3) at increasing concentrations of sulfadiazine (SDZ). A) Thermally-adapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S6 Bacterial growth curves of E. coli BL21 (DE3) at increasing concentrations of 1A. A) Thermally-adapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S7 Bacterial growth curves of E. coli BL21 (DE3) at increasing concentrations of 1B. A) Thermally-adapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. C) $\lambda=532 \mathrm{~nm}-$ light irradiated. The measurement is the average of three results.
A

B

Fig. S8 Bacterial growth curves of E. coli BL21 (DE3) at increasing concentrations of 1C. A) Thermally-adapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S9 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of ciprofloxacin (CPFX). A) Thermally-adapted sample B) $\lambda=405$ nm -light irradiated. The measurement is the average of three results.

Fig. S10 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of sulfadiazine (SDZ). A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.
A

B

Fig. S11 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of $\mathbf{1 A}$. A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}$-light irradiated.

The measurement is the average of three results.

Fig. S12 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of 1B. A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}$-light irradiated. C) $\lambda=532 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S13 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of 1C. A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S14 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of $\mathbf{1 A}$ with $\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{M 1 B}$. A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}-$ light irradiated. C) $\lambda=532 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S15 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of $\mathbf{1 C}$ with $\mathbf{1 0 0} \boldsymbol{\mu}$ M 1B. A) Thermally-adapted sample B) $\lambda=405 \mathrm{~nm}-$ light irradiated. C) $\lambda=532 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

Fig. S16 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of combination 1 A with $\mathbf{1 0 0} \boldsymbol{\mu}$ M sulfadiazine (SDZ). A) Thermallyadapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.
A

B

Fig. S17 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of combination $\mathbf{1 C}$ with $\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{M}$ sulfadiazine (SDZ). A) Thermallyadapted sample. B) $\lambda=405 \mathrm{~nm}$-light irradiated. The measurement is the average of three results

Fig. S18 Bacterial growth curves of S. aureus ATCC 23350 at increasing concentrations of combination Ciprofloxacin (CPFX) with $100 \mu \mathrm{M}$ 1B. A) Thermally-adapted sample. B) $\lambda=532 \mathrm{~nm}$-light irradiated. The measurement is the average of three results.

5. NMR spectra of compounds

[^0] f1 (ppm)

$\begin{array}{lllllllllllllll}210 & 190 & 170 & 150 & 130 & 110 & 90 & 70 & 50 & 30 & 10 & -10 \\ f 1(\mathrm{ppm})\end{array}$

 f1 (ppm)

$210200190180170160150140130120110100 \quad 90 \quad 80 \quad 70 \quad 60 \quad 50$ f1 (ppm)

[^0]:

