Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Microwave-assisted Rapid Synthesis of Chiral Oxazolines

Haowen Deng^{a, b, c, d}, Jianshe Wang^e, Wei He^f, Yang Ye^{a, b, c, d}, Renren Bai^{a, b, c, d}, Xuelei Zhang^{a, b, c, d}, Xiang-

Yang Ye^{a, b, c, d,} *, Tian Xie^{a, b, c, d,} * and Zi Hui^{a, b, c, d,} *

^aSchool of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China

^bKey Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China

^cEngineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang

Province, China

^dCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, China

^eDrug Discovery, Hangzhou PurpleCrystal Pharma Co. Ltd., Hangzhou, Zhejiang 311121, China

^fChemical Manufacturing and Control, Adlai Nortye Ltd., Hangzhou, Zhejiang 311121, China

Table of Contents

I. Experimental Section	S2-S20
Part 1. General Information	S2
Part 2. Microwave Irradiation Experiment and General Procedure	S3-S4
Part 3. Characterization Data of All Compounds	S4-S22
II. Spectral Data for New Compounds	S23-S115
III. References	S116

I. Experimental Section

Part 1. General Information

All operations were carried out at room temperature and atmospheric environment. Chlorobenzene was purchased (Energy Chemical, China) and used directly. Deuterated solvents were used as received (CDCl₃, C₂D₆SO from Energy Chemical, China). ZnCl₂ (Sinopharm Group Co., China), CoCl₂ (Energy Chemical, China), CoBr₂ (Energy Chemical, China), CoI₂ (Energy Chemical, China) were purchased and used as received. Unless otherwise noted, all other reagents and starting materials were purchased in the analytical purity from commercial sources and used without further purification.

Column chromatography was performed using silica gel 300-400 mesh (purchased from Liangchen Silicon Material CO., Ltd. China) as the solid support. All NMR spectra were recorded on Bruker Avance 500 MHz spectrometer at STP unless otherwise indicated. ¹H NMR and ¹³C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in ¹H NMR and ¹³C NMR spectra were set at 7.26 ppm and 77.16 ppm, respectively. High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. Low resolution mass spectra were measured on Agilent 1260 Infinity II/6125 mass spectrometer. Melting point was recorded on a micro melting point apparatus (X-4, Yuhua Co., Ltd, Gongyi, China).

Part 2. Microwave irradiation experiment and general procedure

1.Microwave Irradiation Experiment:

All microwave irradiation reactions were carried out in a Biotage[®] Initiator+ microwave reactor, operating with continuous irradiation power from 0 to 400 W and heating up to 300°C with a cut-off of 30 bar pressure. The microwave reactor was used in the standard configuration as delivered. All reactions were carried out in a Biotage[®] microwave vial (2-5 mL) and sealed with an aluminum/Teflon[®] crimp top, which enable to bear maximum internal pressure of 30 bar. The built-in IR sensor of the instrument measures the temperature at all time. After the irradiation period, the reaction vial was cooled down to the ambient temperature by the built-in gas jet cooling before the safety cap was removed¹.

2.General Procedure

General procedure for the reaction of nitrile with β-amino alcohol (Method A): To a flamedried 2-5 mL microwave vial equipped with a magnetic stir-bar was added with β-amino alcohol (1 mmol, 100 mol %), CoBr₂ (21.9 mg,0.1 mmol, 10 mol %), 4A Molecular Sieve (MS, 20% w/w), and nitrile (1 mmol, 100 mol %). Slowly add 2 ml of chlorobenzene along the bottle wall with a dropper. The vial was tightly sealed with aluminum/Teflon[®] crimp top and was exposed to microwave irradiation at a constant temperature of 200 °C for 30 minutes. After completion of the reaction (until no change in pressure was observed), the reaction mixture was cooled to ambient temperature. Subsequently, the reaction mixture was filtered with a Buchner funnel and rinsed three times with a minimum amount of dichloromethane. The solid was recovered after drying in oven. The collected liquid was concentrated in vacuum and then purified by rapid column chromatography.

<u>General procedure for the reaction of nitrile with β -amino alcohol (Method B)</u>: To a flamedried 2-5 mL microwave vial equipped with a magnetic stir-bar was charged with β -amino alcohol (1 mmol, 100 mol %), CoBr₂ (21.9 mg,0.1 mmol, 10 mol %), 4A MS (20% w/w), nitrile (1 mmol, 100 mol %). The vial was tightly sealed with aluminum/Teflon[®] crimp top and was exposed to microwave irradiation at a constant temperature of 200 °C for 30 minutes. After completion of the reaction (until no change in pressure was observed), the reaction mixture was cooled to ambient temperature. Subsequently, the reaction mixture was filtered with a Buchner funnel and rinsed three times with a minimum amount of dichloromethane. The solid was recovered after drying in oven. The collected liquid was concentrated in vacuum and then purified by rapid column chromatography.

CAUTION: When method B was used for experimental operation, since there is no solvent, the reactants should be added to the bottom of the microwave vial as smoothly as possible, so as to avoid local overheating caused by the solid adhering to the vial wall, thus causing explosion.

Part 3. Characterization Data of All Compounds

(3aS,8aR)-2-phenyl-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (3).

The title compound was prepared according to the general procedure. After purification in a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

188.2 mg (0.80 mmol, 80% yield); Method B: 178.8 mg (0.76 mmol, 76% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.01–7.86 (m, 2H), 7.61–7.53 (m, 1H), 7.47–7.41 (m, 1H), 7.40–7.32 (m, 2H), 7.28–7.26 (m, 3H), 5.75 (d, *J* = 7.9 Hz, 1H), 5.50 (ddd, *J* = 8.1, 6.9, 1.7 Hz, 1H), 3.51 (dd, *J* = 17.9, 6.9 Hz, 1H), 3.37 (dd, *J* = 17.9, 1.7 Hz, 1H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 158.7, 136.7, 134.5, 126.0, 123.2, 123.1, 123.0, 122.6, 122.2, 120.4, 120.0, 77.9, 71.7, 34.6.

<u>**HRMS**</u>(ESI) m/z ($[M+H]^+$) calcd for C₁₆H₁₄NO: 236.1070. Found: 236.1098.

M.p.: 142.6-143.6 °C.

(3aS,8aR)-2-(3-methoxyphenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (4)

The title compound was prepared according to the general procedure using (1S,2R)-1-amino-2,3-dihydro-1*H*-inden-2-ol (298.4 mg, 2 mmol, 200 mol %) as the starting amino alcohol. After purification by a flash column

chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (209.5 mg, 0.79 mmol, 79% yield) was isolated as a black solid.

<u>**1H NMR**</u> (500 MHz, CDCl₃): δ 7.60–7.56 (m, 1H), 7.52 (dt, J = 7.6, 1.3 Hz, 1H), 7.47 (dd, J = 2.8, 1.4 Hz, 1H), 7.30–7.26 (m, 4H), 6.99 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 5.74 (d, J = 7.8 Hz, 1H), 5.49 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.82 (s, 3H), 3.54–3.35 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 163.9, 159.3, 141.9, 139.7, 129.2, 129.1, 128.4, 127.4, 125.6, 125.2, 120.8, 118.0, 112.6, 83.1, 76.9, 55.4, 39.8.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₇H₁₆NO₂: 266.1176. Found: 266.1176.

M.p.: 104 °C.

(3aS,8aR)-2-(3-fluorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (5)

F N

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

215.3 mg (0.85 mmol, 85% yield); Method B: 202.6 mg (0.80 mmol, 80% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.72 (dt, J = 7.7, 1.3 Hz, 1H), 7.63 (ddd, J = 9.6, 2.7, 1.5 Hz, 1H), 7.59–7.54 (m, 1H), 7.34 (td, J = 8.0, 5.7 Hz, 1H), 7.31–7.26 (m, 3H), 7.13 (tdd, J = 8.3, 2.6, 0.9 Hz, 1H), 5.75 (d, J = 7.9 Hz, 1H), 5.49 (ddd, J = 8.1, 6.9, 1.7 Hz, 1H), 3.54–3.34 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 163.5–162.7 (m), 161.4, 141.7, 139.6, 129.8 (d, J = 7.9 Hz), 128.5, 127.5, 125.6, 125.3, 124.0 (d, J = 3.1 Hz), 118.2 (d, J = 21.1 Hz), 115.3 (d, J = 23.4 Hz), 83.4, 77.0, 39.7.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃FNO: 254.0976. Found: 254.0975.

M.p.: 162 °C.

(3aS,8aR)-2-(2-fluorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (6)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (129.2 mg, 0.51 mmol, 51% yield) was

isolated as a white solid.

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.85 (td, J = 7.5, 1.9 Hz, 1H), 7.64–7.55 (m, 1H), 7.45–7.36 (m, 1H), 7.31–7.26 (m, 3H), 7.18–7.04 (m, 2H), 5.78 (d, J = 7.9 Hz, 1H), 5.48 (ddd, J = 8.2, 6.8, 1.8 Hz, 1H), 3.56–3.31 (m, 2H).

<u>**13C NMR</u>** (126 MHz, CDCl₃): δ 162.3, 160.9–159.6 (m), 141.7, 139.7, 132.8 (d, J = 8.7 Hz), 131.2 (d, J = 1.9 Hz), 128.5, 127.5, 125.7, 125.3, 123.8 (d, J = 3.8 Hz), 116.6 (d, J = 22.1 Hz), 116.1 (d, J = 10.6 Hz), 82.9, 77.0, 39.8.</u>

<u>HRMS</u>(ESI) m/z ($[M+H]^+$) calcd for C₁₆H₁₃FNO: 254.0976. Found: 254.0977.

M.p.: 99.5 °C.

(3aS,8aR)-2-(4-fluorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (7)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

164.6 mg (0.65 mmol, 65% yield); Method B: 146.9 mg (0.58 mmol, 58% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.93 (dd, J = 8.8, 5.5 Hz, 2H), 7.60–7.53 (m, 1H), 7.31–7.26 (m, 3H), 7.05 (t, J = 8.7 Hz, 2H), 5.73 (d, J = 7.8 Hz, 1H), 5.48 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.54–3.33 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 165.9, 163.2 (d, J = 27.7 Hz), 141.9, 139.7, 130.6 (d, J = 8.8 Hz), 128.5, 127.5, 125.6, 125.3, 124.1 (d, J = 3.1 Hz), 115.4, 115.2, 83.3, 77.0, 39.8.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃FNO: 254.0976. Found: 254.0974.

M.p.: 181.5-182 °C.

(3aS,8aR)-2-(3-chlorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (8)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

191.5 mg (0.71 mmol, 71% yield); Method B: 188.8 mg (0.70 mmol, 70% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.93 (t, J = 1.9 Hz, 1H), 7.81 (dt, J = 7.8, 1.3 Hz, 1H), 7.61–7.53 (m, 1H), 7.40 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.32–7.26 (m, 4H), 5.74 (dd, J = 7.9, 0.8 Hz, 1H), 5.49 (ddd, J = 8.3, 6.9, 1.7 Hz, 1H), 3.56–3.30 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 162.8, 141.7, 139.6, 134.2, 131.2, 129.6, 129.5, 128.5, 128.4, 127.5, 126.4, 125.5, 125.3, 83.4, 77.0, 39.7.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃ClNO: 270.0680. Found: 270.0675.

M.p.: 180.5-181.5 °C.

(3aS,8aR)-2-(4-chlorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (9)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

215.8 mg (0.80 mmol, 80% yield); Method B: 207.7 mg (0.77 mmol, 77% yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.90–7.81 (m, 2H), 7.58–7.52 (m, 1H), 7.36–7.32 (m, 2H), 7.30–7.26 (m, 3H), 5.73 (dd, J = 7.9, 0.8 Hz, 1H), 5.48 (ddd, J = 7.9, 6.9, 1.7 Hz, 1H), 3.53–3.33 (m, 2H). <u>¹³C NMR</u> (126 MHz, CDCl₃): δ 163.1, 141.8, 139.6, 137.4, 129.7, 128.6, 128.5, 127.5, 126.4, 125.6, 125.3, 83.4, 77.0, 39.8.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃ClNO: 270.0680. Found: 270.0673.

М.р.: 230.5 °С.

(3aS,8aR)-2-(3-(trifluoromethyl)phenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (10)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

248.7 mg (0.82 mmol, 82% yield); Method B: 242.6 mg (0.80 mmol, 80% yield). .

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.21 (d, J = 1.7 Hz, 1H), 8.12 (dd, J = 7.9, 1.4 Hz, 1H), 7.69 (ddt, J = 7.9, 1.8, 0.9 Hz, 1H), 7.61–7.55 (m, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.32–7.27 (m, 3H), 5.77 (dd, J = 7.9, 0.8 Hz, 1H), 5.52 (ddd, J = 8.1, 6.9, 1.7 Hz, 1H), 3.56–3.37 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 162.7, 141.6, 139.6, 131.5, 130.9, 130.7, 128.7 (d, J = 4.3 Hz), 128.6, 127.7 (q, J = 3.7 Hz), 127.5, 125.6, 125.3 (q, J = 5.6 Hz), 124.8, 122.6, 83.6, 77.1, 39.7.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₇H₁₃F₃NO: 304.0944. Found: 304.0949.

M.p.: 172.5 °C.

(3aS,8aR)-2-(4-(trifluoromethyl)phenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (11)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (94.1 mg, 0.31 mmol, 31% yield) was isolated as a white solid.

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.07–8.02 (m, 2H), 7.65–7.55 (m, 3H), 7.28 (d, J = 2.3 Hz, 3H), 5.77 (d, J = 7.9 Hz, 1H), 5.52 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.56–3.35 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 162.8, 141.6, 139.6, 133.0, 132.7, 131.2, 128.7 (d, J = 6.0 Hz), 127.6, 125.6, 125.3, 125.2 (q, J = 3.9 Hz), 122.4, 83.6, 77.1, 39.8.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₇H₁₃F₃NO: 304.0944. Found: 304.0938.

M.p.: 188.5 °C.

(3aS,8aR)-2-(3-bromophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (12)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

276.5 mg (0.88 mmol, 88% yield); method B: 263.9 mg (0.84 mmol, 84% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.09 (t, J = 1.8 Hz, 1H), 7.86 (dt, J = 7.9, 1.3 Hz, 1H), 7.58–7.54 (m, 2H), 7.31–7.27 (m, 3H), 7.23 (t, J = 7.9 Hz, 1H), 5.74 (d, J = 7.8 Hz, 1H), 5.48 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.53–3.34 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 162.7, 141.7, 139.6, 134.2, 131.34, 129.9, 129.8, 128.6, 127.5, 126.9, 125.6, 125.3, 122.3, 83.4, 77.0, 39.8.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃BrNO: 314.0175. Found: 314.0181.

М.р.: 192-193 °С.

(3aS,8aR)-2-(3-iodophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (13)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

339.5 mg (0.94 mmol, 94% yield); Method B: 328.7 mg (0.91 mmol, 91% yield).

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 8.29 (t, J = 1.7 Hz, 1H), 7.88 (dt, J = 8.0, 1.4 Hz, 1H), 7.75 (dt, J = 7.9, 1.5 Hz, 1H), 7.58–7.54 (m, 1H), 7.30–7.26 (m, 3H), 7.10 (t, J = 7.9 Hz, 1H), 5.73 (d, J = 7.9 Hz, 1H), 5.48 (ddd, J = 8.3, 7.0, 1.7 Hz, 1H), 3.50 (dd, J = 17.9, 6.9 Hz, 1H), 3.36 (dd, J = 17.9, 1.6 Hz, 1H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 162.5, 141.7, 140.1, 139.6, 137.1, 129.9, 129.8, 128.6, 127.5, 127.4, 125.6, 125.3, 93.7, 83.4, 77.0, 39.8.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₃INO: 362.0036. Found: 362.0031.

M.p.: 197.6 °C.

(3aS,8aR)-2-(3,5-difluorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole(14)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A: 268.5 mg (0.99 mmol, 99% yield); Method B: 263.1 mg (0.97 mmol, 97%

yield).

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 7.56–7.51 (m, 1H), 7.45 (dtd, J = 5.8, 4.6, 2.2 Hz, 2H), 7.30–7.26 (m, 2H), 7.25 (d, J = 5.5 Hz, 1H), 6.86 (tt, J = 8.7, 2.4 Hz, 1H), 5.73 (d, J = 7.8 Hz, 1H), 5.49 (ddd, J = 8.1, 6.9, 1.7 Hz, 1H), 3.52–3.33 (m, 2H).

<u>**13C NMR**</u> (126 MHz, CDCl₃): δ 163.6 (d, J = 12.3 Hz), 162.6–161.0 (m), 141.5, 139.5, 131.0 (t, J = 10.2 Hz), 128.6, 127.6, 125.6, 125.3, 111.5 (d, J = 6.6 Hz), 111.3 (d, J = 6.7 Hz), 106.6 (t, J = 25.3 Hz), 83.7, 77.0, 39.7.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₆H₁₂F₂NO: 272.0881. Found: 272.0874.

M.p.: 160.5-161.5 °C.

(3aS,8aR)-2-(3,4,5-trifluorophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (15)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A: 248.7 mg (0.86 mmol, 86% yield); Method B: 234.3 mg (0.81 mmol, 81%

yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.62–7.51 (m, 3H), 7.28 (q, *J* = 2.9 Hz, 3H), 5.74 (d, *J* = 7.8 Hz, 1H), 5.50 (ddd, *J* = 8.2, 6.9, 1.7 Hz, 1H), 3.54–3.33 (m, 2H).

<u>**13C NMR**</u> (126 MHz, CDCl₃): δ 161.4 (d, J = 2.6 Hz), 151.9 (dd, J = 10.3, 3.7 Hz), 149.9 (dd, J = 10.3, 3.7 Hz), 142.8 (t, J = 15.4 Hz), 141.4, 140.7 (t, J = 15.2 Hz), 139.5, 128.7, 127.6, 125.5, 125.3, 123.9 (td, J = 8.4, 4.7 Hz), 112.9 (d, J = 5.7 Hz), 112.8 (d, J = 5.7 Hz), 84.0, 77.1, 39.7.

<u>**HRMS**</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₆H₁₁F₃NO: 290.0787. Found: 290.0782.

M.p.: 186.5-187.5 °C.

(3aS,8aR)-2-(3,5-dimethylphenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (16)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (134.3 mg, 0.51 mmol, 51% yield)was isolated as a white solid.

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.60–7.55 (m, 3H), 7.27 (t, *J* = 3.8 Hz, 1H), 7.25 (d, *J* = 3.2 Hz, 2H), 7.07 (s, 1H), 5.72 (d, *J* = 7.9 Hz, 1H), 5.46 (ddd, *J* = 8.3, 6.9, 1.8 Hz, 1H), 3.52–3.34 (m, 2H), 2.31 (s, 6H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 164.3, 142.0, 139.7, 137.8, 132.9, 128.4, 127.6, 127.4, 126.0, 125.6, 125.2, 83.0, 76.9, 39.8, 21.1.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₈H₁₈NO: 264.1383. Found: 264.1384.

M.p.: 166.5-167.5 °C.

(3aS,8aR)-2-(3-bromo-5-methylphenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (17)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A: 265.9 mg (0.81 mmol, 81% yield); Method B: 252.7 mg (0.77 mmol, 77%

yield).

<u>**'H NMR**</u> (500 MHz, CDCl₃): δ 7.87 (t, J = 1.8 Hz, 1H), 7.68 (dt, J = 1.7, 0.9 Hz, 1H), 7.58–7.53 (m, 1H), 7.38 (dq, J = 1.8, 0.9 Hz, 1H), 7.30–7.26 (m, 3H), 5.73 (dd, J = 7.9, 0.8 Hz, 1H), 5.48 (ddd, J = 8.3, 6.9, 1.7 Hz, 1H), 3.53–3.33 (m, 2H), 2.32 (s, 3H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 162.9, 141.7, 140.1, 139.6, 134.8, 129.5, 128.5, 128.4, 127.6, 127.5, 125.5, 125.3, 122.0, 83.4, 77.0, 39.8, 20.9.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₈H₁₅BrNO: 328.0332. Found: 328.0324. M.p.: 208.6 °C.

(3aS,8aR)-2-(4-fluoro-3-nitrophenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (18)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 30% ethyl acetate in petroleum ether), the title compound (259.5 mg, 0.87 mmol, 87%

yield) was isolated as a yellow solid.

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.55–8.42 (m, 2H), 7.65–7.60 (m, 1H), 7.52–7.47 (m, 1H), 7.32 (d, J = 5.4 Hz, 1H), 7.21 (s, 1H), 6.89 (d, J = 8.7 Hz, 1H), 5.12 (dd, J = 7.8, 4.8 Hz, 1H), 4.79 (t, J = 4.8 Hz, 1H), 3.32–3.04(m, 2H).

<u>**13C NMR**</u> (101 MHz, DMSO-*d*₆): δ 148.3, 147.0, 141.0 (d, J = 24.7 Hz), 137.9, 136.6, 131.8 (d, J = 46.2 Hz), 130.7, 129.7, 127.9, 126.6, 125.3, 123.6, 120.2, 118.2 (d, J = 12.9 Hz), 116.6, 96.6 (d, J = 32.2 Hz), 71.9, 59.6, 39.7.**M.p.**: 164-166 °C.

1-(3-((3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)phenyl)ethan-1-one (19)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 10% ethyl acetate in petroleum ether), the title compound (133.1 mg, 0.48 mmol, 48% yield) was

isolated in 48% yield as a white solid.

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.47 (t, J = 1.8 Hz, 1H), 8.12 (dt, J = 7.7, 1.5 Hz, 1H), 8.03 (dt, J = 7.9, 1.5 Hz, 1H), 7.60–7.55 (m, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.31–7.26 (m, 3H), 5.82–5.72 (m, 1H), 5.52 (ddd, J = 8.3, 7.0, 1.7 Hz, 1H), 3.57–3.35 (m, 2H), 2.62 (s, 3H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 197.4, 163.2, 141.7, 139.6, 137.1, 132.7, 130.7, 128.7, 128.6, 128.4, 128.3, 127.5, 125.6, 125.3, 83.5, 77.0, 39.7, 26.7.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₈H₁₆NO₂: 278.1176. Found: 278.1175. M.p.: 119-120 °C.

methyl 3-((3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)benzoate (20)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 10% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method

A: 193.6 mg (0.66 mmol, 66% yield); Method B: 173.1 mg, (0.59 mmol, 59% yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 8.57 (t, J = 1.8 Hz, 1H), 8.12 (tt, J = 7.9, 1.4 Hz, 2H), 7.62–7.54 (m, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.30–7.26 (m, 3H), 5.76 (dd, J = 7.9, 0.9 Hz, 1H), 5.51 (ddd, J = 7.9, 6.9, 1.7 Hz, 1H), 3.92 (s, 3H), 3.55–3.36 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 166.4, 163.2, 141.7, 139.6, 132.6, 132.2, 130.3, 129.4, 128.5, 128.4, 128.2, 127.5, 125.6, 125.3, 83.5, 77.0, 52.2, 39.7.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₈H₁₆NO₃: 294.1125. Found: 294.1124.

M.p.: 135-136 °C.

(3aS,8aR)-2-(4-(methylsulfonyl)phenyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (21)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 1% methyl alcohol in dichloromethane), the title compound was isolated as a white solid. Method A: 256.9 mg (0.82 mmol, 82% yield); Method B: 241.3 mg, (0.77

mmol, 77% yield).

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 8.14–8.10 (m, 2H), 7.96–7.91 (m, 2H), 7.57–7.53 (m, 1H), 7.28 (d, J = 2.5 Hz, 3H), 5.78 (dd, J = 7.9, 0.8 Hz, 1H), 5.54 (ddd, J = 8.1, 6.9, 1.7 Hz, 1H), 3.56–3.35 (m, 2H), 3.03 (s, 3H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 162.3, 142.6, 141.4, 139.5, 132.9, 129.2, 128.7, 127.5, 127.2, 125.5, 125.3, 83.7, 77.1, 44.3, 39.7.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₇H₁₆NO₃S: 314.0845. Found: 314.0838. M.p.: 244 °C.

4'-((3a*S*,8a*R*)-3a,8a-dihydro-8*H*-indeno[1,2-*d*]oxazol-2-yl)-[1,1'-biphenyl]-4-ol (22)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 1% methyl alcohol in dichloromethane), the title compound was isolated as a white solid. Method A: 229.2 mg (0.70 mmol, 70% yield);

Method B: 199.7 mg, (0.61 mmol, 61% yield).

<u>**¹H NMR**</u> (500 MHz, DMSO-*d*₆): δ 9.69 (s, 1H), 7.88–7.86 (m, 2H), 7.67–7.65 (m, 2H), 7.56–7.54 (m, 2H), 7.48–7.45 (m, 1H), 7.31–7.29 (m, 1H), 7.27–7.25 (m, 2H), 6.88–6.86 (m, 2H), 5.71 (d, *J* = 7.9 Hz, 1H), 5.54–5.51 (m, 1H), 3.51 (dd, *J* = 18.1, 6.9 Hz, 1H), 3.27–3.23 (m, 1H).

<u>¹³C NMR</u> (126 MHz, DMSO-*d*₆): δ 162.8, 158.2, 143.4, 142.6, 140.3, 130.0, 128.8, 128.7, 128.4, 127.5, 126.2, 125.8, 125.7, 125.6, 116.3, 83.3, 76.7, 39.7.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₂₂H₁₈NO₂: 328.1332. Found: 328.1326.

М.р.: 261-262 °С.

(3aS,8aR)-2-(thiophen-3-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (23)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

219.6 mg (0.91 mmol, 91% yield); Method B: 212.4 mg, (0.88 mmol, 88% yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.86 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.58–7.54 (m, 1H), 7.50 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.31–7.26 (m, 3H), 7.25 (s, 1H), 5.71 (d, *J* = 7.8 Hz, 1H), 5.44 (ddd, *J* = 8.0, 6.9, 1.8 Hz, 1H), 3.52–3.32 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 160.3, 141.9, 139.7, 130.0, 128.8, 128.5, 127.5, 127.3, 126.0, 125.6, 125.3, 83.0, 76.9, 39.7.

<u>**HRMS**</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₄H₁₂NOS: 242.0634. Found: 242.0634.

M.p.: 147 °C.

(3aS,8aR)-2-(thiophen-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (24)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO_2 : 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A:

229.2 mg (0.95 mmol, 95% yield); Method B: 219.6 mg, (0.91 mmol, 91% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.60–7.54 (m, 2H), 7.40 (dd, J = 5.0, 1.2 Hz, 1H), 7.27 (d, J = 3.1 Hz, 2H), 7.25 (d, J = 1.3 Hz, 1H), 7.02 (dd, J = 5.0, 3.7 Hz, 1H), 5.71 (d, J = 7.8 Hz, 1H), 5.47 (ddd, J = 8.1, 6.8, 1.8 Hz, 1H), 3.51–3.33 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 159.7, 141.7, 139.6, 130.4, 129.8, 128.5, 127.5, 125.7, 125.3, 83.7, 77.1, 39.6.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₄H₁₂NOS: 242.0634. Found: 242.0637.

M.p.: 156.5-157.5 °C.

(3aS,8aR)-2-(4-bromothiophen-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (25)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method

A: 297.8 mg (0.93 mmol, 93% yield); Method B: 281.8 mg, (0.88 mmol, 88% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.56–7.53 (m, 1H), 7.48 (d, J = 1.5 Hz, 1H), 7.30–7.26 (m, 4H), 5.72 (dd, J = 7.8, 0.7 Hz, 1H), 5.48 (ddd, J = 7.8, 6.8, 1.7 Hz, 1H), 3.51–3.33 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 158.5, 141.4, 139.5, 132.5, 131.5, 128.6, 127.5, 126.9, 125.6, 125.3, 110.1, 84.0, 77.1, 39.5.

<u>**HRMS**</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₄H₁₁BrNOS: 319.9739. Found: 319.9738.

M.p.: 162-163 °C.

(3aS,8aR)-2-(5-bromothiophen-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (26)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A: 294.6 mg (0.92 mmol, 92% yield); Method B: 281.8 mg, (0.88 mmol, 88% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.55–7.51 (m, 1H), 7.30 (d, J = 3.9 Hz, 1H), 7.29–7.26 (m, 2H), 7.25 (s, 1H), 6.98 (d, J = 3.9 Hz, 1H), 5.68 (d, J = 7.8 Hz, 1H), 5.45 (ddd, J = 7.9, 6.9, 1.7 Hz, 1H), 3.49–3.32 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 158.6, 141.5, 139.5, 131.9, 130.6, 130.5, 128.6, 127.5, 125.6, 125.3, 117.3, 83.8, 77.0, 39.5.

<u>**HRMS**</u> (ESI) m/z ([M+H]⁺) calcd for C₁₄H₁₁BrNOS: 319.9739. Found: 319.9742.

М.р.: 177-178 °С.

(3aS,8aR)-2-(1H-pyrrol-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (27)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a red brown solid. Method A: 188.4 mg (0.84 mmol, 84% yield); Method B: 174.9 mg, (0.78 mmol, 78% yield).

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 10.94 (s, 1H), 7.39 (d, J = 6.9 Hz, 1H), 7.27 (d, J = 2.8 Hz, 1H), 7.25 (d, J = 2.1 Hz, 1H), 7.19 (ddt, J = 7.9, 5.3, 2.6 Hz, 1H), 6.74 (d, J = 21.4 Hz, 2H), 6.19 (t, J = 2.9 Hz, 1H), 5.73–5.69 (m, 1H), 5.49–5.44 (m, 1H), 3.52–3.35 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 159.2, 141.8, 139.7, 128.5, 127.5, 125.6, 125.3, 122.7, 119.8, 113.3, 109.5, 83.3, 76.0, 39.6.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₄H₁₃N₂O: 225.1022. Found: 225.1022.

M.p.: 158.5-159.5 °C.

(3aS,8aR)-2-(pyridin-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (28)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 30% ethyl acetate in petroleum ether), the title compound was isolated as a pale-yellow solid. Method A: 155.9 mg (0.66 mmol, 66% yield); Method B: 125.2 mg, (0.53 mmol, 53% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 9.12 (dd, J = 2.2, 0.9 Hz, 1H), 8.66 (dd, J = 4.9, 1.8 Hz, 1H), 8.19 (dt, J = 8.0, 1.9 Hz, 1H), 7.59–7.54 (m, 1H), 7.32–7.27 (m, 4H), 5.78–5.74 (m, 1H), 5.51 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.55–3.35 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 162.0, 151.9, 149.5, 141.6, 139.6, 135.7, 128.6, 127.5, 125.6, 125.3, 124.0, 123.1, 83.5, 77.0, 39.7.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₅H₁₃N₂O: 237.1022. Found: 237.1016.

M.p.: 166 °C.

(3aS,8aR)-2-(furan-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (29)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a pale-yellow solid. Method A: 220.7 mg (0.98 mmol, 98% yield); Method B: 211.7 mg, (0.94 mmol, 94% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.60–7.54 (m, 1H), 7.49 (d, J = 1.7 Hz, 1H), 7.27 (d, J = 3.5 Hz, 1H), 7.25 (s, 2H), 6.93 (d, J = 3.5 Hz, 1H), 6.44 (dd, J = 3.5, 1.8 Hz, 1H), 5.73 (d, J = 7.7 Hz, 1H), 5.46 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 3.51–3.33 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 156.3, 145.1, 142.9, 141.5, 139.5, 128.5, 127.5, 125.7, 125.2, 114.4, 111.4, 83.5, 76.8, 39.5.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₄H₁₂NO₂: 226.0863. Found: 226.0858.

М.р.: 134 °С.

(3aS,8aR)-2-(benzofuran-2-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (30)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a white solid. Method A: 269.8 mg (0.98 mmol, 98% yield); Method B: 256.0 mg, (0.93 mmol, 93% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 7.64–7.59 (m, 2H), 7.55 (dt, J = 8.4, 0.9 Hz, 1H), 7.36 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.31–7.27 (m, 4H), 7.26–7.23 (m, 1H), 5.81 (d, J = 7.8 Hz, 1H), 5.53 (ddd, J = 7.9, 6.9, 1.7 Hz, 1H), 3.55–3.38 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 156.8, 155.5, 144.2, 141.3, 139.5, 128.7, 127.6, 127.2, 126.6, 125.8, 125.3, 123.5, 122.1, 112.0, 110.7, 83.8, 77.1, 39.6.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₈H₁₄NO₂: 276.1019. Found: 276.1012. M.p.: 219.5-220.5 °C.

(3aS,8aR)-2-(benzo[d][1,3]dioxol-5-yl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole(31)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (117.3 mg, 0.42 mmol, 42% yield)was

isolated as a white solid.

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 7.54 (dt, J = 4.7, 3.0 Hz, 1H), 7.47 (dd, J = 8.1, 1.7 Hz, 1H), 7.39 (d, J = 1.7 Hz, 1H), 7.27 (d, J = 4.5 Hz, 1H), 7.25 (d, J = 3.3 Hz, 2H), 6.77 (d, J = 8.2 Hz, 1H), 5.96 (q, J = 1.4 Hz, 2H), 5.69 (dd, J = 7.9, 0.8 Hz, 1H), 5.44 (ddd, J = 7.9, 6.9, 1.7 Hz, 1H), 3.50–3.31 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 163.5, 150.1, 147.5, 142.0, 139.7, 128.4, 127.4, 125.5, 125.2, 123.3, 121.8, 108.5, 107.9, 101.4, 83.1, 76.8, 39.7.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₇H₁₄NO₃: 280.0968. Found: 280.0969.

М.р.: 243.5 °С.

5-((3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)isobenzofuran-1(3H)-one (32)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 20% ethyl acetate in petroleum ether), the title compound was isolated as a pale-yellow solid. Method A: 279.7 mg (0.96 mmol, 96% yield); Method B: 273.8 mg, (0.94

mmol, 94% yield).

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 8.10–8.05 (m, 2H), 7.90 (d, J = 7.8 Hz, 1H), 7.57–7.54 (m, 1H), 7.30–7.27 (m, 3H), 5.78 (d, J = 7.8 Hz, 1H), 5.55 (ddd, J = 8.2, 6.9, 1.7 Hz, 1H), 5.29 (d, J = 3.1 Hz, 2H), 3.56–3.36 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 170.2, 162.8, 146.3, 141.4, 139.5, 133.4, 129.2, 128.7, 127.9, 127.6, 125.6, 125.5, 125.4, 122.1, 83.8, 77.1, 69.5, 39.7.

HRMS (ESI) m/z ([M+Na]⁺) calcd for C₁₈H₁₃NNaO₃: 314.0788. Found: 314.0780. M.p.: 309-310 °C.

(3aS,8aR)-2-((1H-benzo[d]imidazol-2-yl)methyl)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (33)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% methyl alcohol in dichloromethane), the title compound (144.7 mg, 0.50 mmol, 50%

yield) was isolated as a red brown solid.

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.51 (dd, J = 6.0, 3.2 Hz, 2H), 7.49–7.45 (m, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 6.3, 2.4 Hz, 2H), 7.19 (dd, J = 6.0, 3.2 Hz, 2H), 5.60 (dd, J = 7.9, 1.3 Hz, 1H), 5.37 (ddd, J = 8.3, 7.0, 1.7 Hz, 1H), 3.96 (qd, J = 19.1, 1.2 Hz, 2H), 3.47–3.25 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 164.1, 147.8, 141.2, 139.6, 128.8, 127.5, 125.4, 125.3, 122.2, 83.4, 76.3, 39.5, 28.2.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₈H₁₆N₃O: 290.1288. Found: 290.1289.

M.p.: 213-215 °C.

(3aS,8aR)-2-cyclohexyl-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (34)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 10% ethyl acetate in petroleum ether), the title compound (55.5 mg, 0.23 mmol, 23% yield) was

isolated as a colorless oil.

<u>**HNMR**</u> (500 MHz, CDCl₃): δ 7.22 (dt, J = 9.5, 2.6 Hz, 4H), 5.34 (dd, J = 8.4, 5.1 Hz, 1H), 4.59 (td, J = 5.2, 2.3 Hz, 1H), 3.15 (dd, J = 16.5, 5.3 Hz, 1H), 2.92 (dd, J = 16.5, 2.3 Hz, 1H), 2.22–2.18 (m, 1H), 1.83–1.65 (m, 4H), 1.42 (s, 2H), 1.40–1.31 (m, 4H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 177.0, 140.8, 139.9, 128.2, 127.2, 125.3, 124.5, 73.7, 57.2, 45.6, 39.7, 31.4, 29.7, 25.7.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₆H₁₉NNaO: 264.1359. Found: 264.1349.

3-((3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)benzonitrile (35a)

The title compound was prepared according to the general procedure using (1S,2R)-1-amino-2,3-dihydro-1*H*-inden-2-ol (447.6 mg, 3 mmol, 300 mol %), benzonitrile (154.7 mg, 1.5 mmol, 150 mol %), chlorobenzene (3 mL). After

purification by a flash column chromatography (SiO2: 10% ethyl acetate in petroleum ether), the title compound (105.4 mg, 0.40 mmol, 27% yield) was isolated as a white solid.

<u>**IH NMR**</u> (500 MHz, CDCl₃): δ 8.21 (d, J = 1.8 Hz, 1H), 8.14 (dt, J = 7.9, 1.6 Hz, 1H), 7.69 (dd, J = 7.7, 1.6 Hz, 1H), 7.57–7.53 (m, 1H), 7.47 (td, J = 7.8, 1.4 Hz, 1H), 7.30–7.26 (m, 3H), 5.76 (d, J = 7.9 Hz, 1H), 5.54–5.49 (m, 1H), 3.55–3.34 (m, 2H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 162.0, 141.4, 139.5, 134.3, 132.4, 131.9, 129.2, 129.1, 128.7, 127.6, 125.5, 125.4, 118.0, 112.6, 83.8, 77.1, 39.7.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₇H₁₃N₂O: 261.1022. Found: 261.1017.

M.p.: 218 °C.

1,3-bis((3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)benzene (35b)

The title compound was prepared according to the general procedure using (1S,2R)-1-amino-2,3-dihydro-1*H*-inden-2-ol (447.6 mg, 3 mmol, 300 mol %), benzonitrile (154.7 mg, 1.5 mmol, 150 mol %),

chlorobenzene (3 mL). After purification by a flash column chromatography (SiO2: 10% ethyl acetate in petroleum ether), the title compound (394.4 mg, 1.01 mmol, 67% yield) was isolated as a white solid.

<u>**H NMR**</u> (500 MHz, CDCl₃): δ 8.45 (s, 1H), 8.02 (dd, J = 7.8, 1.7 Hz, 2H), 7.58–7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, 1H), 7.27 (d, J = 4.5 Hz, 2H), 7.25 (t, J = 2.4 Hz, 4H), 5.73 (d, J = 7.9 Hz, 2H), 5.48 (ddd, J = 8.1, 7.0, 1.7 Hz, 2H), 3.49 (dd, J = 17.9, 6.8 Hz, 2H), 3.36 (dd, J = 17.9, 1.6 Hz, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 163.3, 141.8, 139.7, 131.0, 128.5, 128.3, 128.2, 128.0, 127.5, 125.6, 125.3, 83.3, 77.0, 39.7.

<u>**HRMS**</u> (ESI) m/z ($[M+H]^+$) calcd for C₂₆H₂₁N₂O₂: 393.1598. Found: 393.1595.

M.p.: 313-315 °C.

(S)-2,4-diphenyl-4,5-dihydrooxazole (36)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a colorless oil. Method A:

136.2 mg (0.61 mmol, 61% yield); Method B: 140.7 mg, (0.63 mmol, 63% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.10–8.00 (m, 2H), 7.54–7.27 (m, 8H), 5.37 (dd, J = 10.1, 8.1 Hz, 1H), 4.77 (dd, J = 10.1, 8.4 Hz, 1H), 4.25 (t, J = 8.3 Hz, 1H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 164.8, 142.4, 131.6, 128.8, 128.5, 128.4, 127.6, 127.5, 126.8, 74.9, 70.1.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₅H₁₄NO: 224.1070. Found: 224.1061.

(S)-2,5-diphenyl-4,5-dihydrooxazole (37)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (100.5 mg, 0.45 mmol, 45% yield) was isolated as a colorless oil.

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 8.07–8.00 (m, 2H), 7.54–7.48 (m, 1H), 7.44 (dd, *J* = 8.2, 6.6 Hz, 2H), 7.41–7.33 (m, 5H), 5.67 (dd, *J* = 10.2, 7.9 Hz, 1H), 4.52–3.98 (m, 2H).

<u>13C NMR</u> (126 MHz, CDCl₃): δ 164.0, 141.0, 131.5, 128.8, 128.4, 128.3, 127.6, 125.7, 81.0,
63.1.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₅H₁₄NO: 224.1070. Found: 224.1064.

(S)-4-benzyl-2-phenyl-4,5-dihydrooxazole (38)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (90.2 mg, 0.38 mmol, 38% yield) was

isolated as a colorless oil.

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.00–7.91 (m, 2H), 7.51–7.39 (m, 3H), 7.34–7.29 (m, 2H), 7.27 (d, J = 1.6 Hz, 1H), 7.25 (t, J = 3.9 Hz, 2H), 4.66–4.55 (m, 1H), 4.35 (t, J = 8.9 Hz, 1H), 4.15 (dd, J = 8.5, 7.3 Hz, 1H), 3.29–3.22 (m, 1H), 2.74 (dd, J = 13.7, 8.9 Hz, 1H).

<u>¹³C NMR</u> (126 MHz, CDCl₃): δ 164.0, 137.9, 131.4, 129.3, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 126.5, 71.8, 67.8, 41.8.

<u>**HRMS**</u> (ESI) m/z ($[M+Na]^+$) calcd for C₁₆H₁₅NNaO: 260.1046. Found: 260.1042.

(S)-4-isopropyl-2-phenyl-4,5-dihydrooxazole (40)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a colorless oil. Method A:

145.7 mg (0.77 mmol, 77% yield); Method B: 138.2 mg, (0.73 mmol, 73% yield).

<u>**¹H NMR**</u> (500 MHz, CDCl₃): δ 8.03–7.88 (m, 2H), 7.48–7.36 (m, 3H), 4.43–4.35 (m, 1H), 4.17–4.05 (m, 2H), 1.93–1.82 (m, 1H), 1.03 (dd, J = 6.8, 1.3 Hz, 3H), 0.92 (dd, J = 6.8, 1.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 163.4, 131.1, 128.2, 127.9, 72.5, 70.0, 32.8, 18.9, 18.0.

<u>HRMS</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₂H₁₆NO: 190.1226. Found: 190.1226.

(S)-4-(tert-butyl)-2-phenyl-4,5-dihydrooxazole (41)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a colorless oil. Method A: 148.4 mg (0.73 mmol, 73% yield); Method B: 142.3 mg, (0.70 mmol, 70% yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.99–7.93 (m, 1H), 7.52–7.37 (m, 3H), 7.18–7.13 (m, 1H), 4.75–4.30 (m, 2H), 4.27–4.00 (m, 1H), 1.02 (s, 6H), 0.95 (s, 3H).

<u>**13C NMR**</u> (126 MHz, CDCl₃): δ 167.4, 163.3, 131.6, 131.1, 128.4, 128.2 (d, J = 2.0 Hz), 128.1, 126.1, 112.3, 69.9, 68.7, 37.1, 25.8, 25.0.

<u>**HRMS**</u> (ESI) m/z ($[M+H]^+$) calcd for C₁₃H₁₈NO: 204.1383. Found: 204.1376.

(S)-4-cyclohexyl-2-phenyl-4,5-dihydrooxazole (42)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a colorless oil. Method A:

160.5 mg (0.70 mmol, 70% yield); Method B: 126.1 mg, (0.55 mmol, 55% yield).

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 8.05–7.82 (m, 2H), 7.49–7.33 (m, 3H), 4.38 (dd, *J* = 9.6, 8.2 Hz, 1H), 4.15 (t, *J* = 8.0 Hz, 1H), 4.08 (ddd, *J* = 9.6, 7.9, 6.4 Hz, 1H), 1.98–1.93 (m, 1H), 1.80–1.65 (m, 4H), 1.64–1.49 (m, 2H), 1.29–1.17 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 163.3, 131.1, 128.2, 71.6, 70.3, 42.8, 29.5, 28.7, 26.5, 26.1, 26.0.
 HRMS (ESI) m/z ([M+H]⁺) calcd for C₁₅H₂₀NO: 230.1539. Found: 230.1531.

(S)-4-((R)-sec-butyl)-2-phenyl-4,5-dihydrooxazole (43)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a colorless oil. Method A:

191.1 mg (0.94 mmol, 94% yield); Method B: 176.9 mg, (0.87 mmol, 87% yield).

<u>**H NMR**</u> (500 MHz, CDCl₃): δ 7.98–7.89 (m, 2H), 7.54–7.33 (m, 3H), 4.33 (dd, J = 9.6, 7.9 Hz, 1H), 4.23–4.17 (m, 1H), 4.10 (t, J = 7.8 Hz, 1H), 1.73–1.53 (m, 2H), 1.24–1.16 (m, 1H), 0.94 (d, J = 7.4 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 163.3, 131.1, 128.2, 71.0, 69.4, 39.0, 26.1, 14.2, 11.6.

<u>**HRMS**</u> (ESI) m/z ([M+H]⁺) calcd for C₁₃H₁₈NO: 204.1383. Found: 204.1381.

2-phenyl-4,5-dihydrothiazole (44)

The title compound was prepared according to the general procedure. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound was isolated as a light-yellow oil. Method A: 120.8 mg (0.74 mmol, 74% yield); Method B: 117.5 mg, (0.72 mmol, 72% yield).

<u>**1H NMR**</u> (500 MHz, CDCl₃): δ 7.91–7.75 (m, 2H), 7.51–7.34 (m, 3H), 4.45 (t, J = 8.3 Hz, 2H), 3.41 (t, J = 8.3 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): *δ* 168.5, 133.2, 131.1, 128.5, 128.3, 65.2, 33.6.

HRMS (ESI) m/z ([M+H]⁺) calcd for C₉H₁₀NS: 164.0528. Found: 164.0522.

methyl (S)-2-phenyl-4,5-dihydrothiazole-4-carboxylate (45)

The title compound was prepared according to the general procedure A. After purification by a flash column chromatography (SiO₂: 5% ethyl acetate in petroleum ether), the title compound (79.7 mg, 0.36 mmol, 36% yield) was isolated as a

colorless oil

<u>¹H NMR</u> (500 MHz, CDCl₃): δ 7.90–7.87 (m, 2H), 7.5–7.40 (m, 3H), 5.31 (t, *J* = 9.0 Hz, 1H), 3.84 (s, 3H), 3.83–3.80 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 171.2, 132.4, 131.9, 128.72 128.6, 65.7, 52.9, 35.3, 29.7.

<u>HRMS</u> (ESI) m/z ([M+H]⁺) calcd for C₁₁H₁₂NO₂S: 222.0583. Found: 222.0576.

II. Spectral Data for New Compounds

1. NMR and Microwave Data for New Compounds

NMR spectra and microwave data of compound 3

S25

)minTime (Time

7.7.87 7.7.88 7.7.88 7.7.88 7.7.88 7.7.88 7.7.7.88 7.7.7.86 7.7.60 7.7.60 7.7.60 7.7.60 7.7.7.8 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.00 7.7.7.00 7.7.7.00 7.7.7.00 7.7.7.00 7.7.7.000

S33

¹H NMR (500 MHz, CDCl₃)

S37

8.10 8.09 8.09 7.87 7.86 7.86 7.85 7.85 .85

¹H NMR (500 MHz, CDCl₃)

Time (min)

$\begin{array}{c} 7.55\\ 7.75\\$

Time (min)

Time (min)

7,7,887,7,697,7,697,7,697,7,697,7,697,7,697,7,697,7,697,7,687,7,687,7,687,7,687,7,687,7,687,7,797,797

Time (min)

Time (min)

Time (min)

S59

Time (min)

9.969 9.977 9.975 9.

S63

Time (min)

S68

Time (min)

7,637,7567,7727,7277,7277,7277,7287,729

Time (min)

Time (min)

7.7.527.7.7.7477.7.7477.7.7467.7.7467.7.7267.7

Time (min)

Time (min)

25.45 25.55 25.45 25.55 25.45 25.55 25.45 25.55 25.45 25.55 25

¹³C NMR (126 MHz, CDCl₃)

Time (min)

Time (min)

8,8,048,8,048,8,028,8,028,8,027,7587,7587,7587,7587,7587,7587,7587,7587,7487,7587,7587,7587,77387,7587,77397,77397

¹H NMR (500 MHz, CDCl₃)

Time (min)

Time (min)

77.75 77

¹H NMR (500 MHz, CDCl₃)

 $\begin{array}{c} 7.7.9\\ 7.7.9\\ 7.7.7.7\\$

¹H NMR (500 MHz, CDCl₃)

Time (min)

¹H NMR (500 MHz, CDCl₃)

Time (min)

100 90 f1 (ppm)

Temperature (°C)

Spectroscopic Data (HPLC Trace)

Fig S1. (3aS,8aR)-2-phenyl-3a,8a-dihydro-8H-indeno[1,2-d]oxazole (3)

<峰表>

检测器A Ch1 254nm							
峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
1	6.134	37429911	2631916	100.000		S	
总计		37429911	2631916				
Fig S3. The racemate of compound 3

<峰表>

检测器	A 254nm						
峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
1	6.164	4966992	627066	49.517		М	
2	12.294	5063884	293785	50.483		М	9 8
总计		10030876	920851				

X-ray crystalline structure of compound 13:

•	-
Identification code	mo220823a_pl
Empirical formula	C ₁₆ H ₁₂ INO
Formula weight	361.17
Temperature/K	296.15
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	4.896(5)
b/Å	10.615(12)
c/Å	26.62(3)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	1383(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.734
µ/mm ⁻¹	2.305
F(000)	704.0
Crystal size/mm ³	0.25 imes 0.25 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/°	3.06 to 57.014
Index ranges	$-6 \le h \le 6, -14 \le k \le 13, -32 \le l \le 35$
Reflections collected	9381
Independent reflections	$3461 [R_{int} = 0.0370, R_{sigma} = 0.0505]$
Data/restraints/parameters	3461/0/181
Goodness-of-fit on F ²	0.997
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0346, wR_2 = 0.0581$
Final R indexes [all data]	$R_1 = 0.0765, wR_2 = 0.0695$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.55
Flack parameter	0.04(3)

 Table S1. Crystalline data and structure refinement for compound 13

Off tensor.					
Atom	x	у	Z	U(eq)	
I(1)	5287.1(10)	2805.9(4)	2440.9(2)	93.0(2)	
O(1)	2112(7)	4271(3)	539.8(12)	51.2(9)	
N(1)	3961(9)	6145(3)	337.9(14)	46.7(12)	
C(3)	3803(10)	5406(4)	-538.7(17)	39.8(12)	
C(2)	2182(11)	5812(5)	-87.6(17)	45.4(13)	
C(1)	3781(10)	5254(4)	647.5(17)	41.2(12)	
C(11)	5279(11)	5163(4)	1123.4(15)	41.7(12)	
C(9)	1030(12)	3631(5)	-327(2)	50.1(15)	
C(8)	3117(10)	4177(4)	-673.3(17)	40.6(11)	
C(10)	688(10)	4614(4)	79.0(16)	47.6(12)	
C(15)	6218(11)	4202(5)	1912.2(18)	51.7(14)	
C(16)	4752(11)	4220(4)	1466.3(15)	46.3(11)	
C(4)	5736(11)	6068(4)	-806.2(17)	52.2(14)	
C(12)	7233(11)	6063(5)	1229.6(19)	54.4(14)	
C(14)	8178(12)	5088(5)	2013(2)	58.8(16)	
C(13)	8675(12)	6015(5)	1671(2)	66.1(17)	
C(7)	4323(12)	3647(5)	-1090.9(18)	58.4(15)	
C(6)	6188(13)	4330(6)	-1360(2)	69.6(18)	
C(5)	6919(13)	5522(6)	-1220(2)	69.0(17)	

Table S2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for compound 13. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{tt} tensor.

-	-		L		,	
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I(1)	129.6(4)	97.6(3)	51.8(2)	22.49(18)	-30.8(3)	-28.9(3)
O(1)	49(2)	58(2)	47(2)	13.5(16)	-7.8(18)	-11.0(19)
N(1)	65(3)	33(2)	42(2)	-2.3(16)	2(2)	7(2)
C(3)	40(3)	38(3)	42(2)	7(2)	-7(2)	7(3)
C(2)	53(4)	40(3)	42(3)	1(2)	-7(3)	15(3)
C(1)	39(3)	42(3)	43(3)	-10(2)	6(2)	2(2)
C(11)	47(3)	39(2)	39(2)	-8.9(17)	5(3)	1(3)
C(9)	46(4)	53(4)	51(3)	8(3)	-13(3)	-1(3)
C(8)	39(3)	43(3)	40(3)	1(2)	-10(2)	2(2)
C(10)	30(3)	63(3)	50(3)	7(2)	4(2)	3(3)
C(15)	62(4)	54(3)	39(3)	1(2)	-1(2)	-2(3)
C(16)	50(3)	48(3)	41(2)	-1.7(18)	-3(3)	-6(3)
C(4)	65(4)	46(3)	45(3)	12(2)	-10(3)	-1(3)
C(12)	61(4)	51(3)	51(3)	-4(2)	3(3)	-13(3)
C(14)	57(4)	73(4)	47(3)	-17(3)	-6(3)	-1(3)
C(13)	67(4)	70(4)	62(4)	-24(3)	4(3)	-20(3)
C(7)	66(4)	57(3)	52(3)	-12(2)	-12(3)	6(3)
C(6)	68(4)	99(5)	42(3)	-6(3)	3(3)	19(4)
C(5)	66(4)	89(5)	51(3)	22(3)	6(3)	-1(4)

Table S3. Anisotropic Displacement Parameters (Å2×103) for compound 13. The Anisotropicdisplacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Table S4 Bond Lengths for compound 13.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
I(1)	C(15)	2.094(5)	C(11)	C(12)	1.382(7)
O(1)	C(1)	1.356(5)	C(9)	C(8)	1.494(7)
O(1)	C(10)	1.457(6)	C(9)	C(10)	1.511(7)
N(1)	C(2)	1.472(6)	C(8)	C(7)	1.379(6)
N(1)	C(1)	1.257(6)	C(15)	C(16)	1.387(6)
C(3)	C(2)	1.502(7)	C(15)	C(14)	1.370(7)
C(3)	C(8)	1.394(6)	C(4)	C(5)	1.373(7)
C(3)	C(4)	1.378(7)	C(12)	C(13)	1.371(7)
C(2)	C(10)	1.532(7)	C(14)	C(13)	1.363(8)
C(1)	C(11)	1.467(6)	C(7)	C(6)	1.369(8)
C(11)	C(16)	1.379(6)	C(6)	C(5)	1.367(8)

Atom	Atom	Atom	Angle/°	Atom Atom Atom	Angle/°
C(1)	O(1)	C(10)	105.9(3)	C(7) C(8) C(3)	119.1(5)
C(1)	N(1)	C(2)	106.4(4)	C(7) C(8) C(9)	129.2(5)
C(8)	C(3)	C(2)	110.3(4)	O(1) C(10) C(2)	102.9(4)
C(4)	C(3)	C(2)	129.0(5)	O(1) C(10) C(9)	112.1(4)
C(4)	C(3)	C(8)	120.7(5)	C(9) C(10) C(2)	108.3(4)
N(1)	C(2)	C(3)	111.8(5)	C(16) C(15) I(1)	118.2(4)
N(1)	C(2)	C(10)	105.0(4)	C(14) C(15) I(1)	120.4(4)
C(3)	C(2)	C(10)	104.2(4)	C(14) C(15) C(16)	121.4(5)
O(1)	C(1)	C(11)	115.6(4)	C(11) C(16) C(15)	118.7(5)
N(1)	C(1)	O(1)	118.8(4)	C(5) C(4) C(3)	119.3(5)
N(1)	C(1)	C(11)	125.5(5)	C(13) C(12) C(11)	120.4(5)
C(16)	C(11)	C(1)	121.8(5)	C(13) C(14) C(15)	119.3(5)
C(16)	C(11)	C(12)	119.8(4)	C(14) C(13) C(12)	120.5(5)
C(12)	C(11)	C(1)	118.5(4)	C(6) C(7) C(8)	119.5(5)
C(8)	C(9)	C(10)	104.4(4)	C(5) C(6) C(7)	121.4(6)
C(3)	C(8)	C(9)	111.7(4)	C(6) C(5) C(4)	120.0(6)

Table S5 Bond Angles for compound 13.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
I(1)	C(15)	C(16)	C(11)	177.7(4)	C(11)	C(12)	C(13)	C(14)	-0.8(9)
I(1)	C(15)	C(14)	C(13)	-177.6(4)	C(9)	C(8)	C(7)	C(6)	179.3(5)
O(1)	C(1)	C(11)	C(16)	-8.0(7)	C(8)	C(3)	C(2)	N(1)	120.1(4)
O(1)	C(1)	C(11)	C(12)	173.0(4)	C(8)	C(3)	C(2)	C(10)	7.2(5)
N(1)	C(2)	C(10)	O(1)	-9.6(5)	C(8)	C(3)	C(4)	C(5)	2.3(7)
N(1)	C(2)	C(10)	C(9)	-128.3(5)	C(8)	C(9)	C(10)	O(1)	-102.7(4)
N(1)	C(1)	C(11)	C(16)	173.0(5)	C(8)	C(9)	C(10)	C(2)	10.1(5)
N(1)	C(1)	C(11)	C(12)	-5.9(7)	C(8)	C(7)	C(6)	C(5)	1.1(8)
C(3)	C(2)	C(10)	O(1)	108.1(4)	C(10)	O(1)	C(1)	N(1)	-5.7(6)
C(3)	C(2)	C(10)	C(9)	-10.7(5)	C(10)	O(1)	C(1)	C(11)	175.3(4)
C(3)	C(8)	C(7)	C(6)	0.8(7)	C(10)	C(9)	C(8)	C(3)	-5.8(6)
C(3)	C(4)	C(5)	C(6)	-0.4(8)	C(10)	C(9)	C(8)	C(7)	175.6(5)
C(2)	N(1)	C(1)	O(1)	-0.9(6)	C(15)	C(14)	C(13)	C(12)	0.0(9)
C(2)	N(1)	C(1)	C(11)	178.0(5)	C(16)	C(11)	C(12)	C(13)	0.9(8)
C(2)	C(3)	C(8)	C(9)	-1.0(6)	C(16)	C(15)	C(14)	C(13)	0.8(8)
C(2)	C(3)	C(8)	C(7)	177.8(4)	C(4)	C(3)	C(2)	N(1)	-59.6(6)
C(2)	C(3)	C(4)	C(5)	-178.0(5)	C(4)	C(3)	C(2)	C(10)	-172.5(5)
C(1)	O(1)	C(10)	C(2)	9.1(5)	C(4)	C(3)	C(8)	C(9)	178.7(4)
C(1)	O(1)	C(10)	C(9)	125.2(4)	C(4)	C(3)	C(8)	C(7)	-2.5(7)
C(1)	N(1)	C(2)	C(3)	-105.6(5)	C(12)	C(11)	C(16)	C(15)	-0.1(7)
C(1)	N(1)	C(2)	C(10)	6.7(5)	C(14)	C(15)	C(16)	C(11)	-0.7(8)
C(1)	C(11)	C(16)	C(15)	-179.0(5)	C(7)	C(6)	C(5)	C(4)	-1.3(9)
C(1)	C(11)	C(12)	C(13)	179.8(5)					

Table S6 Torsion Angles for compound 13.

Atom	x	У	z	U(eq)	
H(2)	904.88	6492.84	-169.33	54	
H(10)	-1247.25	4784.06	143.9	57	
H(16)	3439.99	3608.61	1400	56	
H(4)	6234.56	6876.77	-707.56	63	
H(12)	7571.93	6706.15	1000.55	65	
H(14)	9159.22	5057.3	2311.94	71	
H(13)	10003.19	6618.86	1736.9	79	
H(7)	3872.35	2832.2	-1188.75	70	
H(6)	6975.29	3975.39	-1645.2	83	
H(5)	8217.52	5962.93	-1404.71	83	
H(9A)	-750(110)	3570(50)	-514(18)	63(16)	
H(9B)	1580(110)	2850(50)	-199(18)	69(16)	

Table S7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for compound 13.

III. References

1. S. Roshandel, S. C. Suri, J. C. Marcischak, G. Rasul and G. K. Surya Prakash, *Green Chem.*, 2018, **20**, 3700-3704.