Regio- and stereoselective synthesis of functionalized tetrahydrobenzochromenes and hexahydrochromenochromenones *via* [4+2] annulation of curcumins with nitrochromenes

Banamali Laha, Alati Suresh and Irishi N. N. Namboothiri*

Table of contents

Entry	Content	Page
1	General information	01
2	Experimental procedures and characterization data	02
3	General procedure for the synthesis of racemic double Michael adducts or tetrahydro-benzo[<i>c</i>]chromenes	02
4	General procedure for the synthesis of racemic triple Michael adducts or hexahydro-1 H , $6H$ -chromeno[6,5- c]chromenones	07
5	General procedure for the asymmetric synthesis of double Michael adducts or tetrahydro-benzo[c]chromenes	10
6	¹ H NMR and ¹³ C NMR chemical shift tables	10
7	Table S1. Selected ¹ H NMR chemical shift values for double Michael adducts	11
8	Table S2. Selected ¹³ C NMR chemical shift values for double Michael adducts	12
9	Table S3. Selected ¹ H NMR chemical shift values for triple Michael adducts	13
10	Table S4. Selected ¹³ C NMR chemical shift values for triple Michael adducts	14
11	Table S5. Crystal data and structure of 3c	15
12	Table S6. Crystal data and structure of 4i	16
13	Table S7. Selected torsional angles from X-ray data	17
14	References	18

1. General information

The melting points recorded are uncorrected. NMR spectra ¹H, ¹H-decoupled ¹³C, APT and ¹H-¹H COSY, were recorded with TMS as the internal standard. The coupling constants (*J* values) are given in Hz. High-resolution mass spectra were recorded under ESI Q-TOF conditions. X-ray data were collected on a diffractometer equipped with graphite monochromated Mo K α radiation (λ = 0.71073 Å). The structure was determined by direct methods shelxt and refined by full-matrix least-squares against F2 using olex2 software. Enantioselectivities were determined using a chiral HPLC equipped with a UV detector and a Chiralpak ADH and Chiralpak IC column. Specific rotations were measured for solutions of samples of known concentrations in CH₂Cl₂ using a polarimeter equipped with a sodium vapor lamp. The curcumins 1¹ and nitrochromenes 2² were prepared by literature methods.

2. Experimental procedures and characterization data

General procedure for the synthesis of racemic double Michael adducts or tetrahydrobenzo[c]chromenes (3). To a stirred solution of curcumin 1 (0.2 mmol, 1.0 equiv) and nitrochromene 2 (0.2 mmol, 1.2 equiv) in DCM (3.0 mL), Cs_2CO_3 (1.0 equiv) was added at room temperature. After completion of the reaction (1-2 h, monitored by TLC), the solvent was evaporated, and the crude residue was purified by silica gel column chromatography by eluting with petroleum ether/ethyl acetate to isolate pure double Michael adduct 3.

(*E*)-1-(6-(4-Bromophenyl)-7-(3,4-dimethoxyphenyl)-9-hydroxy-6a-nitro-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (3a). Yellow solid; Yield 90% (65

mg); petroleum ether:ethyl acetate (32). Tenlow sond, Tield 90% (05) mg); petroleum ether:ethyl acetate (85:15), mp 131-133 °C; IR (KBr film) 3443 (m, br), 2962 (w), 1623 (m), 1517 (s), 1342 (w), 1263 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.70 (dd, J = 19.0, 5.4Hz, 1H, *C5-αH*), 2.97 (dd, J = 19.0, 13.7 Hz, 1H, *C5-βH*), 3.70 (dd, J = 13.7, 5.4 Hz, 1H, *C4-H*), 3.89 (s, 3H, *OCH*₃), 3.92 (s, 3H, *OCH*₃), 3.93 (s, 6H, *OCH*₃), 4.65 (s, 1H,*C3-H*), 5.51 (s, 1H, *C1-H*), 6.63 (d, J = 15.2 Hz, 1H, *C10-H*), 6.88 (d, J = 8.6 Hz, 1H, *Ar-H*), 7.05 (overlapped t, J = 8.0 Hz, 1H, *Ar-H*), 7.08 (d, J = 8.6 Hz, 1H, *Ar-H*), 7.15 (d, J = 8.6 Hz, 1H, *Ar-H*), 7.17 (d, J = 8.6 Hz, 1H, *Ar-H*), 7.26 (s,

1H, *Ar-H*), 7.35 (overlapped d, J = 8.0 Hz, 2H, *Ar-H*), 7.37 (overlapped t, J = 8.0 Hz, 1H, *Ar-H*), 7.89 (d, J = 15.2 Hz, 1H, *C9-H*), 16.94 (s, 1H, *C8-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 37.1, 41.3, 55.9 (× 2), 56.0, 56.2, 77.6, 91.0, 106.2, 109.9, 110.9, 111.4, 113.4, 116.0, 116.6, 122.5, 122.7, 123.1, 123.5, 123.8, 127.5, 128.0, 128.5, 129.7, 129.9, 131.9, 135.3, 144.0, 148.6, 149.3, 149.4, 151.3, 151.8, 181.1, 191.1; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₈H₃₅Br⁷⁹NO₉, 728.1490; found 728.1487.

(*E*)-1-(9-Hydroxy-6a-nitro-6,7-diphenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3phenylprop-2-en-1-one (3b). White solid: Yield 93% (98 mg); petroleum ether:ethyl acetate (97:3), mp

232-234 °C; IR (Neat, cm⁻¹) 2926 (m), 1627 (s), 1579 (s), 1544 (vs), 1223 (s); ¹H NMR (CDCl₃, 500 MHz) δ 2.72 (dd, J = 19.0, 5.4 Hz, 1H, , *C5-* α H), 3.06 (dd, J = 19.0, 13.7 Hz, 1H, *C5-* β H), 3.77 (dd, J = 13.7, 5.4 Hz, 1H, *C4-*H), 4.80 (s, 1H, *C3-*H), 5.51 (s, 1H, *C1-*H), 6.84 (d, J = 15.5 Hz, 1H, *C10-*H), 7.05 (t overlapped with d, J = 7.5 Hz, 1H, *Ar-*H), 7.06 (overlapped d, J = 8.6 Hz, 2H, *Ar-*H), 7.18 (d, J = 7.5 Hz, 1H, *Ar-*H), 7.21 (d, J = 7.5 Hz, 1H, *Ar-*H), 7.27 (t, J = 7.3 Hz, 2H, *Ar-*H), 7.34 (t, J = 7.5 Hz, 1H, *Ar-*H), 7.38-7.39 (m, 4H, *Ar-*H), 7.42-7.46 (m, 7H, *Ar-*H), 7.95 (d, J = 15.5 Hz, 1H, *C9-*H), 16.92

(s, 1H, *C*8-*H*); Confirmed by ¹H-¹H COSY; ¹³C NMR (CDCl₃, 125 MHz) δ 35.5, 37.0, 41.6, 78.1, 91.1, 106.7, 116.8, 118.6, 122.2, 122.9, 126.8, 128.5, 128.5, 128.6, 128.9, 129.2, 129.5, 129.7, 129.8, 130.4, 130.7, 135.0, 135.5, 136.1, 143.7, 151.6, 180.7, 192.1; HRMS (ES+) m/z: [M+Na]⁺ calcd for C₃₄H₂₇NO₅Na, 552.1781; found 552.1781.

(*E*)-1-(6-(4-Bromophenyl)-9-hydroxy-6a-nitro-7-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3c). White solid; Yield 94% (114 mg); petroleum ether:ethyl

acetate (97:3), mp 211-213 °C; IR (Neat, cm⁻¹) 3441 (s, br), 2923 (s), 1628 (s), 1581 (s), 1544 (vs), 1484 (m), 1454 (m), 1223 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.81 (dd, J = 19.1, 5.3 Hz, 1H, C5- α H), 3.14 (dd, J = 19.1, 13.6 Hz, 1H, C5- β H), 3.84 (dd, J = 13.6, 5.3 Hz, 1H, C4-H), 4.81 (s, 1H, C3-H), 5.56 (s, 1H, C1-H), 6.90 (d, J = 15.2 Hz, 1H, C10-H), 7.02 (d, J = 8.4 Hz, 2H, Ar-H), 7.15 (t, J = 7.2 Hz, 1H, Ar-H), 7.28 (t, J = 7.7 Hz, 2H, Ar-H), 7.47-7.50 (m, 6H, Ar-H), 7.53-7.54 (unresolved m, 7H, Ar-H), 8.06 (d, J = 15.2 Hz, 1H, C9-H), 17.04 (s, 1H, C8-H); ¹³C NMR (CDCl₃, 100 MHz) δ 35.5, 36.9, 41.6, 77.7, 91.0, 106.5, 116.9, 118.5, 122.5, 122.8, 123.9, 128.5

 $(\times\,2),\,128.6,\,128.7,\,129.2,\,129.5,\,130.0,\,130.3,\,130.8,\,132.1,\,135.0,\,135.1,\,135.2,\,144.0,\,151.3,\,180.9,\,191.8;$ HRMS (ES+) m/z: [M+Na]⁺ calcd for $C_{34}H_{26}Br^{79}NO_5Na,\,630.0887;$ found 630.0885.

(*E*)-1-(6-(4-Chlorophenyl)-9-hydroxy-6a-nitro-7-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3d). White solid; Yield 91% (102 mg); petroleum ether:ethyl

acetate (97:3), mp 203-205 °C; IR (KBr film) 3444 (w, br), 3061 (w), 1628 (s), 1580 (s), 1543 (vs), 1484 (s), 1453 (s), 1354 (w), 1221 (m); ¹H NMR (CDCl₃, 500 MHz) δ 2.81 (dd, J = 19.1, 5.2 Hz, 1H, C5- α H), 3.14 (dd, J = 19.1, 13.6 Hz, 1H, C5- β H), 3.83 (dd, J = 13.6, 5.2 Hz, 1H, C4-H), 4.81 (s, 1H, C3-H), 5.57 (s, 1H, C1-H), 6.90 (d, J = 15.3 Hz, 1H, C10-H), 7.08 (d, J = 8.5 Hz, 2H, Ar-H), 7.15 (t, J = 7.5 Hz, 1H, Ar-H), 7.27 (overlapped d, J = 7.5 Hz, 1H, Ar-H), 7.33 (d, J = 8.5 Hz, 2H, Ar-H), 7.46-7.53 (m, 11H, Ar-H), 8.05 (d, J = 15.3 Hz, 1H, C9-H), 17.06 (s, 1H, C8-H); Confirmed by ¹H-¹H COSY and ¹H-¹H NOESY

experiments; ¹³C NMR (CDCl₃, 100 MHz) δ 35.5, 36.9, 41.6, 77.6, 91.1, 106.5, 116.9, 118.5, 122.5, 122.8, 128.3, 128.5, 128.6, 128.7, 129.1, 129.2, 129.5, 130.0, 130.4, 130.8, 134.6, 135.0, 135.3, 135.7, 144.0, 151.3, 180.9, 191.9; HRMS (ES+) m/z: [M+Na]⁺ calcd for C₃₄H₂₆Cl³⁵NO₅Na, 586.1392; found 586.1391.

(*E*)-1-(6-(4-Fluorophenyl)-9-hydroxy-6a-nitro-7-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3e). White solid; Yield 85% (93 mg); petroleum ether:ethyl

acetate (97:3), mp 219-221 °C; IR (Neat, cm⁻¹) 3535 (w, br), 2929 (s), 1629 (m), 1606 (m), 1581 (m), 1545 (s), 1265 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.72 (dd, *J* = 19.1, 5.4 Hz, 1H, *C5*- α H), 3.05 (dd, *J* = 19.1, 13.7 Hz, 1H, *C5*- β H), 3.75 (dd, *J* = 13.7, 5.4 Hz, 1H, *C4*-H), 4.74 (s, 1H, *C3*-H), 5.49 (s, 1H, *C1*-H), 6.82 (d, *J* = 15.4 Hz, 1H, *C10*-H), 6.95 (t, *J* = 8.5 Hz, 2H, *Ar*-H), 7.02-7.08 (m, 3H, *Ar*-H), 7.18 (t, *J* = 8.5 Hz, 2H, *Ar*-H), 7.36–7.47 (m, 11H, *Ar*-H), 7.96 (s, *J* = 15.4 Hz, 1H, *C9*-H), 16.94 (s, 1H, *C8*-H); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 37.0, 41.6, 77.6, 91.2, 106.5, 115.9 (d, *J* = 8.3 Hz), 116.9, 118.5, 122.5, 122.8, 128.5 (× 2), 128.7, 128.8 (d, *J* = 8.3 Hz),

129.2, 129.5, 130.0, 130.4, 130.8, 132.0 (d, J = 3.3 Hz), 135.0, 135.3, 144.0, 151.4, 163.3 (d, J = 248.0 Hz), 180.8, 192.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.41; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₄H₂₇FNO₅, 548.1868; found 548.1869.

(*E*)-1-(9-Hydroxy-6-(3-methoxyphenyl)-6a-nitro-7-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3f). White solid; Yield 96% (107 mg); petroleum ether:ethyl

acetate (95:5), mp 195-197 °C; IR (KBr film) 3436 (m, br), 2932 (w), 1627 (s), 1603 (s), 1545 (vs), 1583 (s), 1545 (vs), 1483 (s), 1451 (s), 1221 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.71 (dd, J = 19.1, 5.6 Hz, 1H, C5- α H), 3.04 (dd, J = 19.1, 13.6 Hz, 1H, C5- β H), 3.67 (s, 3H, OCH_3), 3.76 (dd, J = 13.6, 5.6 Hz, 1H, C4-H), 4.84 (s, 1H, C3-H), 5.46 (s, 1H, C1-H), 6.60 (s, 1H, Ar-H), 6.64 (d, J = 7.9 Hz, 1H, Ar-H), 6.84-6.88 (overlapped m, 1H, Ar-H), 6.86 (overlapped d, J = 15.1 Hz, 1H, C10-H), 7.04 (t, J = 7.4 Hz, 1H, Ar-H), 7.15-7.20 (m, 3H, Ar-H), 7.34-7.47 (m, 11H, Ar-H), 7.93 (d, J = 15.1 Hz, 1H, C9-H), 16.84 (s, 1H, C8-H); ¹³C NMR (CDCl₃, 125 MHz) δ 35.6,

37.0, 41.6, 55.3, 78.1, 91.0, 106.7, 112.8, 114.9, 116.9, 118.7, 119.2, 122.3, 122.9, 128.4 (× 2), 128.5 (× 2), 128.6, 129.1, 129.4, 129.9, 130.4 (× 2), 130.7, 135.1, 135.5, 137.6, 143.6, 151.6, 159.9, 180.6, 192.0; HRMS (ES+) m/z: $[M+K]^+$ calcd for $C_{35}H_{29}NO_6K$, 598.1626; found 598.1627.

(*E*)-1-(6-(3,4-Dimethoxyphenyl)-9-hydroxy-6a-nitro-7-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3g). White solid; Yield 87% (103 mg); petroleum ether:ethyl

acetate (92:8), mp 226-229 °C; IR (KBr film) 3435 (m, br), 2937 (m), 1629 (s), 1581 (s), 1545 (vs), 1484 (s), 1451 (s), 1360 (m), 1275 (s), 1219 (s); ¹H NMR (CDCl₃, 500 MHz) δ 2.72 (dd, J = 19.1, 5.1 Hz, 1H, C5- α H), 3.04 (dd, J = 19.1, 13.5 Hz, 1H, C5- β H), 3.64 (s, 3H, OCH_3), 3.76 (dd, J = 13.5, 5.1 Hz, 1H, C4-H), 3.82 (s, 3H, OCH_3), 4.83 (s, 1H, C3-H), 5.47 (s, 1H, C1-H), 6.55 (d, J = 1.6 Hz, 1H, Ar-H), 6.64 (dd, J = 8.5, 1.6 Hz 1H, Ar-H), 6.73 (d, J = 8.5 Hz, 1H, Ar-H), 6.85 (d, J = 15.5 Hz, 1H, C10-H), 7.04 (t, J = 7.5 Hz, 1H, Ar-H), 7.19 (d, J = 7.5 Hz, 2H, Ar-H), 7.35-7.38 (m, 4H, Ar-H), 7.45-7.46 (unresolved, 7H, Ar-H), 7.95 (d, J = 15.5 Hz, 1H, C9-H),

16.89 (s, 1H, C8-*H*); ¹³C NMR (CDCl₃, 125 MHz) δ 35.7, 37.0, 41.6, 55.8, 55.9, 78.0, 91.2, 106.8, 109.9, 111.0, 116.9, 118.8, 119.7, 122.2, 122.9, 128.2, 128.4, 128.5, 128.6, 129.1, 129.3, 129.8, 130.3, 130.7, 135.1, 135.5, 143.6, 149.1, 149.9, 151.6, 180.5, 192.1; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₆H₃₁NO₇, 590.2139; found 590.2139.

(*E*)-1-(9-Hydroxy-6a-nitro-6-phenyl-7-(p-tolyl)-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-(p-tolyl)prop-2-en-1-one (3i). White solid; Yield 94% (105 mg); dr > 95:5, petroleum ether:ethyl acetate

(97:3), mp 192-193 °C; IR (Neat, cm⁻¹) 3400 (w, br), 2922 (m), 1622 (s), 1581 (s), 1546 (vs), 1223 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.38 (s, 3H, *CH*₃), 2.42 (s, 3H, *CH*₃), 2.69 (dd, *J* = 19.1, 5.4 Hz, 1H, *C5-* α H), 3.02 (dd, *J* = 19.1, 13.6 Hz, 1H, *C5-* β H), 3.72 (dd, *J* = 13.6, 5.4 Hz, 1H, *C4-H*), 4.77 (s, 1H, *C3-H*), 5.51 (s, 1H, *C1-H*), 6.78 (d, *J* = 15.4 Hz, 1H, *C10-H*), 7.03 (overlapped t, *J* = 8.0 Hz, 1H, *Ar-H*), 7.06 (overlapped d, *J* = 7.2 Hz, 2H, *Ar-H*), 7.16-7.20 (overlapped m, 2H, *Ar-H*), 7.18 (overlapped d, *J* = 8.2 Hz, 2H, *Ar-H*), 7.24-7.28 (m, 4H,

Ar-H), 7.31–7.38 (m, 6H, *Ar-H*), 7.91 (d, *J* = 15.4 Hz, 1H, *C9-H*), 16.96 (s, 1H, *C8-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 21.4, 21.7, 35.4, 37.0, 41.3, 78.2, 91.1, 106.6, 116.8, 117.6, 122.2, 123.0, 126.9, 128.6, 128.8, 129.2, 129.5, 129.6, 129.8, 129.9, 130.2, 132.3, 132.4, 136.2, 138.4, 141.3, 143.8, 151.7, 181.1, 191.8; HRMS (ES+) m/z: [M+K]⁺ calcd for C₃₆H₃₁NO₅K, 596.1834; found 596.1833.

(*E*)-3-(4-Chlorophenyl)-1-(7-(4-chlorophenyl)-9-hydroxy-6a-nitro-6-phenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)prop-2-en-1-one (3j). White solid; Yield 83% (98 mg); petroleum ether:ethyl

acetate (97:3), mp 196-198 °C; IR (Neat, cm⁻¹) 3467 (m, br), 1623 (s), 1581 (s), 1545 (vs), 1491 (s), 1274 (m), 1224 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.70 (dd, J = 18.9, 5.5 Hz, 1H, C5- α H), 2.99 (dd, J = 18.9, 13.6 Hz, 1H, C5- β H), 3.77 (dd, J = 13.6, 5.5 Hz, 1H, C4-H), 4.75 (s, 1H, C3-H), 5.45 (s, 1H, C1-H), 6.76 (d, J = 15.3 Hz, 1H, C10-H), 7.04-7.07 (overlapped m, 1H, Ar-H), 7.05 (overlapped t, J = 6.6 Hz, 2H, Ar-H), 7.13 (d, J = 7.8 Hz, 1H, Ar-H), 7.34-7.38 (m, 6H,

Ar-H), 7.41 (ABq, J = 8.4 Hz, 4H, *Ar-H*), 7.87 (d, J = 15.3 Hz, 1H, C9-*H*), 16.82 (s, 1H, C8-*H*); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 37.0, 41.0, 78.1, 90.9, 106.6, 116.9, 119.0, 122.4, 122.7, 126.7, 128.7, 128.9, 129.4, 129.5, 129.6, 129.8, 130.0, 131.7, 133.5, 133.9, 134.6, 135.8, 136.7, 142.4, 151.5, 180.3, 191.9; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₄H₂₆Cl₂³⁵NO₅, 598.1183; found 598.1174.

(*E*)-1-(2-Chloro-9-hydroxy-6a-nitro-6,7-diphenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3-phenylprop-2-en-1-one (3h). White solid; Yield 88% (99 mg); petroleum ether:ethyl acetate (97:3),

mp 232-234 °C; IR (Neat, cm⁻¹) 3441 (w, br), 2930 (w), 1627 (w), 1546 (m), 1264 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.75 (dd, *J* = 19.2, 5.3 Hz, 1H, *C5-αH*), 3.06 (dd, *J* = 19.2, 13.7 Hz, 1H, *C5-βH*), 3.72 (dd, *J* = 13.7, 5.3 Hz, 1H, *C4-H*), 4.77 (s, 1H, *C3-H*), 5.51 (s, 1H, *C1-H*), 6.78 (d, *J* = 15.5 Hz, 1H, *C10-H*), 7.04 (d, *J* = 7.2 Hz, 2H, *Ar-H*), 7.12 (overlapped d, *J* = 1.2 Hz, 1H, *Ar-H*), 7.15 (d, *J* = 8.8 Hz, 1H, *Ar-H*), 7.29 (d, *J* = 7.6 Hz, 2H, *Ar-H*), 7.34 (overlapped dd, *J* = 8.8, 1.2 Hz, 1H, *Ar-H*), 7.35 (overlapped m, 1H, *Ar-H*), 7.39-7.47 (m, 10H, *Ar-H*), 7.97 (d, *J* = 15.5 Hz, 1H, *C9-H*), 16.91 (s, 1H, *C8-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 35.5, 37.0, 41.7, 78.3, 90.8,

106.1, 118.0, 118.2, 124.8, 126.7, 127.4, 128.5, 128.6, 128.7, 128.9, 129.2, 129.9, 130.0, 130.3 (× 2), 130.9, 134.9, 135.2, 135.7, 144.4, 150.3, 180.6, 192.1; HRMS (ES+) m/z: $[M+H]^+$ calcd for C₃₄H₂₇ClNO₅, 564.1572; found 564.1571.

(Z)-7-(Furan-2-yl)-10-((E)-3-(furan-2-yl)-1-hydroxyallylidene)-6a-nitro-6-phenyl-6,6a,7,8,10,10a-hexahydro-9*H*-benzo[*c*]chromen-9-one (3k). White solid; Yield 60% (68 mg); petroleum ether:ethyl

9-one (3**k**). White solid; Yield 60% (68 mg); petroleum ether:ethyl acetate (96:4), mp 184-186 °C; IR (Neat, cm⁻¹) 3481 (vs, br), 1630 (s), 1610 (s), 1549 (s), 1513 (s), 1225 (s); ¹H NMR (CDCl₃, 500 MHz) δ 2.70 (dd, J = 18.9, 5.2 Hz, 1H, $C5-\alpha H$), 2.97 (dd, J = 18.9, 13.8 Hz, 1H, $C5-\beta H$), 3.70 (dd, J = 13.8, 5.2 Hz, 1H, C4-H), 4.75 (s, 1H, C3-H), 5.45 (s, 1H, C1-H), 6.72 (d, J = 15.4 Hz, 1H, C10-H), 7.04-7.07 (overlapped m, 1H, Ar-H), 7.05 (overlapped d, J = 7.5 Hz, 2H, Ar-H), 7.07 overlapped t, J = 8.5 Hz, 2H, Ar-H), 7.14 (overlapped t, J = 8.5 Hz, 2H, Ar-H), 7.12-7.15 (overlapped m, 1H,

Ar-H), 7.19 (d, J = 8.0 Hz, 1H, *Ar-H*), 7.27 (overlapped d, J = 7.5 Hz, 2H, *Ar-H*), 7.34 (d, J = 8.0 Hz, 1H, *Ar-H*), 7.38 (t, J = 8.0 Hz, 1H, *Ar-H*), 7.42-7.44 (m, 4H, *Ar-H*), 7.89 (d, J = 15.4 Hz, 1H, C9-*H*), 16.88 (s, 1H, C8-*H*); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 37.1, 40.9, 78.1, 91.0, 106.6, 115.4 (d, J = 21.1 Hz), 116.4 (d, J = 21.5 Hz), 116.9, 118.2 (d, J = 1.8 Hz), 122.3, 122.8, 126.8, 128.9, 129.4, 129.8, 129.9, 130.4 (d, J = 8.5 Hz), 131.1 (d, J = 3.4 Hz), 131.3 (d, J = 3.1 Hz), 132.0 (d, J = 8.5 Hz), 135.9,

142.6, 151.5, 162.9 (d, J = 246.0 Hz), 164.2 (d, J = 250.0 Hz), 180.8, 191.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -113.5, - 108.7; HRMS (ES+) m/z: [M]⁺ calcd for C₃₄H₂₇F₂NO₅, 567.1796; found 567.1796.

(E)-3-(3-Chlorophenyl)-1-(7-(3-chlorophenyl)-9-hydroxy-6a-nitro-6-phenyl-6a,7,8,10atetrahydro-6H-benzo[c]chromen-10-vl)prop-2-en-1-one (3n). White solid; Yield 94% (112 mg);

petroleum ether: ethyl acetate (97:3), mp 223-225 °C; IR (Neat, cm⁻ ¹) 3386 (vs, br), 1630 (s), 1573 (s), 1547 (vs), 1223 (m); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 2.73 \text{ (dd}, J = 19.1, 5.2 \text{ Hz}, 1\text{H}, C5-\alpha H), 3.01$ $(dd, J = 19.1, 13.5 Hz, 1H, C5-\beta H), 3.77 (dd, J = 13.5, 5.2 Hz, 1H)$ C4-H), 4.79 (s, 1H, C3-H), 5.52 (s, 1H, C1-H), 6.81 (d, J = 15.2 Hz, 1H, C10-H), 7.08-7.14 (m, 4H, Ar-H), 7.24-7.51 (m, 13H, Ar-*H*), 7.85 (d, J = 15.2, 1H, C9-*H*) 16.67 (s, 1H, C8-*H*); ¹³C NMR (CDCl₃, 100 MHz) & 35.4, 36.9, 41.2, 78.1, 90.8, 106.7, 117.0,

119.8, 122.4, 122.6, 126.7, 126.9, 127.9, 128.6, 128.9, 129.0, 129.3, 129.7, 129.9, 130.1, 130.4, 130.5 (× 2), 134.4, 135.2, 135.8, 136.8, 137.5, 142.0, 151.5, 179.7, 192.1; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₄H₂₆Cl₂³⁵NO₅, 598.1183; found 598.1177.

(E)-3-(4-Bromophenyl)-1-(7-(4-bromophenyl)-9-hydroxy-6a-nitro-6-phenyl-6a,7,8,10a-

tetrahydro-6H-benzo[c]chromen-10-vl)prop-2-en-1-one (30). White solid; Yield 92% (126 mg); OH H^β 10 Br α Br н

petroleum ether:ethyl acetate (97:3), mp 173-175 °C; IR (Neat, cm⁻ ¹) 3477 (w, br), 1626 (s), 1582 (s), 1545 (vs), 1486 (s), 1450 (m), 1356 (w), 1223 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.71 (dd. J = 19.0, 5.4 Hz, 1H, $C5-\alpha H$), 2.99 (dd, J = 19.0, 13.6 Hz, 1H, $C5-\beta H$), 3.73 (dd, J = 13.6, 5.4 Hz, 1H, C4-H), 4.76 (s, 1H, C3-H), 5.49 (s, 1H, C3-H), 5.491H, C1-H), 6.77 (d, J = 15.6 Hz, 1H, C10-H), 7.06-7.08 (m, 3H, Ar-H), 7.11 (t, J = 7.7 Hz, 1H, Ar-H), 7.23 (overlapped t, J = 7.7Hz, 1H, Ar-H), 7.25-7.28 (m, 2H, Ar-H), 7.31 (d, J = 8.4 Hz, 2H,

Ar-H), 7.34-7.39 (m, 4H, Ar-H), 7.50 (d, J = 7.7 Hz, 1H, Ar-H), 7.55 (overlapped s, 1H, Ar-H), 7.56 (overlapped d, *J* = 7.7 Hz, 1H, *Ar-H*), 7.61 (s, 1H, *Ar-H*), 7.81 (d, *J* = 15.6 Hz, 1H, C9-H), 16.62 (s, 1H, C8-H); ¹³C NMR (CDCl₃, 100 MHz) δ 35.5, 36.9, 41.2, 78.1, 90.8, 106.8, 117.0, 119.8, 122.4, 122.6 (× 2), 123.3, 126.7, 127.4, 129.0 (× 2), 129.3, 129.9, 130.1 (× 2), 130.7, 130.8, 131.8, 133.4 (× 2), 135.8, 137.1, 137.8, 141.8, 151.5, 179.6, 192.1; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₄H₂₆Br₂⁷⁹NO₅, 686.0172; found 686.0172.

(E)-3-(3,4-Dimethoxyphenyl)-1-(7-(3,4-dimethoxyphenyl)-9-hydroxy-6a-nitro-6-phenyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-10-yl)prop-2-en-1-one (3p). Yellow solid; Yield 96%

(124 mg); petroleum ether:ethyl acetate (85:15), mp 137-139 °C: IR (Neat, cm⁻¹) 3463 (vs. br), 1622 (m), 1583 (m), 1542 (s), 1516 (s), 1264 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.71 (dd, J = 19.0, 5.3 Hz, 1H, $C5-\alpha H$), 2.98 (dd, J = 19.0, 13.7 Hz, 1H, $C5-\beta H$), 3.72 (dd, J = 13.7, 5.3 Hz, 1H, C4-H), 3.87 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.94 (s, 3H, OCH_3 , 4.74 (s, 1H, C3-H), 5.54 (s, 1H, C1-H), 6.66 (d, J =15.3 Hz, 1H, C10-H), 6.87 (d, J = 8.5 Hz, 1H, Ar-H), 6.90 (overlapped s, 1H, Ar-H), 6.93 (d, J = 8.5 Hz, 1H, Ar-H), 6.98-

7.01 (unresolved m, 2H, Ar-H), 7.04-7.10 (m, 4H, Ar-H), 7.15 (overlapped d, J = 8.5 Hz, 1H, Ar-H),

7.17 (overlapped d, J = 8.5 Hz, 1H, Ar-H), 7.23 (t, J = 7.7 Hz, 2H, Ar-H), 7.31 (d, J = 7.5 Hz, 1H, Ar-H), 7.36 (t, J = 7.5 Hz, 1H, Ar-H), 7.88 (d, J = 15.3 Hz, 1H, C9-H), 16.97 (s, 1H, C8-H); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 37.1, 41.3, 55.9, 56.0, 56.0, 56.2, 78.1, 91.1, 106.4, 110.1, 110.8, 111.3, 113.4, 116.3, 116.6, 122.2, 122.7, 123.2, 123.3, 126.9, 127.7, 128.0, 128.8, 129.5, 129.7, 129.8, 136.2, 143.8, 148.5, 149.2, 149.4, 151.6, 151.7, 181.2, 191.3; HRMS (ES+) m/z: [M+Na]⁺ calcd for C₃₈H₃₅NO₉Na, 672.2204; found 672.2206.

(Z)-10-((E)-1-Hydroxy-3-(thiophen-2-yl)allylidene)-6a-nitro-6-phenyl-7-(thiophen-2-yl)-6,6a,7,8,10,10a-hexahydro-9*H*-benzo[*c*]chromen-9-one (3q). Yellow solid; Yield 69% (74 mg);

petroleum ether:ethyl acetate (95:5), mp 117-119 °C; IR (KBr film) 3434 (m, br), 2922 (w), 1614 (s), 1581 (m), 1544 (vs), 1450 (m), 1409 (m), 1223 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.86, 2.97 (ABq, J = 19.2 Hz, the lower half and upper half are further split into d with J = 13.2 and 5.9 Hz, 2H, *C5-H*), 4.06 (dd, J = 13.2, 5.9 Hz, 1H, *C4-H*), 4.73 (s, 1H, *C3-H*), 5.73 (s, 1H, *C1-H*), 6.59 (d, J = 14.8 Hz, 1H, *C10-H*), 7.04 (overlapped t, J = 7.6 Hz, 1H, *Ar-H*), 7.06-7.08 (m, 3H, *Ar-H*), 7.09-7.12 (m, 1H, *Ar-H*), 7.14 (d, J = 6.5 Hz, 1H, *Ar-H*), 7.17-7.20 (m, 2H, *Ar-H*),

7.27-7.31 (m, 3H, *Ar-H*), 7.34 (overlapped d, J = 7.6 Hz, 1H, *Ar-H*), 7.36 (overlapped t, J = 7.6 Hz, 1H, *Ar-H*), 7.41 (t, J = 4.2 Hz, 2H, *Ar-H*), 8.01 (d, J = 14.8 Hz, 1H, C9-*H*), 16.89 (s, 1H, C8-*H*); ¹³C NMR (CDCl₃, 100 MHz) δ 35.4, 38.0, 38.7, 78.3, 91.0, 106.1, 116.9, 117.5, 122.3, 123.0, 126.5, 126.7, 126.8, 128.7, 128.9, 129.0, 129.3, 129.5, 129.7, 129.8, 131.9, 135.9, 136.5, 138.7, 140.6, 151.8, 181.4, 190.3; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₀H₂₄NO₅S₂, 542.1090; found 542.1095.

General procedure for the synthesis of racemic triple Michael adducts or hexahydro-1*H*, 6*H*-chromeno[6,5-*c*]chromenoe (4). To a stirred solution of curcumin 1 (0.3 mmol, 1.0 equiv) and nitrochromene 2 (0.3 mmol, 1.2 equiv) in DCM (3.0 mL), DBU (3.0 equiv) was added at room temperature. After completion of the reaction (3-4 d, monitored by TLC), the solvent was evaporated under vacuum. The crude residue was washed with water (3×5 mL), and extracted with ethyl acetate (3×5 mL). The organic phase was separated and washed with brine (10 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The crude residue was purified by silica gel column chromatography by eluting with petroleum ether/ethyl acetate to isolate pure triple Michael adduct 4.

6a-Nitro-3,6,7-triphenyl-2,3,5,6a,7,12b-hexahydro-1*H*,6*H*-chromeno[6,5-*c*]chromen-1-one (4b).

White solid; Yield 81% (128 mg); petroleum ether:ethyl acetate (96:4), mp 256-258 °C; IR (Neat, cm⁻¹) 3461 (vs, br), 1664 (m), 1614 (s), 1583 (m), 1542 (m), 1451 (m), 1225 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.60 (dd, J = 18.8, 5.2 Hz, 1H, *C5-* α H), 2.86, 2.97 (ABq, J = 17.2 Hz, the lower and upper half are further split into d with J = 13.7 and 3.9 Hz, 2H, *C9-H*), 3.06 (dd, J = 18.8, 13.2 Hz, 1H, *C5-* β H), 3.81 (dd, J = 13.2, 5.2 Hz, 1H, *C4-H*), 4.88 (s, 1H, *C3-H*), 5.44 (s, 1H, *C1-H*), 5.45 (dd, J = 13.7, 3.9 Hz, 1H, *C8-H*), 7.00 (d, J = 7.5 Hz, 2H, *Ar-H*), 7.08 (t, J = 7.8 Hz, 1H, *Ar-H*), 7.13 (d, J = 7.8 Hz, 1H, *Ar-H*), 7.19 (t, J = 7.5 Hz, 2H, *Ar-H*), 7.42-7.45 (m, 10H, *Ar-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 31.8, 33.0, 42.4, 42.8, 77.7, 80.2, 90.6, 113.3, 116.7, 122.2, 123.9, 126.5, 127.2, 128.4, 128.7, 128.9, 129.1

 $(\times 2)$, 129.3 (× 2), 129.8, 130.3, 135.5, 135.6, 137.7, 150.8, 170.0, 191.4; HRMS (ES+) m/z: [M+Na]⁺ calcd for C₃₄H₂₇NO₅Na, 552.1781; found 552.1782.

7-(4-Chlorophenyl)-6a-nitro-3,6-diphenyl-2,3,5,6a,7,12b-hexahydro-1H,6H-chromeno[6,5-

c]chromen-1-one (4d). White solid; Yield 78% (132 mg); petroleum ether:ethyl acetate (92:8), mp 226-

228 °C; IR (Neat, cm⁻¹) 3324 (m, br), 1667 (s), 1615 (vs), 1544 (s), 1474 (m), 1416 (s), 1356 (w), 1227 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.60 (dd, J = 18.8, 5.3 Hz, 1H, C5- α H), 2.86, 2.98 (ABq, J = 17.1 Hz, the lower and upper half are further split into d with J = 14.7 and 3.8 Hz, 2H, C9-H), 3.05 (dd, J = 18.8, 13.0 Hz, 1H, C5- βH), 3.79 (dd, J = 13.0, 5.3 Hz, 1H, C4-H), 4.82 (s, 1H, C3-H), 5.42 (s, 1H, C1-H), 5.44 (dd, J = 14.7, 3.8 Hz, 1H, C8-H), 6.94 (d, J = 8.5 Hz, 2H, Ar-H), 7.08 (overlapped t, J = 7.7 Hz, 1H, Ar-H), 7.12 (overlapped d, J = 7.7 Hz, 1H, Ar-H), 7.16 (d, J = 8.5 Hz, 2H, Ar-H), 7.28 (d, J = 7.7 Hz, 1H, Ar-H), 7.33 (t, J = 7.7 Hz, 1H, Ar-H), 7.39-7.44 (unresolved m, 10H, Ar-H); Confirmed by ¹H-¹H COSY; ¹³C NMR (CDCl₃, 100 MHz) δ 31.8, 32.9, 42.4, 42.8, 77.1, 80.2, 90.4, 113.2, 116.7, 122.5, 123.7, 126.5, 128.5, 128.7, 128.8, 129.1 (× 2), 129.3 (× 2), 129.9, 130.3, 134.1, 135.3, 135.4, 137.6, 150.5, 170.0, 191.4; HRMS (ES+) m/z: [M+Na]⁺ calcd

for C₃₄H₂₆ClNO₅Na, 586.1388; found 586.1388.

6a-Nitro-7-Phenyl-3,6-di-p-tolyl-2,3,5,6a,7,12b-hexahydro-1H,6H-chromeno[6,5-c]chromen-1-one

(4i). White solid; Yield 88% (147 mg); petroleum ether:ethyl acetate (96:4), mp 217-219 °C; IR (Neat, cm⁻¹); 3419 (vs, br), 1667 (m), 1640 (m), 1620 (m), 1542 (w); ¹H NMR (CDCl₃, 400 MHz) δ 2.38 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 2.57 (dd, J = 18.8, 5.4 Hz, 1H, C5- α H), 2.83, 2.98 (ABq, J = 17.2 Hz, the lower and upper half are further split into d with J = 14.4 and 3.1 Hz, 2H, C9-H), 3.04 (dd, J =18.8, 13.1 Hz, 1H, C5- β H), 3.78 (dd, J = 13.1, 5.4 Hz, 1H, C4-H), 4.88 (s, 1H, *C*3-*H*), 5.41 (dd, *J* = 14.4, 3.1 Hz, 1H, *C*8-*H*), 5.46 (s, 1H, *C*1-*H*), 7.01 (d, *J* = 7.5 Hz, 2H, Ar-H), 7.08 (t, J = 8.3 Hz, 1H, Ar-H), 7.13 (d, J = 8.3 Hz, 1H, Ar-H), 7.19 (t, J = 7.5 Hz, 2H, Ar-H), 7.24-7.28 (m, 5H, Ar-H), 7.28 (d, J = 8.3 Hz, 1H, *Ar-H*), 7.31-7.36 (m, 5H, *Ar-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 21.3, 21.4, 31.9, 32.9, 42.1, 42.7, 77.7, 80.1, 90.6, 113.2, 116.6, 122.1, 123.9, 126.6, 127.3, 128.9,

129.1, 129.2, 129.3, 129.7, 129.8, 130.1, 132.5, 134.7, 135.7, 138.5, 139.3, 150.8, 170.2, 191.6; HRMS (ES+) m/z: $[M+H]^+$ calcd for C₃₆H₃₁NO₅, 580.2098; found 580.2098.

3,6-Bis(4-chlorophenyl)-6a-nitro-7-phenyl-2,3,5,6a,7,12b-hexahydro-1H,6H-chromeno[6,5-

c]chromen-1-one (4j). White solid; Yield 77% (138 mg); petroleum ether:ethyl acetate (92:8), mp 250-252 °C; IR (Neat, cm⁻¹) 3505 (w), 1669 (s), 1620 (vs), 1544 (m), 1420 (m), 1275 (m), 1224 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.57 (dd, J = 18.3, 4.7 Hz, 1H, C5- αH , 2.83, 2.97 (ABq, J = 17.1 Hz, the lower and upper half are further split into d with J = 14.6 and 3.2 Hz, 2H, C9-H), 3.00 (dd, J = 18.3, 12.9 Hz, 1H, C5- β H), 3.78 (dd, J = 12.9, 4.7 Hz, 1H, C4-H), 4.87 (s, 1H, C3-H), 5.39 (s, 1H, C1-H),5.41 (overlapped dd, J = 14.6, 3.2 Hz, 1H, C8-H), 6.99 (d, J = 7.2 Hz, 2H, Ar-*H*), 7.08 (t, J = 7.8 Hz, 1H, *Ar-H*), 7.12 (d, J = 7.8 Hz, 1H, *Ar-H*), 7.19-7.26 (unresolved m, 4H, Ar-H), 7.31-7.41 (unresolved m, 9H, Ar-H); ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta 31.7, 32.9, 41.9, 42.7, 77.7, 79.5, 90.4, 113.4, 116.7, 122.3,$ 123.6, 127.1, 127.8, 128.7, 129.0, 129.3 (× 2), 129.4, 129.8, 131.7, 134.0, 134.7, 135.2, 135.3, 136.1, 150.6, 169.4, 190.9; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₄H₂₆Cl₂³⁵NO₅, 598.1182, found 598.1183.

7-(4-Methoxyphenyl)-6a-nitro-3,6-diphenyl-2,3,5,6a,7,12b-hexahydro-1*H*,6*H*-chromeno[6,5*c*]chromen-1-one (4u). White solid; Yield 80% (134 mg); petroleum ether:ethyl acetate (85:15), mp 230-

while solid, Field 60% (134 mg), periodedin enterted yf acetate (63.13), mp 230-232 °C; IR (Neat, cm⁻¹) 3421 (vs, br), 1642 (s), 1613 (s), 1542 (m), 1513 (w), 1288 (w), 1253 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.59 (dd, J = 18.9, 5.5 Hz, 1H, *C5-αH*), 2.86, 2.98 (ABq, J = 17.2 Hz, the lower and upper half are further split into d with J = 14.6 and 3.3 Hz, 2H, *C9-H*), 3.05 (dd, J = 18.9, 13.1 Hz, 1H, *C5-βH*), 3.71 (s, 3H, *OCH*₃), 3.79 (dd, J = 13.2, 5.5 Hz, 1H, *C4-H*), 4.89 (s, 1H, *C3-H*), 5.39 (s, 1H, *C1-H*), 5.45 (dd, J = 14.6, 3.3 Hz, 1H, *C8-H*), 6.70 (d, J = 8.8 Hz, 2H, *Ar-H*), 6.93 (d, J = 8.8 Hz, 2H, *Ar-H*), 7.08 (t, J = 8.5 Hz, 1H, *Ar-H*), 7.11 (d, J = 8.5 Hz, 1H, *Ar-H*), 7.28 (d, J = 8.5 Hz, 1H, *Ar-H*), 7.32 (t, J = 8.5 Hz, 1H, *Ar-H*), 7.39-7.44 (m, 10H, *Ar-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 31.9, 32.9, 42.4, 42.8, 55.3, 77.4, 80.2, 90.7, 113.4, 114.2 (× 2), 116.7, 122.1, 123.8, 126.5, 127.5, 128.4, 128.7, 129.1 (× 2), 129.3, 129.8, 130.3, 135.6, 137.7, 150.8, 160.2, 170.0, 191.4; HRMS (ES+) m/z: [M+H]⁺ calcd for C₃₅H₃₀NO₆, 560.2068; found

560.2069.

3,6-Bis(4-bromophenyl)-6a-nitro-7-phenyl-2,3,5,6a,7,12b-hexahydro-1H,6H-chromeno[6,5-

c]chromen-1-one (4v). White solid; Yield 78% (132 mg); petroleum ether:ethyl acetate (92:8), mp 265-

nite solid; Yield 78% (132 mg); petroleum ether:ethyl acetate (92:8), mp 265-266 °C; IR (Neat, cm⁻¹) 3490 (s, br), 1657 (s), 1611 (vs), 1583 (s), 1544 (m), 1484 (m), 1360 (w), 1224 (s); ¹H NMR (CDCl₃, 400 MHz) δ 2.57 (dd, *J* = 18.9, 5.4 Hz, 1H, *C5-αH*), 2.83, 2.90 (ABq, *J* = 17.2 Hz, the lower and upper half are further split into d with *J* = 14.2 and 3.9 Hz, 2H, *C9-H*), 2.99 (dd, *J* = 18.9, 13.2 Hz, 1H, *C5-βH*), 3.76 (dd, *J* = 13.2, 5.4 Hz, 1H, *C4-H*), 4.86 (s, 1H, *C3-H*), 5.39 (s, 1H, *C1-H*), 5.41 (dd, *J* = 14.2, 3.9 Hz, 1H, *C8-H*), 6.99 (d, *J* = 7.5 Hz, 2H, *Ar-H*), 7.08 (t, *J* = 7.4 Hz, 1H, *Ar-H*), 7.12 (d, *J* = 7.4 Hz, 1H, *Ar-H*), 7.20 (overlapped t, *J* = 7.5 Hz, 2H, *Ar-H*), 7.22 (overlapped m, 1H, *Ar-H*), 7.23-7.27 (m, 2H, *Ar-H*), 7.29 (d, *J* = 7.4 Hz, 1H, *Ar-H*), 7.33 (t, *J* = 7.4 Hz, 1H, *Ar-H*), 7.34 (d, *J* = 8.4 Hz, 2H, *Ar-H*), 7.55-7.58 (m, 4H, *Ar-H*); ¹³C NMR (CDCl₃, 100 MHz) δ 31.7, 32.9, 42.0, 42.7, 77.7, 79.5, 90.4, 113.5, 116.7, 122.4, 123.0, 123.3, 123.6, 127.1, 128.1, 129.0, 129.3, 129.5, 129.8, 131.6, 132.0, 132.3,

134.5, 135.2, 136.6, 150.6, 169.4, 190.9; HRMS (ES+) m/z: $[M+H]^+$ calcd for $C_{34}H_{26}Br_2^{81}NO_5$, 688.0156; found 688.0156.

11-Bromo-6a-nitro-3,6,7-triphenyl-2,3,5,6a,7,12b-hexahydro-1H,6H-chromeno[6,5-c]chromen-1-

one (4w). White solid; Yield 71% (129 mg); petroleum ether:ethyl acetate (92:8), mp 145-147 °C; IR (Neat, cm⁻¹) 3437 (vs, br), 1668 (s), 1617 (vs), 1543 (s), 1473 (m), 1413 (m), 1354 (w), 1226 (m); ¹H NMR (CDCl₃, 400 MHz) δ 2.52 (dd, J = 18.9, 5.4 Hz, 1H, *C5-* α H), 2.76, 2.97 (ABq, J = 17.4 Hz, the lower and upper half are further split into d with J = 14.3 and 4.0 Hz, 2H, *C9-H*), 2.95 (dd, J = 18.9, 13.1 Hz, 1H, *C5-* β H), 3.63 (dd, J = 13.1, 5.4 Hz, 1H, *C4-H*), 4.75 (s, 1H, *C3-H*), 5.32 (s, 1H, *C1-H*), 5.37 (dd, J = 14.3, 4.0 Hz, 1H, *C8-H*), 6.87 (d, J = 7.5 Hz, 2H, *Ar-H*), 6.91 (d, J = 8.6 Hz, 1H, *Ar-H*), 7.10 (t, J = 7.5 Hz, 2H, *Ar-H*), 7.14-7.18 (m, 1H, *Ar-H*), 7.26-7.33 (unresolved m, 12H, *Ar-H*); ¹³C NMR (CDCl₃, 125 MHz) δ 31.8, 33.0, 42.6, 42.6, 77.9, 80.2, 90.2, 112.6, 114.6, 118.4, 126.1, 126.5,

127.1, 128.5, 128.8, 129.0, 129.1, 129.3, 129.5, 130.3, 132.3, 132.5, 135.1, 135.2, 137.5, 150.1, 170.3, 191.3; HRMS (ES+) m/z: $[M+H]^+$ calcd for $C_{34}H_{26}BrO_5$, 632.0865; found 632.0865.

Procedure for the asymmetric synthesis of double Michael adducts or tetrahydro-benzo[*c*]**chromenes** (**3b**). To a stirred solution of curcumin **1b** (0.2 mmol, 1.0 equiv) and nitrochromene **2b** (0.2 mmol, 1.2 equiv) in dry DCM (3.0 mL), organocatalyst **C1** (10 mol%) was added under N₂ at room temperature. After completion of the reaction (4 d, monitored by TLC), the solvent was evaporated under vacuum, and the crude residue was purified by silica gel column chromatography by eluting with petroleum ether/ethyl acetate (97:3).

(*E*)-1-(9-Hydroxy-6a-nitro-6,7-diphenyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-10-yl)-3phenylprop-2-en-1-one (3b): Yield 41% (22 mg), $[\alpha]_D^{25} = +1.780^\circ$ (c= 1.0 in CH₂Cl₂); HPLC: Chiralpak ADH (pet ether/*i*-PrOH = 97/3, flow rate = 1 mL/min, $\lambda = 360$ nm), t_R (major) = 7.4 min, t_R (minor) = 22.0 min; 33% *ee*.

3-Nitro-2-phenyl-2*H***-chromene (2b'):** Isolated 50% (16 mg), $[\alpha]_D^{25} = +0.510^\circ$ (c= 1.0 in CH₂Cl₂); HPLC: Chiralpak IC (pet ether/*i*-PrOH = 98/2, flow rate = 1 mL/min, λ = 360 nm), t_R (minor) = 12.0 min, t_R (major) = 12.8 min; 47% *ee*.

¹H NMR and ¹³C NMR chemical shift tables

Table S1. Selected ¹H NMR chemical shift (in ppm) values for double Michael adducts

Entry	С1-Н	С3-Н	С4-Н	С5-βН	С5-аН
3a	5.51 (s, 1H)	4.65 (s, 1H)	3.70 (dd, <i>J</i> = 13.7, 5.4 Hz, 1H)	2.97 (dd, <i>J</i> = 19.0, 13.7 Hz, 1H)	2.70 (dd, $J = 19.0, 5.4$ Hz, 1H)
3b	5.51 (s, 1H)	4.80 (s, 1H)	3.77 (dd, <i>J</i> = 13.7, 5.4 Hz, 1H)	3.06 (dd, <i>J</i> = 19.0, 13.7 Hz, 1H)	2.72 (dd, $J = 19.0, 5.4$ Hz, 1H)
3c	5.56 (s, 1H)	4.81 (s, 1H)	3.84 (dd, <i>J</i> = 13.6, 5.3 Hz, 1H)	3.14 (dd, <i>J</i> = 19.1, 13.6 Hz, 1H)	2.81 (dd, $J = 19.1$, 5.3 Hz, 1H)
3d	5.57 (s, 1H)	4.81 (s, 1H)	3.83 (dd, <i>J</i> = 13.6, 5.2 Hz, 1H)	3.14 (dd, <i>J</i> = 19.1, 13.6 Hz, 1H)	2.81 (dd, $J = 19.1$, 5.2 Hz, 1H)
3e	5.49 (s, 1H)	4.74 (s, 1H)	3.75 (dd, <i>J</i> = 13.7, 5.4 Hz, 1H)	3.05 (dd, <i>J</i> = 19.1, 13.7 Hz, 1H)	2.72 (dd, $J = 19.1$, 5.4 Hz, 1H)
3f	5.46 (s, 1H)	4.84 (s, 1H)	3.76 (dd, <i>J</i> = 13.6, 5.6 Hz, 1H)	3.04 (dd, <i>J</i> = 19.1, 13.6 Hz, 1H)	2.71 (dd, $J = 19.1$, 5.6 Hz, 1H),
3g	5.47 (s, 1H)	4.83 (s, 1H)	3.76 (dd, <i>J</i> = 13.5, 5.1 Hz, 1H)	3.04 (dd, <i>J</i> = 19.1, 13.5 Hz, 1H)	2.72 (dd, $J = 19.1$, 5.1 Hz, 1H)
3h	5.51 (s, 1H),	4.77 (s, 1H),	3.72 (dd, <i>J</i> = 13.7, 5.3 Hz, 1H)	3.06 (dd, <i>J</i> = 19.2, 13.7 Hz, 1H),	2.75 (dd, $J = 19.2$, 5.3 Hz, 1H)
3i	5.51 (s, 1H)	4.77 (s, 1H)	3.72 (dd, <i>J</i> = 13.6, 5.4 Hz, 1H)	3.02 (dd, <i>J</i> = 19.1, 13.6 Hz, 1H)	2.69 (dd, $J = 19.1$, 5.4 Hz, 1H)
3ј	5.45 (s, 1H)	4.75 (s, 1H)	3.77 (dd, <i>J</i> = 13.6, 5.5 Hz, 1H)	2.99 (dd, <i>J</i> = 18.9, 13.6 Hz, 1H)	2.70 (dd, $J = 18.9$, 5.5 Hz, 1H)
3k	5.45 (s, 1H)	4.75 (s, 1H)	3.70 (dd, <i>J</i> = 13.8, 5.2 Hz, 1H)	2.97 (dd, <i>J</i> = 18.9, 13.8 Hz, 1H)	2.70 (dd, $J = 18.9$, 5.2 Hz, 1H)

3n	5.52 (s,	4.79 (s,	3.77 (dd, J = 13.5, 5.2 Hz, 1H)	3.01 (dd, $J = 19.1$, 13.5 Hz, 1H)	2.73 (dd, $J = 19.1$, 5.2 Hz 1H)
30	5.49 (s, 1H)	4.76 (s, 1H)	3.73 (dd, J = 13.6, 5.4 Hz, 1H)	$2.99 \text{ (dd, } J = 19.0, \\13.6 \text{ Hz}, 1\text{H})$	2.71 (dd, $J = 19.0, 5.4$ Hz, 1H)
3р	5.54 (s, 1H)	4.74 (s, 1H)	3.72 (dd, <i>J</i> = 13.7, 5.3 Hz, 1H)	2.98 (dd, <i>J</i> = 19.0, 13.7 Hz, 1H)	2.71 (dd, $J = 19.0, 5.3$ Hz, 1H)
3q	5.73 (s, 1H)	4.73 (s, 1H)	4.06 (dd, <i>J</i> = 13.2, 5.9 Hz, 1H)	2.86, 2.97 (ABq, <i>J</i> and upper half are f 13.2 and 5.9 Hz, 2H	= 19.2 Hz, the lower half further split into d with $J = I$

Table S2. Selected ¹³C NMR chemical shift (in ppm) values for double Michael adducts

Entry	C1	C2	C3	C4	C5	C6	C7
3a	91.0	106.2	35.4	37.1	41.3	191.1	116.6
3b	91.1	106.7	35.5	37.0	41.6	192.1	116.8
3c	91.0	106.5	35.5	36.9	41.6	191.8	116.9
3d	91.1	106.5	35.5	36.9	41.6	191.9	116.9
3e	91.2	106.5	35.4	37.0	41.6	192.0	116.9
3f	91.0	106.7	35.6	37.0	41.6	192.0	116.9
3g	91.2	106.8	35.7	37.0	41.6	192.1	116.9
3h	90.8	106.1	35.5	37.0	41.7	192.1	118.0
3i	91.1	106.6	35.4	37.0	41.3	191.8	116.8
3j	90.9	106.6	35.4	37.0	41.0	191.9	116.9
3k	91.0	106.6	35.4	37.1	40.9	191.7	116.9
3n	90.8	106.7	35.4	36.9	41.2	192.1	117.0
30	90.8	106.8	35.5	36.9	41.2	192.1	117.0
3р	91.1	106.4	35.4	37.1	41.3	191.3	116.6
3q	91.0	106.1	35.4	38.0	38.7	190.3	116.9

Table S3. Selected ¹H NMR chemical shift (in ppm) values for triple Michael adducts

Entry	С1-Н	С3-Н	С4-Н	С5-βН	С5-аН	С8-Н	С9-βН	С9-аН
4b	5.44 (s, 1H)	4.88 (s, 1H),	3.81 (dd, <i>J</i> = 13.2, 5.2 Hz, 1H)	3.06 (dd, J = 18.8, 13.2 Hz, 1H)	2.60 (dd, J = 18.8, 5.2 Hz, 1H)	5.45 (dd, <i>J</i> = 13.7, 3.9 Hz, 1H)	2.86, 2.97 17.2 Hz, th upper half split into 13.7 and 3	(ABq, $J =$ e lower and are further d with $J =$ 9 Hz, 2H)
4d	5.42 (s, 1H)	4.82 (s, 1H)	3.79 (dd, <i>J</i> = 13.0, 5.3 Hz, 1H)	3.05 (dd, J = 18.8, 13.0 Hz, 1H)	2.60 (dd, J = 18.8, 5.3 Hz, 1H)	5.44 (dd, <i>J</i> = 14.7, 3.8 Hz, 1H)	2.86, 2.98 17.1 Hz, th upper half split into 14.7 and 3	(ABq, $J =$ e lower and are further d with $J =$.8 Hz, 2H)
4i	5.46 (s, 1H)	4.88 (s, 1H)	3.78 (dd, <i>J</i> = 13.1, 5.4 Hz, 1H)	3.04 (dd, J = 18.8, 13.1 Hz, 1H)	2.57 (dd, J = 18.8, 5.4 Hz, 1H)	5.41 (dd, <i>J</i> = 14.4, 3.1 Hz, 1H)	2.83, 2.98 17.2 Hz, th upper half split into 14.4 and 3	(ABq, $J =$ e lower and are further d with $J =$.1 Hz, 2H)
4j	5.39 (s, 1H)	4.87 (s, 1H)	3.78 (dd, <i>J</i> = 12.9, 4.7 Hz, 1H)	3.00 (dd, J = 18.3, 12.9 Hz, 1H)	2.57 (dd, J = 18.3, 4.7 Hz, 1H),	5.41 (overlapped dd, <i>J</i> = 14.6, 3.2 Hz, 1H)	2.83, 2.97 17.1 Hz, th upper half split into 14.6 and 3	(ABq, $J =$ e lower and are further d with $J =$.2 Hz, 2H)

4u	5.39 1H)	(s,	4.89 (s, 1H)	3.79 (dd, <i>J</i> = 13.2, 5.5 Hz, 1H)	3.05 (dd, J = 18.9, 13.1 Hz, 1H)	δ 2.59 (dd, $J =$ 18.9, 5.5 Hz, 1H)	5.45 (dd, J = 14.6, 3.3 Hz, 1H)	2.86, 2.98 (ABq, $J =$ 17.2 Hz, the lower and upper half are further split into d with $J =$ 14.6 and 3.3 Hz, 2H)
4v	5.39 1H)	(s,	4.86 (s, 1H)	3.76 (dd, <i>J</i> = 13.2, 5.4 Hz, 1H)	2.99 (dd, J = 18.9, 13.2 Hz, 1H)	2.57 (dd, J = 18.9, 5.4 Hz, 1H)	5.41 (dd, <i>J</i> = 14.2, 3.9 Hz, 1H)	2.83, 2.90 (ABq, $J =$ 17.2 Hz, the lower and upper half are further split into d with $J =$ 14.2 and 3.9 Hz, 2H)
4w	5.32 1H)	(s,	4.75 (s, 1H)	3.63 (dd, <i>J</i> = 13.1, 5.4 Hz, 1H)	2.95 (dd, J = 18.9, 13.1 Hz, 1H)	2.52 (dd, J = 18.9, 5.4 Hz, 1H)	5.37 (dd, J = 14.3, 4.0 Hz, 1H)	2.76, 2.97 (ABq, $J =$ 17.4 Hz, the lower and upper half are further split into d with $J =$ 14.3 and 4.0 Hz, 2H)

Table S4. Selected ¹³C NMR chemical shift (in ppm) values for triple Michael adducts

Entry	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
4 b	90.6	113.3	31.8	33.0	42.4	170.0	116.7	80.2	42.8	191.4
4d	90.4	113.2	31.8	32.9	42.4	170.0	116.7	80.2	42.8	191.4
4 i	90.6	113.2	31.9	32.9	42.1	170.2	116.6	80.1	42.7	191.6
4j	90.4	113.4	31.7	32.9	41.9	169.4	116.7	79.5	42.7	190.9
4u	90.7	113.4	31.9	32.9	42.4	170.0	116.7	80.2	42.8	191.4
4v	90.4	113.5	31.7	32.9	42.0	169.4	116.7	79.5	42.7	190.9
4 w	90.2	112.6	31.8	33.0	42.6	170.3	118.4	80.2	42.6	191.3

Table S5. Crystal data and structure refinement for 3c (CCDC 2207121)

Identification code	INN_BL_AS_43_autored
Empirical formula	$C_{34}H_{26}BrNO_5$
Formula weight	608.47
Temperature/K	200(16)
Crystal system	monoclinic
Space group	P21
a/Å	10.6287(9)
b/Å	11.9136(7)
c/Å	12.2552(9)
α/°	90
β/°	113.667(10)
γ/°	90
Volume/Å ³	1421.3(2)
Z	2
$\rho_{calc}g/cm^3$	1.422
μ/mm^{-1}	1.490
F(000)	624.0
Crystal size/mm ³	$0.17 \times 0.14 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	^o 3.628 to 49.984
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -14 \le l \le 14$
Reflections collected	25964

Independent reflections	$4992 \ [R_{int} = 0.1093, R_{sigma} = 0.0916]$
Data/restraints/parameters	4992/1/371
Goodness-of-fit on F ²	1.002
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0474, wR_2 = 0.0706$
Final R indexes [all data]	$R_1=0.1056,wR_2=0.0886$
Largest diff. peak/hole / e Å ⁻	³ 0.20/-0.24
Flack parameter	0.016(8)

Table S6. Crystal data and structure refinement for 4i (CCDC 2207119)

Identification code	INN_BL_AS_134_autored
Empirical formula	$C_{73}H_{63}Cl_3N_2O_{10}$
Formula weight	1234.60
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	21.0341(5)
b/Å	12.7886(2)
c/Å	26.3878(6)
α/°	90
β/°	109.626(3)
$\gamma/^{\circ}$	90

Volume/Å ³	6685.9(3)
Z	4
$\rho_{calc}g/cm^3$	1.227
μ/mm^{-1}	0.196
F(000)	2584.0
Crystal size/mm ³	$0.23 \times 0.18 \times 0.15$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	3.028 to 50
Index ranges	$-25 \le h \le 25, -15 \le k \le 15, -31 \le l \le 31$
Reflections collected	150854
Independent reflections	11768 [$R_{int} = 0.0664$, $R_{sigma} = 0.0267$]
Data/restraints/parameters	11768/0/797
Goodness-of-fit on F ²	1.023
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0710, wR_2 = 0.2077$
Final R indexes [all data]	$R_1 = 0.0865, wR_2 = 0.2252$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.85

Table S7. Selected torsional angles from X-ray data

Chemical structure	Atom number	Torsional angle (°)
OH O CH O	$C^{A}-C^{9}-C^{O}-N^{7}$ $C^{F}-C^{8}-C^{O}-N^{7}$ $C^{D}-C^{E}-C^{O}-N^{7}$	56.0 71.3 -167.5

A. 2	C^{J} - C^{P} - C^{12} - N^{F}	71.8
	C^{18} - C^{Y} - C^{12} - N^{F}	50.1
O G C	C^{1D} - C^W - C^{12} - N^F	-167.2

3. References

1. K. Mohri, Y. Watanabe, Y. Yoshida, M. Satoh, K. Isobe, N. Sugimoto and Y. Tsuda, *Chem. Pharm. Bull.*, 2003, **51**, 1268.

2. S. Nayak, P. Panda, S. Mohapatra, B. Raiguru and N. Baral, J. Heterocycl. Chem., 2019, 56, 1757.