The ESI for Org. Biomol. Chem., 2023, 21, 1888-1894, DOI: 10.1039/D2OB02221D, originally published on 30th December 2022, was updated on 6th December 2023.

Supplemental Information: π-Facial Selectivity in the Diels-Alder Reaction of Glucosamine-based Chiral Furans and Maleimides

Cornelis H. M. van der Loo ${ }^{\text {a }}$, Rutger Schim van der Loeffa, Avelino Martínc, Pilar Gomez-Salc, Mark L. G. Borst ${ }^{\text {b }}$, Kees Pouwer ${ }^{\text {b }}$ and Adriaan J Minnaard ${ }^{\text {a,* }}$
a Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands. E-mail: A.J.Minnaard@RUG.nl
"Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
Contents
Material and methods 2
S1. Reagents 2
S2. Equipment 2
S3. Chiral HPLC method for Di-HCF (10) 3
S4. Crystallographic Data of DAPRED-Bz (16) 3
S5. Reversibility Study 5
Experimental procedures 6
S6. Periodate mediated diol oxidation to facilitate NMR analysis 6
S7. Synthesis of Di-HCF (10) 6
S8. Synthesis of DAP (14) 7
S9. Synthesis of DAPRED (15) 8
S10. Synthesis of DAPRED-Bz (16) 8
S11. Synthesis of 18 8
Characterization 9
S12. Periodate mediated diol oxidation 9
S13. Di-HCF (10) 11
S14. DAP (14) 14
S15. DAPRED (15) 17
S16. DAPRED-Bz (16) 20
S17. Compound 18 23

Material and methods

S1. Reagents

All reagents were acquired from commercial sources and used without further purification. Specifically, Dglucosamine HCl was purchased from Carbosynth Ltd, Silica gel (ultra pure, 40-60 um, 60A), molecular sieves ($4 \AA$ A), and platinum on activated carbon ($5 \% \mathrm{Pt}$, not reduced) from Acros Organics, Celite 535 from Carl Roth, phenylboronic acid from AmBeed and N-phenylmaleimide from TCI. Thin-layer chromatography (TLC) was carried out on Merck silica gel 60 F254 aluminum plates. Visualization of compounds by TLC was done by potassium permanganate stain. Automated flash column chromatography cartridges were acquired from Screening Devices (UltraPure Irregular Silica Gel, 40-63 um, 60A, 5/1P). N-benzyloxycarbonyl glucosamine (GlcNCbz 9) was prepared according to literature. ${ }^{1}$
(1) Carbohydr. Res., 1999, 321, 176-189.

S2. Equipment

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR analyses were performed on a Bruker Avance NEO (400 MHz) at $25^{\circ} \mathrm{C}$. High-resolution mass spectrometry (HRMS) was performed on a Thermo Scientific LTQ Orbitrap XL (FTMS). Infrared spectra (IR) spectra were recorded on a PerkinElmer Spectrum Two FT-IR Spectrometer. DSC was recorded on a TA instruments DSC Q20 and enantiomeric excess (e.e.) was determined by chiral HPLC on a waters Acquity UPC². Automated flash column chromatography was carried out on a Buchi Sepacore ${ }^{\circledR}$ Flash System X10 (Pumps: 601, control unit: 620, detector: 640, fraction collector: 660). Crystal data was collected at 200 K on a Bruker D8 Venture diffractometer equipped with multilayer optics for monochromatization and collimator, Mo K α radiation ($\lambda=0.71073 \AA$) and an Oxford Cryostream 800 unit.

S3. Chiral HPLC method for Di-HCF (10)

Chiral SFC Method System	31875 C UPC $^{2} 10 \mathrm{~m}$ Amy2 EIAN			
	Waters Acquity UPC ${ }^{2}$ system with UV detector and QDA detector			
Column	Phenomenex Lux Amylose-2 ($3.0 \times 150 \mathrm{~mm} ; 3 \mu \mathrm{~m}$)			
Mobile Phase A	CO_{2}			
Mobile Phase B	Ethanol/Isopropanol/Acetonitrile/Ammonium acetate ($300 \mathrm{~mL} / 300 \mathrm{~mL} / 300 \mathrm{~mL} / 1.39 \mathrm{~g}$)			
Pump Flow	$1.0 \mathrm{~mL} / \mathrm{Min}$			
UV detection	210 nm			
Injection Volume	$1.0 \mu \mathrm{~L}$			
Total Run Time	10.0 Min			
Column Temperature	$40^{\circ} \mathrm{C}$			
ABPR	138 bar			
Mass Detection	MS Scan ES positive and negative			
Mass Range	100-600 Da			
Pump Program	Gradient			
	Time (Min)	\%A	\%B	Curve
	Initial	98	2	Initial
	6.0	60	40	6
	9.0	60	40	6
	9.1	98	2	6

S4. Crystallographic Data of DAPRED-Bz (16)

Crystals of DAPRED-Bz (16) were obtained from an ethanol solution ($10 \mathrm{mg} / \mathrm{mL}$) as tiny needles. A single crystal was coated with mineral oil, mounted on Mitegen MicroMounts with the aid of a microscope, and immediately placed in the low temperature nitrogen stream of the diffractometer. As crystals diffracted very weakly, data collection was only performed up to theta 25 degrees. Crystallographic data for $\mathbf{1 6}$ is presented in table 1.

The structure was solved, by using the Olex2 ${ }^{2}$ package by intrinsic phasing methods (SHELXT) ${ }^{3}$ and refined by leastsquares against F^{2} (SHELXL). ${ }^{4}$ All non-hydrogen atoms were anisotropically refined, while hydrogen atoms that were located in the different Fourier maps were isotropically refined, except those of the phenyl rings which were placed at idealized positions and refined using a riding model.

Table 1. Experimental data for the X-ray diffraction studies on DAPRED-Bz (16).

	DAPRED-Bz (16)
Formula	$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$
M	556.55
$T[\mathrm{~K}]$	$200(2)$
$\lambda[\AA]$	0.71073
Crystal system	monoclinic
Space group	$P 2_{1}$
$a[\AA] ; \alpha\left[^{\circ}\right]$	$12.4038(19)$
$b[\AA] ; \beta\left[^{\circ}\right]$	$6.0006(9) ; 105.886(4)$
$c[\AA] ; \gamma\left[^{\circ}\right]$	$18.430(3)$
$V\left[\AA^{3}\right]$	$1319.3(3)$
Z	2
$\rho_{\text {calcd }}\left[\mathrm{g}\right.$ cm $\left.{ }^{-3}\right]$	1.401
$\mu\left[\mathrm{~mm}^{-1}\right]$	0.102
$F(000)$	584
Crystal size $\left[\mathrm{mm}{ }^{3}\right]$	$0.15 \times 0.098 \times 0.04$
θ range $[$ deg $]$	3.40 to 25.02
Index ranges	14 to -14,
	7 to -7,
	21 to -21
Reflections collected	35365
Unique data	$4636\left(\mathrm{R}_{\mathrm{int}}=0.145\right)$
Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	3286
Goodness-of-fit on F^{2}	1.035
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.045$
R indices (all data $)$	$\mathrm{wR2}=0.080$
Largest diff. peak/hole $\left[\mathrm{e} \cdot \AA^{-3}\right]$	$0.164 /-0.194$
	$\mathrm{R} 1=0.086$
$\quad w R 2=\left\{\left[\Sigma w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right] /\left[\mathrm{L} w^{2}\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$	

(2) J. Appl. Cryst. 2009, 42, 339-341.
(3) Acta Cryst. 2015, A71, 3-8
(4) Acta Cryst. 2015, C71, 3-8

S5. Reversibility Study

In DMSO- d_{6} ($0.8 \mathrm{~mL}, 30 \mathrm{mg} / \mathrm{mL}$) solutions were prepared of the endo and exo diastereomers, as mixtures with matching topologies, of the Diels Alder products of Di-HCF (10) with N-methylmaleimide and N-phenylmaleimide. The product distribution was determined at $t=0$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (table 2). The samples were kept at room temperature, $40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. After 24 h , the decrease in concentration of the corresponding isomers was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (table 3). The sum of the concentration of the two target isomers was normalized, and the isomer concentration decrease at each temperature was calculated (table 4, graph 1).

Table 2. Isomer distribution at $t=0$

Dienophile	Di-HCF	Endo	Endo'	Exo	Exo'	Isomer sum
N -methylmaleimide endo-isomer	0\%	49\%	49\%	0\%	2\%	98\%
N -methylmaleimide exo-isomer	0\%	0\%	0\%	26\%	74\%	100\%
N -phenylmaleimide endo-isomer	0\%	45\%	50\%	0\%	5\%	95\%
N -phenylmaleimide exo-isomer	0\%	0\%	0\%	23\%	77\%	100\%

Table 3. Isomer distribution at $t=24 h$

Dienophile	Temperatur e	Di- HCF	Endo	Endo'	Exo	Exo'	Isomer sum
N methylmaleimide endo-isomer	RT	0\%	49\%	49\%	0\%	2\%	98\%
	$40^{\circ} \mathrm{C}$	3\%	47\%	48\%	0\%	2\%	95\%
	$50^{\circ} \mathrm{C}$	5\%	44\%	46\%	2\%	3\%	90\%
	$60^{\circ} \mathrm{C}$	7\%	40\%	42\%	4\%	7\%	82\%
	$70^{\circ} \mathrm{C}$	8\%	34\%	37\%	8\%	13\%	71\%
N - methylmaleimide exo Endo-isomer	RT	0\%	0\%	0\%	26\%	74\%	100\%
	$40{ }^{\circ} \mathrm{C}$	0\%	0\%	0\%	26\%	74\%	100\%
	$50^{\circ} \mathrm{C}$	2\%	0\%	0\%	26\%	72\%	98\%
	$60^{\circ} \mathrm{C}$	4\%	1\%	2\%	25\%	68\%	93\%
	$70^{\circ} \mathrm{C}$	5\%	2\%	3\%	24\%	65\%	89\%
N-phenylmaleimide endo-isomer	RT	0\%	45\%	50\%	0\%	5\%	95\%
	$40^{\circ} \mathrm{C}$	6\%	39\%	45\%	0\%	5\%	84\%
	$50^{\circ} \mathrm{C}$	9\%	37\%	42\%	4\%	8\%	79\%
	$60^{\circ} \mathrm{C}$	12\%	29\%	35\%	8\%	16\%	64\%
	$70^{\circ} \mathrm{C}$	14\%	17\%	21\%	17\%	31\%	38\%
N-phenylmaleimide exo-isomer	RT	0\%	0\%	0\%	23\%	77\%	100\%
	$40^{\circ} \mathrm{C}$	3\%	0\%	0\%	23\%	74\%	97\%
	$50^{\circ} \mathrm{C}$	5\%	2\%	3\%	22\%	68\%	90\%

	$60^{\circ} \mathrm{C}$	8%	4%	6%	$\mathbf{2 3 \%}$	$\mathbf{6 0 \%}$	83%
	$70^{\circ} \mathrm{C}$	9%	8%	11%	$\mathbf{2 4 \%}$	$\mathbf{4 7 \%}$	71%

Table 4. Normalized data. Sum of target isomers set to 100% at $t=0$

Graph 1. Representation of the normalized data from table 4. Left: The DA product of Di-HCF (10) +N methylmaleimide. Right: The DA product of Di-HCF (10) + N-phenylmaleimide

Experimental procedures

S6. Periodate mediated diol oxidation to facilitate NMR analysis
NMR sample preparation. The sample (10 mg substrate) was dissolved in a mixture of DMSO- $d_{6}-D_{2} \mathrm{O}$ (1:1. 0.8 mL). To the solution was added $\mathrm{NaIO}_{4}(10 \mathrm{mg}$, ca. 2 eq.) and the mixture was stirred at room temperature for 1 h . The white precipitate was removed by filtration over a disposable syringe filter (0.45 uM) and the filtrate was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

S7. Synthesis of Di-HCF (10)

Benzyl (R)-(5-(1,2-dihydroxyethyl)furan-3-yl)carbamate (Di-HCF 10). A mixture was prepared of N benzyloxycarbonyl glucosamine (GlcNCbz 9) ($95 \mathrm{~g}, 1 \mathrm{eq} ., 0.30 \mathrm{~mol}$), phenylboronic acid ($55 \mathrm{~g}, 1.5 \mathrm{eq} ., 0.45 \mathrm{~mol}$), molsieves ($500 \mathrm{~g}, 4 \AA$) and pyridine (1 L). Under stirring was added a solution of triflic acid ($46 \mathrm{~g}, 27 \mathrm{~mL}, 1 \mathrm{eq} ., 0.30$ mol) in pyridine (0.5 L). The mixture was stirred at reflux for 30 min and subsequently cooled to rt. $\mathrm{Solid}_{\mathrm{K}_{2} \mathrm{CO}_{3} \text { (} 84}$ g , 2 eq., 0.61 mol) and neopentyl glycol ($63 \mathrm{~g}, 60 \mathrm{~mL}, 2$ eq., 0.61 mol) were added. The suspension was stirred at rt for 1 h . The mixture was filtered over a glass filter (p 2) and the filter residue was washed with ethyl acetate until colourless. The filtrate was concentrated to a volume of ca. 500 mL and the brown solution was poured into a suspension of heptanes (2.5 L) and celite (200 g). The solids were filtered off and washed with heptanes (1 L). The filtrate was disposed, and the residue was extracted with ethyl acetate (1.5 L), until colourless. The ethyl acetate filtrate was washed with citric acid (10%, aq., $5 \times 500 \mathrm{~mL}$), NaHCO_{3} (sat., aq., $2 \times 500 \mathrm{~mL}$) and brine (500 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford a brown solid (68 g). The crude product was re-crystallized from DCE (300 mL), the solids were filtered off and the filter cake was washed with small volume of cold DCE. The filter dry solids were dried in vacuo $\left(50^{\circ} \mathrm{C}\right)$ to furnish a beige solid (42 g , yield: 50%, purity: 100% (qNMR), 97.4\% ee). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, ~ D M S O-d 6) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}$, $1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}), 4.41(\mathrm{q}, 1 \mathrm{H}), 3.62-3.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta 155.59,153.72,137.13,128.92,128.68,128.49,128.46,126.24,101.94,68.35,66.38,64.83$. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right): 279.1056$; found $\left(\mathrm{M}+\mathrm{H}^{+}\right): 279.1057$.

S8. Synthesis of DAP (14)

Benzyl ((3aS,4S,7S,7aR)-7-((R)-1,2-dihydroxyethyl)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-4,7-epoxyisoindol-5-yl)carbamate (DAP 14). A solution of N -phenylmaleimide ($2.8 \mathrm{~g}, 1.5 \mathrm{eq} ., 16 \mathrm{mmol}$) in chloroform $(10 \mathrm{~mL})$ was cooled to $-10{ }^{\circ} \mathrm{C}$. To the yellow solution was added benzyl (R)-(5-(1,2-dihydroxyethyl)furan-3$\mathrm{yl})$ carbamate (Di-HCF 10) ($3.0 \mathrm{~g}, 1 \mathrm{eq} ., 11 \mathrm{mmol}$) and the resulting suspension was stirred at $-10{ }^{\circ} \mathrm{C}$ for 16 h . The brown solution was loaded as such on a column cartridge (330 g) and purified by automated flash chromatography (dichloromethane-methanol ($0 \% \rightarrow 6 \%$), figure 1). The combined fractions with product (ca. 0.5 L) were washed with water ($4 \times 300 \mathrm{~mL}$) and brine-water (1:1) (300 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo ($35^{\circ} \mathrm{C}$) to afford the product as an off-white foam (2.8 g , yield: 58%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.92(\mathrm{~s}$, $1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.13$ (s, 2H), $5.12(\mathrm{~d}, 1 \mathrm{H}), 4.53(\mathrm{t}, 1 \mathrm{H}), 3.98(\mathrm{dd}, 1 \mathrm{H}), 3.63-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~d}, 1 \mathrm{H}), 3.20(\mathrm{~d}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 175.67,174.31,153.50,144.69,136.70,132.66,129.41,128.96,128.83,128.63,128.57,127.28,110.48$, 93.87, 80.53, 69.99, 66.77, 63.77, 50.96, 50.24. HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right): 474.1353$; found $\left(\mathrm{M}+\mathrm{H}^{+}\right): 474.1344$.

Figure 1. Automated flash chromatography of DAP (14). Eluent: DCM-MeOH (0\% $\rightarrow 6 \%$).

S9. Synthesis of DAPRED (15)

Benzyl ((3aS,4S,5S,7S,7aR)-7-((R)-1,2-dihydroxyethyl)-1,3-dioxo-2-phenyloctahydro-1H-4,7-epoxyisoindol-5yl)carbamate (DAPRED 15). To a solution of benzyl ((3aS, 4S,7S,7aR)-7-((R)-1,2-dihydroxyethyl)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-4,7-epoxyisoindol-5-yl)carbamate (DAP 14) ($1.5 \mathrm{~g}, 1 \mathrm{eq}, 3.3 \mathrm{mmol}$) in THF (20 mL) was added platinum/C ($0.32 \mathrm{~g}, 5 \% \mathrm{wt} ., 0.025 \mathrm{eq} ., 83 \mu \mathrm{~mol})$. The suspension was placed under a hydrogen atmosphere (1 atm, balloon) and was stirred for 1 h . The mixture was filtered over a disposable syringe filter ($0.45 \mu \mathrm{M}$) and the filtrate was concentrated in vacuo afford a white foam (1.5 g , yield: quant.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.86$ (d, $1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, 1 \mathrm{H}), 5.07(\mathrm{~d}, 2 \mathrm{H}), 4.71$ (d, 1H), $4.55(\mathrm{t}, 1 \mathrm{H}), 3.98(\mathrm{dd}, 1 \mathrm{H}), 3.93(\mathrm{q}, 1 \mathrm{H}), 3.58(\mathrm{t}, 2 \mathrm{H}), 3.48(\mathrm{~d}, 1 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}), 2.10(\mathrm{t}, 1 \mathrm{H}), 1.51(\mathrm{dd}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 177.29,175.57,156.48,137.27,133.00,129.26,128.90,128.70,128.48,128.44,127.28$, $91.72,80.21,71.86,66.21,62.77,52.13,50.27,46.96,36.94$. HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 454.1690; found $\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 454.1690 .

S10. Synthesis of DAPRED-Bz (16)

(R)-2-((3aR,4S,6S,7S,7aS)-6-(((Benzyloxy)carbonyl)amino)-1,3-dioxo-2-phenyloctahydro-4H-4,7-epoxyisoindol-4-yl)-2-hydroxyethyl benzoate (DAPRED-Bz 16). To a solution of benzyl ((3aS,4S,5S,7S,7aR)-7-((R)-1,2-dihydroxyethyl)-1,3-dioxo-2-phenyloctahydro-1H-4,7-epoxyisoindol-5-yl)carbamate (DAPRED 15) ($1.5 \mathrm{~g}, 1 \mathrm{eq} .3 .3 \mathrm{mmol}$) and triethylamine ($0.75 \mathrm{~g}, 1.0 \mathrm{~mL}, 2.25$ eq., 7.5 mmol) in dichloromethane (20 mL) was added benzoyl chloride (0.93 g , 0.77 mL , 2 eq., 6.6 mmol), while maintaining the temperature below $25^{\circ} \mathrm{C}$. The clear mixture was stirred at room temperature for 1 h and subsequently diluted with ethyl acetate (200 mL). The solution was washed with citric acid $(10 \%$, aq., $2 \times 150 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (sat., aq., $2 \times 150 \mathrm{~mL}$) and brine (150 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford an off-white foam. The crude product was purified by automated column chromatography (40 g column, heptanes-ethyl acetate $(0 \% \rightarrow 75 \%$)) to afford the product as a white solid (1.5 g , yield: 81\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.04(\mathrm{~d}, 2 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}, 2 \mathrm{H}), 7.51-7.49$ (m, 1H), $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}), 5.77(\mathrm{~d}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~d}, 1 \mathrm{H}), 4.46(\mathrm{td}, 2 \mathrm{H})$,
$4.41-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, 1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H}), 2.25(\mathrm{t}, 1 \mathrm{H}), 1.60(\mathrm{dd}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 177.23,175.31,166.23,156.47,137.23,133.82,132.91,130.17,129.83,129.31,129.16,128.90,128.79$, 128.51, 128.46, 127.31, $90.95,80.68,68.17,66.30,66.24,52.07,50.49,46.81,36.50$. HRMS (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 558.1952; found ($\mathrm{M}+\mathrm{H}^{+}$): 558.1935.

S11. Synthesis of 18

N -((3aS,4S,7S,7aR)-7-((R)-1,2-dihydroxyethyl)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-4,7-epoxyisoindol-5-yl)acetamide (18). A solution of N-phenylmaleimide ($2.8 \mathrm{~g}, 1.5 \mathrm{eq} ., 16 \mathrm{mmol}$) in chloroform (10 mL) was cooled to $-10^{\circ} \mathrm{C}$. To the yellow solution was added dihydroxyethyl acetamidofuran (Di-HAF (1)) ($2.0 \mathrm{~g}, 1 \mathrm{eq} ., 11 \mathrm{mmol}$) and DMSO (1.5 mL). The resulting suspension was stirred at $-10{ }^{\circ} \mathrm{C}$ for 16 h . The brown solution was poured into a suspension of Celite (6 g) in diisopropyl ether (150 mL). The solids were filtered off and washed with diisopropyl ether ($2 \times 50 \mathrm{~mL}$) and tert-butyl methyl ether ($2 \times 25 \mathrm{~mL}$). The filter residue was ground to a fine powder with pestle and mortar and was used as solid load for purification by automated flash chromatography (330 g column, dichloromethane-methanol $(0 \% \rightarrow 10 \%)$). The combined fractions with product were extracted with water (3×200 $\mathrm{mL})$. The aqueous phase was saturated with sodium chloride and subsequently extracted with EtOAc ($3 \times 300 \mathrm{~mL}$) The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, diluted with toluene (0.5 L) and concentrated in vacuo $\left(25{ }^{\circ} \mathrm{C}\right)$ to afford the product as a white solid (2.3 g , yield: 59%). ${ }^{1 \mathrm{H}}$-NMR (400 MHz , DMSO- d_{6}) $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, 1 \mathrm{H}), 4.53(\mathrm{t}, 1 \mathrm{H}), 4.05-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.39$ ($\mathrm{m}, 2 \mathrm{H}$), $3.28(\mathrm{~d}, 1 \mathrm{H}), 3.19(\mathrm{~d}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ ס 175.77, 174.33, 168.86, 144.25, $132.66,129.41,128.83,127.28,112.28,93.66,80.71,70.01,63.80,50.79,50.26,23.71$. HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 359.1238; found ($\mathrm{M}+\mathrm{H}^{+}$): 359.1230.

Characterization

S12. Periodate mediated diol oxidation
Reaction mixture, before \& after

Endo products, before \& after

S13. Di-HCF (10)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Di-HCF (10) in DMSO- d_{6}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of Di-HCF (10) in DMSO- d_{6}

DSC of Di-HCF (10)

IR of Di-HCF (10)

Chiral LC analysis of Di-HCF (10)

Processed Channel: PDA Ch1 210nm@4.8nm -Compens.

	RT (Min)	Area	Height	Area \%
1	5.798	4162073	1121923	98.73
2	6.152	53498	15690	1.27

S14. DAP (14)
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DAP (14) in DMSO- d_{6}

DSC of DAP (14)

HRMS of DAP (14)

S15. DAPRED (15)
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DAPRED (15) in DMSO- d_{6}

${ }^{13} \mathrm{C}$-NMR of DAPRED (15) in DMSO- d_{6}

DSC of DAPRED (15)

HRMS of DAPRED (15)

S16. DAPRED-Bz (16)
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of DAPRED-Bz (16) in DMSO- d_{6}

${ }^{13} \mathrm{C}$-NMR of DAPRED (16) in DMSO- d_{6}

DSC of DAPRED-Bz (16)

HRMS of DAPRED-Bz (16)

S17. Compound 18
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 18 in DMSO- d_{6}

$\int \mid 1$

DSC of $\mathbf{1 8}$

HRMS of 18

