Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Asp-containing Actinomycin and Tetracyclic Chromophoric Analogues from *Streptomyces* sp. Strain S22.

Wanzhu Zhao^{a†}, Guangfei Wang^{b†}, Lin Guo^a, Jingmin Wang^a, Congcong Jing^a, Ben Liu^a, Feng Zhao^a, Shumin Zhang^{a,*} and Zeping Xie^{a,*}

^aSchool of Pharmacy, Binzhou Medical University, Yantai 264003, China ^bCollege of Life Sciences, Yantai University, Yantai 264003, China

*Corresponding author: zepingxie@sina.com (Z. X.); shumin_zhang@outlook.com (S. Z.)

Contents

Fable S1. NMR data for compound 1 in CDCl3 ^a	S5
Fable S2. NMR data for compound 2 in CDCl3 ^a	S8
Fable S3. NMR data for compound 3 in CDCl3	S11
Fable S4. NMR data for compound 4 in CDCl3 ^a	S14
Fig. S1 Neighbour-joining tree based on 16S rRNA gene sequences of strain S22 and related strains in the family Streptomycete. Numbers at nodes to percentage bootstrap values (based on 1000 replicates; only values. 50 % are shown). Bar, 5 substitutions per 1000 nucleotide positions	refer S15
Fig. S2 Chiral amino acid analysis of 1	S16
Fig. S3 UV spectrum of compound 1	S17
Fig. S4 UV spectrum of compound 2	S18
Fig. S5 UV spectrum of compound 3	S19
Fig. S6 CD spectrum of compound 1	S20
Fig. S7 CD spectrum of compound 2	S21
Fig. S8 CD spectrum of compound 3	S22
Fig. S9 The dose-response curve of antibacterial activities for actinomycins 1–3.	S23
Fig. S10 ¹ H NMR spectrum (600 MHz) of compound 1 in CDCl ₃	S28

Fig. S11 ¹³ C{ ¹ H} NMR spectrum (150 MHz) of compound 1 in CDCl ₃	
Fig. S12 DEPT-135 spectrum (150 MHz) of compound 1 in CDCl ₃	
Fig. S13 COSY spectrum (600 MHz) of compound 1 in CDCl ₃ .	
Fig. S14 HSQC spectrum (600 MHz) of compound 1 in CDCl ₃ .	
Fig. S15 HMBC spectrum (600 MHz) of compound 1 in CDCl ₃	
Fig. S16 NOESY spectrum (600 MHz) of compound 1 in CDCl ₃	
Fig. S17 HRESIMS spectrum of compound 1	
Fig. S18 ¹ H NMR spectrum (600 MHz) of compound 2 in CDCl ₃	
Fig. S19 ¹³ C{ ¹ H} NMR spectrum (150 MHz) of compound 2 in CDCl ₃	
Fig. S20 DEPT-135 spectrum (150 MHz) of compound 2 in CDCl ₃	
Fig. S21 COSY spectrum (600 MHz) of compound 2 in CDCl ₃ .	
Fig. S22 HSQC spectrum (600 MHz) of compound 2 in CDCl ₃ .	
Fig. S23 HMBC spectrum (600 MHz) of compound 2 in CDCl ₃	
Fig. S24 NOESY spectrum (600 MHz) of compound 2 in CDCl ₃	
Fig. S25 HRESIMS spectrum of compound 2.	
Fig. S26 ¹ H NMR spectrum (600 MHz) of compound 3 in CDCl ₃	
Fig. S27 ¹³ C{ ¹ H} NMR spectrum (150 MHz) of compound 3 in CDCl ₃	
Fig. S28 DEPT-135 spectrum (150 MHz) of compound 3 in CDCl ₃	

Fig. S29 COSY spectrum (600 MHz) of compound 3 in CDCl ₃ .	
Fig. S30 HSQC spectrum (600 MHz) of compound 3 in CDCl ₃	S48
Fig. S31 HMBC spectrum (600 MHz) of compound 3 in CDCl ₃	S49
Fig. S32 NOESY spectrum (600 MHz) of compound 3 in CDCl ₃	
Fig. S33 HRESIMS spectrum of compound 3	
Fig. S34 ¹ H NMR spectrum (600 MHz) of compound 4 in CDCl ₃	
Fig. S35 ¹³ C{ ¹ H} NMR spectrum (150 MHz) of compound 4 in CDCl ₃	S53
Fig. S36 DEPT-135 spectrum (150 MHz) of compound 4 in CDCl ₃	
Fig. S37 COSY spectrum (600 MHz) of compound 4 in CDCl ₃ .	
Fig. S38 HSQC spectrum (600 MHz) of compound 4 in CDCl ₃ .	S56
Fig. S39 HMBC spectrum (600 MHz) of compound 4 in CDCl ₃	
Fig. S40 ESIMS spectrum of compound 4.	S58

α -ring	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult (J, Hz)	COSY	HMBC	NOESY
Thr	1	169.4, C				
	2	56.0, CH	5.10, dd (6.6, 2.3)	NH_{Thr} , H-3 _{Thr}	C-1 _{Thr} , C-13	NH _{D-Val}
	3	75.0, CH	5.31, qd (6.4, 2.3)	$H-2_{Thr}, H-4_{Thr}$	$C-1_{MeVal}, C-4_{Thr}$	NH _{D-Val}
	4	17.7, CH ₃	1.35, d (6.4)	$H-3_{Thr}$	$C-2_{Thr}$, $C-3_{Thr}$	
	NH		7.03, d (6.6)	H-2 _{Thr}	C-1 _{Thr} , C-13	
MeVal	1	167.7, C				
	2	71.5, CH	2.68, d (8.6)	$H-3_{MeVal}$	C-1 _{MeVal} , C-1 _{Sar} , C-3 _{MeVal} , C-4 _{MeVal} , NMe _{MeVal}	NMe _{MeVal}
	3	26.8, CH	2.68, m	H-2 _{MeVal} , H-4 _{MeVal} , H- 5 _{MeVal}	C-1 _{MeVal} , C-4 _{MeVal} , NMe _{MeVal}	
	4	21.7, CH ₃	0.96, d (6.1)	H-3 _{MeVal}	C-2 _{MeVal} , C-3 _{MeVal}	
	5	20.5, CH ₃	0.73, d (6.4)	H-3 _{MeVal}	C-1 _{MeVal} , C-2 _{MeVal} , C-3 _{MeVal} , C-	
			• • •		4 _{MeVal}	
-	NMe	39.5, CH ₃	2.94, s		$C-1_{Sar}$, $C-2_{MeVal}$	H- 2_{MeVal} , H- 2_{Sar}
Sar	1	166.4, C				
	2	51.5, CH ₂	4.67, d (17.2); 3.63, d (17.2)		C-1 _{Sar} , C-1 _{Pro} , NMe _{Sar}	NMe _{MeVal} , H-2 _{Pro}
	NMe	34.8, CH ₃	2.86, s		$C-1_{Pro}, C-2_{Sar}$	
Pro	1	173.3, C				
	2	56.0, CH	6.25, d (8.2)	H-3 _{Pro}	C-1 _{Pro} , C-1 _{D-Val} , C-3 _{Pro} , C-4 _{Pro} , C- 5 _{Pro}	H-2 _{Sar} , H-2 _{D-Val}
	3	30.7, CH ₂	2.25, m; 1.74, dd (10.1, 5.2)	H-2 _{Pro} , H-4 _{Pro}	C-1 _{Pro} , C-2 _{Pro} , C-4 _{Pro}	
	4	$23.0, CH_2$	2.25, m; 1.98, m	$H-3_{Pro}, H-5_{Pro}$	C-1 _{Pro} , C-3 _{Pro} , C-5 _{Pro}	
	5	47.1, CH ₂	4.15, td (10.3, 7.0) 3.66, td (10.3, 1.6)	H-4 _{Pro}	C-1 _{D-Val} , C-2 _{Pro} , C-3 _{Pro} , C-4 _{Pro}	H-2 _{D-Val}

Table S1. NMR data for compound 1 in CDCl₃^{*a*}

D-Val	1	170.0, C				
	2	59.0, CH	3.55, dd (10.3, 6.3)	NH _{D-Val} , H-3 _{D-Val}	C-1 _{D-Val} , C-1 _{Thr} , C-3 _{D-Val} , C-5 _{D-Val}	H-2 _{Pro} , H-5 _{Pro}
	3	31.7, CH	2.08, m	H-2 _{D-Val} , H-4 _{D-Val} , H- 5 _{D-Val}	C-2 _{D-Val} , C-4 _{D-Val}	
	4	19.1, CH ₃	0.85, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val} , C-5 _{D-Val}	
	5	18.6, CH ₃	1.08, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val} , C-4 _{D-Val}	
	NH		8.52, d (6.3)	H-2 _{D-Val}	C-1 _{Thr} , C-2 _{D-Val} , C-3 _{D-Val}	$H-2_{Thr}, H-3_{Thr}$
β -ring	no.	$\delta_{ m C}$, type	$\delta_{ m H}$ mult ($J,$ Hz)	COSY	HMBC	NOESY
Thr	1	170.6, C				
	2	55.3, CH	4.95, dd (7.7, 1.5)	NH_{Thr} , H-3 _{Thr}	C-1 _{Thr} , 14	NH _{D-Val}
	3	72.5, CH	5.40, qd (6.6, 1.5)	$H-2_{Thr}, H-4_{Thr}$	C-1 _{Thr} , C-1 _{Me-Val} , C-2 _{Thr} , C-4 _{Thr}	NH _{D-Val}
	4	18.5, CH ₃	1.11, d (6.6)	$H-3_{Thr}$	$C-2_{Thr}$, $C-3_{Thr}$	
	NH		8.62, d (7.7)	$H-2_{Thr}$	C-1 _{Thr} , C-2 _{Thr} , C-14	NMe _{MeVal}
MeVal	1	165.8, C				
	2	72.9, CH	2.58, d (11.0)	H-3 _{Me-Val}	C-1 _{Me-Val} , C-1 _{Sar} , C-3 _{Me-Val} , NMe _{Me-}	NMe _{Me-Val}
	3	22.6, CH	2.96, m	H-2 _{Me-Val} , H-4 _{Me-Val} , H- 5 _{Me-Val}	Val C-1 _{Me-Val} , C-2 _{Me-Val} , C-4 _{Me-Val}	
	4	18.4, CH ₃	0.71, d (6.7)	$H-3_{Me-Val}$	C-2 _{Me-Val} , C-3 _{Me-Val}	
	5	19.5, CH ₃	0.75, d (6.5)	$H-3_{Me-Val}$	C-2 _{Me-Val} , C-3 _{Me-Val} , C-4 _{Me-Val}	
	NMe	39.5, CH ₃	2.73, s		C-1 _{Sar} , C-2 _{Me-Val}	NH _{Thr} , H-2 _{Me-Val} , H- 2 _{Sar}
Sar	1	174.4, C				
	2	53.3, CH ₂	5.28, d (17.6); 3.87, d (17.6)		C-1 _{Sar} , NMe _{Sar}	NMe _{Me-Val}
	NMe	35.3, CH ₃	2.85, s		C-1 _{Asp} , C-2 _{Sar}	
Asp	1	170.7, C			1.	
1	2	50.5, CH	5.23, dt (9.2, 3.0)	NHAsp, H-3Asp	C-1 _{Asp} , C-1 _{D-Val} , C-3 _{Asp} , C-4 _{Asp}	

	3	34.6, CH ₂	3.27, dd (15.7, 3.2); 2.97, m	H-2 _{Asp}	C-1 _{Asp} , C-1 _{D-Val} , C-2 _{Asp} , C-4 _{Asp}	
	4	172.7, C				
	NH		7.48, d (3.0)	H-2 _{Asp}	$C-1_{D-Val}, C-2_{Asp}$	H-2 _{D-Val}
D-Val	1	174.4, C				
	2	63.1, CH	2.99, dd (9.2, 2.5)	NH _{D-Val} , H-3 _{D-Val}	$C-3_{D-Val}, C-4_{D-Val}$	NH _{Asp}
	3	30.0, CH	1.96, m	H-2 _{D-Val} , H-4 _{D-Val} , H- 5 _{D-Val}	C-1 _{D-Val} , C-2 _{D-Val} , C-4 _{D-Val} , C-5 _{D-Val}	
	4	19.9, CH ₃	1.20, d (6.6)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val} , C-5 _{D-Val}	
	5	19.1, CH ₃	0.98, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val} , C-4 _{D-Val}	
	NH		7.52, d (2.5)	H-2 _{D-Val}	C-1 _{Thr} , C-2 _{D-Val} , C-3 _{D-Val}	$H-2_{Thr}, H-3_{Thr}$
chromophore	no.	$\delta_{ m C}$, type	$\delta_{ m H}$ mult (J , Hz)	COSY	HMBC	NOESY
	1	98.3, C				
	2	150.3, C				
	3	179.1, C				
	4	113.9, C				
	4a	146.0, C				
	5a	140.3, C				
	6	127.6, C				
	7	130.4, CH	7.37, d (7.7)	H-8	C-5a, C-9, C-11	H-11
	8	125.8, CH	7.69, d (7.7)	H-7	C-5a, C-6, C-9a, C-13	
	9	132.1, C				
	9a	128.5, C				
	10a	146.5, C				
	11	15.0, CH ₃	2.53, s		C-5a, C-6, C-7	H-7
	12	7.9, CH ₃	2.25, s		C-3, C-4, C-4a	
	13	166.4, C				
	14	167.5, C				

$\rm NH_2$	9.93, d (8.0);	C-1, C-3
	6.96, d (8.0)	

^a600 MHz for ¹H NMR and 150 MHz for ¹³C NMR. ^bNumbers of attached protons were determined by analysis of 2D spectra.

Table S2. NMR data for compound 2 in CDCl3^a

α -ring	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult (J, Hz)	COSY	HMBC	NOESY
Thr	1	168.8, C				
	2	55.1, CH	5.12, d (9.3)	NH _{Thr}	C-1 _{Thr}	$H-4_{Thr}$
	3	70.5, CH	5.75, d (5.3)	H-4 _{Thr}		
	4	17. 3, CH ₃	1.13, d (6.4)	H-3 _{Thr}	$C-2_{Thr}$, $C-3_{Thr}$	
	NH		8.83, d (8.4)	H-2 _{Thr}	C-13	H-8
MeVal	1	169.0, C				
	2	60.4, CH	4.70, d (12.1)	H-3 _{MeVal}	C-1 _{MeVal} , C-3 _{MeVal} , C-4 _{MeVal} , C- 5 _{MeVal} , NMe _{MeVal}	$H-4_{MeVal}$
	3	27.8, CH	2.12, m	H-2 _{MeVal} , H-4 _{MeVal} , H-5 _{MeVal}	C-2 _{MeVal}	
	4	19.3, CH ₃	0.80, d (6.7)	H-3 _{MeVal}	C-2 _{MeVal} , C-3 _{MeVal}	H-2 _{MeVal}
	5	18.2, CH ₃	0.73, d (6.6)	H-3 _{MeVal}	C-2 _{MeVal} , C-3 _{MeVal}	
	NMe	30.6, CH ₃	3.16, s		C-1 _{Sar} , C-2 _{MeVal}	
Sar	1	170.6, C				
	2	49.6, CH ₂	4.72, d (14.7); 3.01, d (14.7)		C-1 _{Sar} , C-1 _{Pro} , NMe _{Sar}	
	NMe	38.8, CH ₃	3.37, s		$C-1_{Pro}$, $C-2_{Sar}$	
Pro	1	172.9, C				
	2	55.7, CH	4.82, d (6.9)	H-3 _{Pro}	C-3 _{Pro} , C-4 _{Pro} , C-5 _{Pro}	
	3	28.6, CH ₂	1.99, m; 1.87, m	$H-2_{Pro}, H-4_{Pro}$	C-1 _{Pro} , C-2 _{Pro} , C-4 _{Pro} , C-5 _{Pro}	
	4	24.8, CH ₂	2.31, m; 1.99, m	H-3 _{Pro} , H-5 _{Pro}	C-1 _{Pro} , C-2 _{Pro} , C-5 _{Pro}	
	5	47.1, CH ₂	4.05, m 3.47, td (7.1, 8.9)	H-4 _{Pro}	C-2 _{Pro} , C-3 _{Pro} , C-4 _{Pro}	

D-Val	1	171.4, C				
	2	56.2, CH	4.30, t (7.5)	NH _{D-Val} , H-3 _{D-Val}	C-1 _{D-Val} , C-1 _{Thr} , C-3 _{D-Val} , C-5 _{D-Val}	H-5 _{D-Val}
	3	29.8, CH	1.86, m	H-2 _{D-Val} , H-4 _{D-Val} , H-5 _{D-Val}		
	4	19.4, CH ₃	0.86, d (6.8)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}	
	5	18.3, CH ₃	0.82, d (6.6)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}	H-2 _{D-Val} , NH _{D-}
						Val
	NH		6.37, d (7.1)	H-2 _{D-Val}	C-1 _{Thr}	$H-5_{D-Val}$
β -ring	no.	$\delta_{ m C}$, type	$\delta_{ m H}$ mult (J , Hz)	COSY	HMBC	NOESY
Thr	1	169.5, C				
	2	56.1, CH	4.90, d (6.7)	$\mathrm{NH}_{\mathrm{Thr}}$	$C-3_{Thr}, C-4_{Thr}, 14$	$H-4_{Thr}$
	3	70.2, CH	5.64, q (6.2)	$H-4_{Thr}$	C-1 _{Me-Val} , C-4 _{Thr}	
	4	17.4, CH ₃	1.22, d (6.4)	H-3 _{Thr}	$C-2_{Thr}$, $C-3_{Thr}$	$H-2_{Thr}$
	NH		9.89, d (8.4)	H-2 _{Thr}	C-2 _{Thr} , C-3 _{Thr} , C-14	NH _{D-Val}
MeVal	1	169.4, C				
	2	60.9, CH	4.91, d (11.0)	H-3 _{Me-Val}	C-1 _{Me-Val} , C-3 _{Me-Val} , NMe _{Me-Val}	
	3	27.7, CH	2.17, m	H-2 _{Me-Val} , H-4 _{Me-Val} , H-5 _{Me-Val}	C-1 _{Me-Val} , C-2 _{Me-Val}	
	4	19.4, CH ₃	0.88, d (6.5)	H-3 _{Me-Val}	C-2 _{Me-Val} , C-3 _{Me-Val} , C-5 _{Me-Val}	
	5	18.2, CH ₃	0.77, d (6.7)	H-3 _{Me-Val}	C-2 _{Me-Val} , C-3 _{Me-Val} , C-4 _{Me-Val}	
	NMe	30.6, CH ₃	3.04, s		C-1 _{Sar} , C-2 _{Me-Val}	H-2 _{Sar}
Sar	1	169.0, C				
	2	49.2, CH ₂	4.98, d (14.2);		C-1 _{OPro} , C-1 _{Sar} , NMe _{Sar}	NMe _{Me-Val}
			3.05, d (14.2)			
	NMe	37.5, CH ₃	3.34, s		C-1 _{OPro} , C-2 _{Sar}	
OPro	1	171.4, C				
	2	51.5, CH	5.37, dd (7.1, 1.9)	H-3 _{OPro}	C-3 _{OPro} , C-4 _{OPro}	
	3	40.6, CH ₂	2.51, d (7.7);	H-2 _{OPro}	C-1 _{OPro} , C-2 _{OPro} , C-4 _{OPro}	
			2.50, d (2.7)			
	4	207.1, C				

	5	52.8, CH ₂	4.37, d (17.2); 3.89, d (17.2)		C-2 _{OPro} , C-3 _{OPro} , C-4 _{OPro}	
D-Val	1	171.4, C				
	2	56.7, CH	4.20, t (8.4)	NH _{D-Val} , H-3 _{D-Val}	C-1 _{Thr} , C-1 _{D-Val} , C-3 _{D-Val} , C-5 _{D-Val}	$H-4_{D-Val}$
	3	30.2, CH	1.86, m	H-2 _{D-Val} , H-4 _{D-Val} , H-5 _{D-Val}	C-2 _{D-Val} , C-4 _{D-Val}	
	4	18.9, CH ₃	0.81, d (6.6)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}	$H-2_{D-Val}$
	5	18.5, CH ₃	0.79, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}	
	NH		7.05, d (8.6)	H-2 _{D-Val}	C-1 _{Thr} , C-2 _{D-Val} , C-3 _{D-Val}	NH _{Thr}
chromophore	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult ($J,{ m Hz}$)	COSY	HMBC	NOESY
	1	100.5, C				
	2	133.9, C				
	3	144.3, C				
	4	112.0, C				
	4a	140.4, C				
	5a	141.6, C				
	6	127.9, C				
	7	122.3, CH	6.54, d (8.2)	H-8	C-5a, C-9, C-9a, C-11	H-11
	8	122.4, CH	7.57, d (7.7)	H-7	C-6, C-9a, C-13	$\mathrm{NH}_{\mathrm{Thr}}$
	9	112.9, C				
	9a	132.9, C				
	10a	132.9, C				
	11	$15.3, CH_3$	2.13, s		C-5a, C-6, C-7	H-7
	12	9.1, CH ₃	2.26, s		C-3, C-4, C-4a	
	13	168.3, C				
	14	167.4, C				
	15	163.1, C				
	16	14.6, CH ₃	2.67, s		C-2, C-3, C-15	
	10-NH		11.95, s		C-1, C-4a, C-5a, C-9, C-9a, C-10a	

^a600 MHz for ¹H NMR and 150 MHz for ¹³C NMR. ^bNumbers of attached protons were determined by analysis of 2D spectra.

α-ring	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult (J , Hz)	COSY	HMBC
Thr	1	168.8, C			
	2	55.1, CH	5.11, d (9.8)	NH _{Thr}	C-1 _{Thr} , C-3 _{Thr} , C-4 _{Thr}
	3	70.5, CH	5.75, d (6.2)	$H-4_{Thr}$	$C-1_{MeVal}, C-4_{Thr}$
	4	17. 3, CH ₃	1.13, d (6.5)	H-3 _{Thr}	C-2 _{Thr} , C-3 _{Thr}
	NH		8.90, d (10.1)	H-2 _{Thr}	C-13
MeVal	1	169.0, C			
	2	60.4, CH	4.69, d (10.8)	$H-3_{MeVal}$	C-1 _{MeVal} , C-3 _{MeVal} , C-4 _{MeVal} , C-5 _{MeVal} , NMe _{MeVal}
	3	27.9, CH	2.12, m	H-2 _{MeVal} , H-4 _{MeVal} , H-5 _{MeVal}	$C-2_{MeVal}, C-4_{MeVal}$
	4	18.9, CH ₃	0.82, d (6.5)	H-3 _{MeVal}	$C-2_{MeVal}$, $C-3_{MeVal}$
	5	18.3, CH ₃	0.73, d (6.6)	$H-3_{MeVal}$	C-2 _{MeVal} , C-3 _{MeVal} , C-4 _{MeVal}
	NMe	30.5, CH ₃	3.16, s		$C-1_{Sar}$, $C-2_{Sar}$, $C-2_{MeVal}$
Sar	1	170.6, C			
	2	49.6, CH ₂	4.71, d (14.0);		C-1 _{Sar} , C-1 _{Pro} , NMe _{Sar}
		,	3.01, d (14.0)		
	NMe	38.8, CH ₃	3.37, s		C-1 _{Pro} , C-2 _{Sar}
Pro	1	173.0, C			
	2	55.7, CH	4.81, d (6.7)	H-3 _{Pro}	C-1 _{Pro} , C-3 _{Pro} , C-4 _{Pro} , C-5 _{Pro}
	3	$28.5, CH_2$	1.99, m; 1.86, m	$H-2_{Pro}, H-4_{Pro}$	C-1 _{Pro} , C-2 _{Pro} , C-4 _{Pro} , C-5 _{Pro}
	4	$24.8, CH_2$	2.30, m; 1.90, m	$H-3_{Pro}, H-5_{Pro}$	$C-3_{Pro}, C-5_{Pro}$
	5	47.1, CH ₂	4.05, m	H-4 _{Pro}	$C-2_{Pro}$, $C-3_{Pro}$, $C-4_{Pro}$
			3.46, td (7.1, 9.6)		
D-Val	1	171.3, C			
	2	56.2, CH	4.30, t (7.6)	NH _{D-Val} , H-3 _{D-Val}	C-1 _{D-Val} , C-1 _{Thr} , C-4 _{D-Val} , C-5 _{D-Val}
	3	29.8, CH	1.84, m	H-2 _{D-Val} , H-4 _{D-Val} , H-5 _{D-Val}	C-2 _{D-Val} , C-4 _{D-Val} , C-5 _{D-Val}

Table S3. NMR data for compound 3 in CDCl₃

	4	19.4, CH ₃	0.86, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}
	5	18.2, CH ₃	0.80, d (6.3)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val} , C-4 _{D-Val}
	NH		6.37, d (8.2)	H-2 _{D-Val}	C-1 _{Thr}
β -ring	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult (J , Hz)	COSY	HMBC
Thr	1	169.5, C			
	2	55.8, CH	4.93, d (8.6)	NH _{Thr}	C-1 _{Thr} , C-3 _{Thr} , C-4 _{Thr} , 14
	3	70.1, CH	5.66, q (6.7)	H-4 _{Thr}	C-1 _{Me-Val}
	4	17.3, CH ₃	1.22, d (6.5)	H-3 _{Thr}	C-2 _{Thr} , C-3 _{Thr}
	NH		9.84, d (8.6)	H-2 _{Thr}	C-2 _{Thr} , C-3 _{Thr} , C-14
MeVal	1	169.3, C			
	2	61.0, CH	4.89, d (11.1)	H-3 _{Me-Val}	C-1 _{Me-Val} , C-3 _{Me-Val} , C-4 _{Me-Val} , C-5 _{Me-Val} , NMe _{Me-Val}
	3	27.5, CH	2.15, m	H-2 _{Me-Val} , H-4 _{Me-Val} , H-5 _{Me-Val}	C-2 _{Me-Val}
	4	19.4, CH ₃	0.80, d (6.3)	H-3 _{Me-Val}	C-2 _{Me-Val} , C-3 _{Me-Val} , C-5 _{Me-Val}
	5	18.4, CH ₃	0.68, d (6.7)	H-3 _{Me-Val}	C-2 _{Me-Val} , C-3 _{Me-Val} , C-4 _{Me-Val}
	NMe	30.6, CH ₃	3.04, s		C-1 _{Sar} , C-2 _{Me-Val}
Sar	1	169.0, C			
	2	49.2, CH ₂	4.99, d (14.3);		C-1 _{OPro} , C-1 _{Sar} , NMe _{Sar}
			3.04, d (14.3)		
	NMe	37.4, CH ₃	3.30, s		C-1 _{OPro} , C-2 _{Sar}
OPro	1	171.3, C			
	2	51.5, CH	5.40, d (6.3)	H-3 _{OPro}	C-3 _{OPro} , C-4 _{OPro}
	3	40.6, CH ₂	2.51, d (8.0);	H-2 _{OPro}	C-1 _{OPro} , C-2 _{OPro} , C-4 _{OPro}
			2.50, d (2.6)		
	4	207.1, C			
	5	$52.7, CH_2$	4.34, d (17.1);		C-20Pro, C-30Pro, C-40Pro
			3.88, d (17.1)		
D-Val	1	171.3, C			
	2	56.7, CH	4.22, t (8.3)	$\rm NH_{D-Val}, \rm H-3_{D-Val}$	C-1 _{Thr} , C-1 _{D-Val} , C-3 _{D-Val} , C-4 _{D-Val} , C-5 _{D-Val}

	3	30.2, CH	1.89, m	$H-2_{D-Val}, H-4_{D-Val}, H-5_{D-Val}$	C-1 _{D-Val} , C-2 _{D-Val}
	4	19.3, CH ₃	0.84, d (6.7)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}
	5	18.2, CH ₃	0.83, d (6.4)	H-3 _{D-Val}	C-2 _{D-Val} , C-3 _{D-Val}
	NH		7.15, d (8.3)	H-2 _{D-Val}	C-1 _{Thr} , C-2 _{D-Val} , C-3 _{D-Val}
chromophore	no.	$\delta_{\rm C}$, type	$\delta_{ m H}$ mult ($J,$ Hz)	COSY	HMBC
	1	100.6, C			
	2	133.2, C			
	3	144.6, C			
	4	112.1, C			
	4a	140.8, C			
	5a	141.5, C			
	6	127.9, C			
	7	122.4, CH	6.54, d (8.3)	H-8	C-5a, C-6, C-8, C-9, C-9a, C-11
	8	122.5, CH	7.55, d (8.2)	H-7	C-6, C-9, C-9a, C-13
	9	113.0, C			
	9a	132.7, C			
	10a	133.6, C			
	11	15.3, CH ₃	2.11, s		C-5a, C-6, C-7
	12	9.2, CH ₃	2.21, s		C-3, C-4, C-4a
	13	168.3, C			
	14	167.1, C			
	15	163.9, C			
	16	34.1, CH ₂	4.47, d (15.3);		C-15, C-17, C-18, C-22
			4.37, d (15.1)		
	17	133.7			
	18	130.5, CH	7.50, d (8.5)	H-19	C-15, C-16, C-19, C-20, C-22
	19	122.6, CH	7.08, d (8.5)	H-18	C-17, C-20, C-21
	20	141.2			

21	122.6, CH	7.08, d (8.5)	22	C-17, C-19, C-20
22	130.5, CH	7.50, d (8.5)	21	C-15, C-16, C-18, C-20, C-21
23	162.3, CH	8.37, s		C-20, C-24
24	32.1, CH ₃	3.22, s		C-20, C-23
10-NH		11.94, s		C-1, C-4a, C-5a, C-9, C-10a

^{*a*}600 MHz for ¹H NMR and 150 MHz for ¹³C NMR. ^{*b*}Numbers of attached protons were determined by analysis of 2D spectra.

Table S4. NMR data for compound 4 in CDCl₃^{*a*}

no.	$\delta_{ m H}$ mult (<i>J</i> , Hz)	${\delta_{\mathrm{C}}}^b$	HMBC	COSY
1		119.0, C		
2		140.4, C		
3		150.6, C		
4		126.2, C		
5	7.16, dd (7.9, 0.9)	125.1, CH	1, 3, 11	6, 11
6	7.90, d (7.9)	126.9, CH	2, 4	5
7		165.6, C	6, 6a, 7a, 11a, 12a	
8		165.9, C		
9	4.02, s	52.4, CH ₃	8	
10	2.73, s	14.9, CH ₃	2, 3, 7	
11	2.56, s	15.5, CH ₃	3, 4, 5	5

^a600 MHz for ¹H NMR and 150 MHz for ¹³C NMR. ^bNumbers of attached protons were determined by analysis of 2D spectra.

Fig. S1 Neighbour-joining tree based on 16S rRNA gene sequences of strain S22 and related strains in the family Streptomycete. Numbers at nodes refer to percentage bootstrap values (based on 1000 replicates; only values. 50 % are shown). Bar, 5 substitutions per 1000 nucleotide positions.

Fig. S9 The dose-response curve of antibacterial activities for actinomycins 1–3.

Fig. S10 ¹H NMR spectrum (600 MHz) of compound **1** in CDCl₃.

Fig. S11 ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz) of compound 1 in CDCl₃.

Fig. S12 DEPT-135 spectrum (150 MHz) of compound 1 in CDCl₃.

Fig. S13 COSY spectrum (600 MHz) of compound 1 in CDCl₃.

Fig. S14 HSQC spectrum (600 MHz) of compound 1 in CDCl₃.

Fig. S15 HMBC spectrum (600 MHz) of compound 1 in CDCl₃.

Fig. S16 NOESY spectrum (600 MHz) of compound 1 in CDCl₃.

Fig. S17 HRESIMS spectrum of compound 1.

Fig. S18 ¹H NMR spectrum (600 MHz) of compound **2** in CDCl₃.

Fig. S19 ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz) of compound 2 in CDCl₃.

Fig. S20 DEPT-135 spectrum (150 MHz) of compound 2 in CDCl₃.

Fig. S23 HMBC spectrum (600 MHz) of compound 2 in CDCl₃.

Fig. S24 NOESY spectrum (600 MHz) of compound 2 in CDCl₃.

Fig. S25 HRESIMS spectrum of compound 2.

Fig. S26 ¹H NMR spectrum (600 MHz) of compound **3** in CDCl₃.

S44

Fig. S27 ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz) of compound 3 in CDCl₃.

S45

Fig. S28 DEPT-135 spectrum (150 MHz) of compound 3 in CDCl₃.

-10 -20 -30 -40 f1 (ppm)

Fig. S30 HSQC spectrum (600 MHz) of compound 3 in CDCl₃.

Fig. S31 HMBC spectrum (600 MHz) of compound 3 in CDCl₃.

Fig. S33 HRESIMS spectrum of compound 3.

Fig. S34 ¹H NMR spectrum (600 MHz) of compound 4 in CDCl₃.

S52

Fig. S36 DEPT-135 spectrum (150 MHz) of compound 4 in CDCl₃.

XZP.781.fid B12	125.1	52.4	15.5 14.9
	57		52

Fig. S38 HSQC spectrum (600 MHz) of compound 4 in CDCl₃.

Fig. S40 ESIMS spectrum of compound 4.

