Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Organocatalytic Asymmetric Synthesis of Oxazolidino Spiropyrazolinones via N,Oacetalization/aza Michael addition domino reaction between N-Boc pyrazolinone ketimines and y-hydroxyenones.

Marta Gil-Ordóñez,^a Laura Martín, ^a Alicia Maestro^{a*} and José M. Andrés^{a*}

^aGIR SintACat, Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011-Valladolid. Spain.

E-mail: jmandres@uva.es

List of contents

1. ¹ H-NMR based kinetic experiment	S2
2. NMR Spectra for New Compounds	S3
3. HPLC Profiles of the isolated compounds	S18
4. Crystallographic data of spirocycle 3ab	S36

1. ¹H-NMR based kinetic experiment.

The catalyst **C6** (1.9 mg, 0.003 mmol, 0.1 equiv) and N-Boc ketimine **1a** (10 mg, 0.03 mmol) were added inside an NMR tube. Then, toluene-d8 (0.8 mL) was added before the NMR tube was cooled to -25°C. Hydroxyenone **2a** (7.3 mg, 0.045 mmol, 1.5 equiv.) was introduced to the tube. The tube was closed and then, taken out of the cool bath, shaked until total dissolution of starting materials and transferred to the NMR probe.

Figure ESI1. ¹H-NMR monitoring of the reaction between N-Boc ketimine **1a** and hydroxyenone **2a** at room temperature. Lines represent kinetic fitting of data using COPASI software¹.

Parameter	Value
k1	0.0103
k ₂	0.0056

Table ESI1: Values of kinetic simulations constants.

¹ S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer *Bioinformatics*, **2006**, *22*, 3067-74.

2. NMR Spectra for New Compounds.

tert-Butyl (3*R*,5*S*)-9-oxo-3-(2-oxo-2-phenylethyl)-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3aa).

Major diastereomer

Minor diastereomer (epi-3aa)

tert-Butyl (3*R*,5*S*)-3-(2-(4-bromophenyl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ac).

tert-Butyl (3*R*,5*S*)-9-oxo-3-(2-oxo-2-(p-tolyl)ethyl)-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ad).

Major diastereomer

tert-Butyl (3*R*,5*S*)-3-(2-(4-methoxyphenyl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ae).

tert-Butyl (3*R*,5*S*)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ba).

tert-Butyl (3*R*,5*S*)-6-ethyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ca).

tert-Butyl (3*R*,5*S*)-6-isopropyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3da).

Major diastereomer

tert-Butyl (3*R*,5*S*)-8-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-6-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3fa).

tert-Butyl (3*R*,5*S*)-8-(4-chlorophenyl)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ga).

tert-Butyl (3*R*,5*S*)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-(p-tolyl)-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ha).

*ter*t-Butyl (3*R*,5*S*)-3-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (4).

tert-Butyl (*S*)-(4-(allyloxy)-5-oxo-1,3-diphenyl-4,5-dihydro-1H-pyrazol-4-yl)carbamate (5).

tert-Butyl (4-(allyloxy)-1-(4-chlorophenyl)-3-methyl-5-oxo-4,5-dihydro-1*H*-pyrazol-4-yl)carbamate (6).

3. HPLC Profiles of the isolated compounds

tert-Butyl (3*R*,5*S*)-9-oxo-3-(2-oxo-2-phenylethyl)-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3aa).

Minor diastereomer (epi-3aa)

tert-Butyl (3*R*,5*S*)-3-(2-(4-chlorophenyl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ab).

Racemate of major diastereomer

HPLC profile of enantioenriched 3ab after slow evaporation from hexane-chloroform

The HPLC of the enantioenriched compound **3ab** was taken and we observed only one peak corresponding to the major diasteromer; there was no peak corresponding to the minor diasteromer.

tert-Butyl (3*R*,5*S*)-3-(2-(4-bromophenyl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ac).

tert-Butyl (3*R*,5*S*)-9-oxo-3-(2-oxo-2-(p-tolyl)ethyl)-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ad).

tert-Butyl (3*R*,5*S*)-3-(2-(4-methoxyphenyl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ae).

tert-Butyl (3*R*,5*S*)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ba).

tert-Butyl (3*R*,5*S*)-6-ethyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ca).

tert-Butyl (3*R*,5*S*)-6-isopropyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3da).

Major diastereomer.

tert-Butyl (3*R*,5*S*)-8-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-6-phenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3fa).

	t _R	Area	Area%
1	15,875	1770022	30,460
2	21,650	3921811	67,490
3	25,300	119147	2,050

tert-Butyl (3*R*,5*S*)-8-(4-chlorophenyl)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ga).

tert-Butyl (3*R*,5*S*)-6-methyl-9-oxo-3-(2-oxo-2-phenylethyl)-8-(p-tolyl)-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (3ha).

*ter*t-Butyl (3*R*,5*S*)-3-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-9-oxo-6,8-diphenyl-1-oxa-4,7,8-triazaspiro[4.4]non-6-ene-4-carboxylate (4).

Minor diastereomer

S33

tert-Butyl (*S*)-(4-(allyloxy)-5-oxo-1,3-diphenyl-4,5-dihydro-1*H*-pyrazol-4-yl)carbamate (5).

tert-Butyl (4-(allyloxy)-1-(4-chlorophenyl)-3-methyl-5-oxo-4,5-dihydro-1*H*-pyrazol-4-yl)carbamate (6).

4. Crystallographic data of spirocycle 3ab.

Crystal data and structure refinement for spirocycle 3ab.

Identification code	3ab
Empirical formula	$C_{30}H_{28}CIN_3O_5$
Formula weight	546.00
Temperature/K	298
Crystal system	orthorhombic
Space group	P212121
a/Å	8.3506(2)
b/Å	11.0548(3)
c/Å	35.8931(9)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3313.44(15)
Z	4
ρ _{calc} g/cm ³	1.095
µ/mm⁻¹	1.327
F(000)	1144.0
Crystal size/mm ³	0.737 × 0.372 × 0.3
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/	° 8.37 to 150.626
Index ranges	$-10 \leq h \leq 10,-13 \leq k \leq 13,-44 \leq l \leq 44$
Reflections collected	26672
Independent reflections	6729 [R_{int} = 0.0520, R_{sigma} = 0.0308]
Data/restraints/parameters	6729/0/355
Goodness-of-fit on F ²	1.140
Final R indexes [I>=2σ (I)]	$R_1 = 0.0932$, $wR_2 = 0.2551$

Final R indexes [all data] $R_1 = 0.1009$, $wR_2 = 0.2768$ Largest diff. peak/hole / e Å⁻³1.30/-0.42Flack parameter0.004(12)