Diastereoselective synthesis of polycyclic indolines via dearomative

[4+2] cycloaddition of 3-nitroindoles with *ortho*-aminophenyl

p-quinone methides

Shun Zhou,^{abd} Hui-Ling Qian,^b Jian-Qiang Zhao,^{*b} Yong You,^b Zhen-Hua Wang,^b Jun-Qing Yin,^b Yan-Ping Zhang,^b Ming-Feng Chen,^c and Wei-Cheng Yuan^{*ab}

^aNational Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.

^bInnovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.

^cZhejiang Nexchem Pharmaceutical Co., Ltd., Jinhua, 321016, China

^dUniversity of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: zhaojianqiang@cdu.edu.cn; yuanwc@cioc.ac.cn

Supporting Information

Table of Contents

1. General experimental information	S1
2. General procedure for the synthesis of 3	S1
3. Scale-up reaction for the synthesis of 3	S9
4. Synthesis of compound 4	S10
5. Optimization of conditions for catalytic asymmetric version	S12
6. X-ray crystal structure of compound 3a	S12
7. Determination of the absolute configuration of 3a by ECD spectrum	S13
8. ¹ H and ¹³ C NMR spectra for compounds 3 and 4	S15

1. General experimental information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO- d_6 . ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO- d_6 at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.16 ppm, DMSO- d_6 at 39.52 ppm). The enantiomeric excesses were determined by chiral HPLC analysis. HPLC analysis was performed on Shimadzu SCL-10AVP HPLC systems and Agilent 1260 Infinity II consisting of the followings: pump, LC-10AD and G7129A; detector, SPD-10A and G7114A measured at 254 nm. Melting points products were recorded on a Büchi Melting Point B-545. The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

2. General procedure for the synthesis of 3

In a sealed tube equipped with a magnetic stirring bar, the 3-nitroindoles **1** (0.05 mmol, 1 equiv), *ortho*-tosylaminophenyl *p*-QMs **2** (0.05 mmol, 1.0 equiv), triethylamine (20 mol%) and dichloromathane (0.5 mL) were added. And then, the mixture was stirred at 50 °C for 7 days. After completion of the reaction as indicated by TLC. the products **3** were isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate = $10/1 \sim 5/1$).

2,6-di-*tert*-butyl-4-(10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5*H*-indolo[2,3-b]quinoli n-11-yl)phenol (3a)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (33.5 mg, 86% yield); m.p. 226.3-227.1 °C; 91:9 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 10.5$ min, $t_{minor} = 13.2$ min. ¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 8.0 Hz, 3H), 7.58 (d, J = 7.9 Hz, 1H), 7.41 – 7.21 (m, 5H), δ 7.17 (d, J = 8.0 Hz, 2H), 7.12 – 7.02 (m, 2H), 6.86 (m, 1H), 6.70 (d, J = 7.9 Hz, 1H), 6.55 (s, 2H), 5.31 (s, 1H), 3.82 (s, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 145.2, 144.3, 143.8, 136.1, 135.2, 134.6, 133.5, 132.0, 131.9, 131.1, 130.0, 129.3, 128.8, 128.5, 128.1, 127.9, 127.8, 127.5, 122.6, 121.1, 120.3, 115.0, 104.6, 81.6, 51.8, 34.4, 30.3, 27.0, 21.8, 21.8.

HRMS (ESI-TOF) calcd. for C₄₃H₄₅N₃O₇S₂Na [M + Na]⁺ 802.2591; found: 802.2612.

2,6-di-*tert*-butyl-4-(10b-nitro-6-(phenylsulfonyl)-5-tosyl-5a,6,10b,11-tetrahydro-5H-indol o[2,3-b]quinolin-11-yl)phenol (3b)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (29.1 mg, 76% yield); m.p. 242.5-243.5 \mathbb{C} ;

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.84 (d, *J* = 7.9 Hz, 2H), 7.75 (q, *J* = 6.9, 6.1 Hz, 1H), 7.69 – 7.56 (m, 3H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.37 – 7.28 (m, 5H), 7.26 – 7.18 (m, 2H), 7.07 – 6.95 (m, 2H), 6.74 (d, *J* = 7.9 Hz, 1H), 3.52 (s, 1H), 2.31 (s, 3H), 1.99 (s, 1H), 1.31 (s, 18H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.1, 145.1, 143.3, 136.6, 135.2, 135.1, 134.2, 133.0, 132.9, 131.6, 131.1, 130.7, 130.3, 130.0, 129.2, 128.2, 128.1, 127.6, 127.4, 127.3, 123.3, 120.5, 119.9, 114.7, 104.3, 81.8, 51.7, 34.9, 30.5, 21.6.

HRMS (**ESI-TOF**) calcd. for C₄₂H₄₃N₃O₇S₂Na [M + Na]⁺ 788.2435; found: 788.2439.

1-(11-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-10b-nitro-5-tosyl-5,5a,10b,11-tetrahydro-6H-in dolo[2,3-b]quinolin-6-yl)ethan-1-one (3c)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (24.7 mg, 74% yield); m.p. 220.7-221.4 °C; 81:19 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 17.4$ min, $t_{minor} = 36.2$ min. ¹**H NMR (400 MHz, CDCl₃)** δ 8.11 (d, J = 8.4 Hz, 1H), 7.78 (dd, J = 7.9, 1.3 Hz, 1H), 7.52 (d, J = 7.8 Hz, 2H), δ 7.41 – 7.33 (m, 2H), 7.32 – 7.21 (m, 1H), 7.21 – 7.13 (m, 3H), 7.09 (dt, J = 7.9, 1.3 Hz, 1H), 6.87 (td, J = 7.6, 1.1 Hz, 1H), 6.80 (dd, J = 8.0, 1.5 Hz, 1H), 6.51 (s, 2H), 5.33 (s, 1H), 3.63 (s, 1H), 2.79 (s, 3H), 2.36 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 154.4, 144.7, 144.7, 135.8, 134.7, 133.8, 132.4, 131.8, 130.6, 129.3, 128.8, 128.7, 128.5, 128.1, 127.7, 122.9, 122.0, 119.9, 119.3, 116.1, 104.7, 80.8, 52.0, 34.3, 30.2, 25.5, 21.7.

HRMS (ESI-TOF) calcd. for $C_{38}H_{41}N_3O_6SNa [M + Na]^+ 690.2608$; found: 690.2603.

methyl 11-(3,5-di-tert-butyl-4-hydroxyphenyl)-10b-nitro-5-tosyl-5,5a,10b,11-

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (29.4 mg, 86% yield); m.p. 223.7-224.6 \mathbb{C} ;

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 (dd, *J* = 14.4, 8.1 Hz, 2H), 7.65 – 7.58 (m, 2H), 7.41 – 7.03 (m, 7H), 6.91 – 6.80 (m, 2H), 6.63(s, 2H), 5.31 (s, 1H), 4.05 (d, *J* = 1.5 Hz, 3H), 3.78 (s, 1H), 2.32 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.4, 152.5, 144.1, 144.0, 135.7, 134.2, 131.9, 131.8, 131.0, 129.1, 128.6, 128.4, 128.0, 127.9, 127.8, 127.3, 121.4, 120.1, 119.2, 114.1, 104.4, 79.7, 53.3, 52.2, 34.4, 30.2, 21.7.

HRMS (ESI-TOF) calcd. for $C_{38}H_{41}N_3O_7SNa \ [M + Na]^+ 706.2557$; found: 706.2567.

benzyl-11-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-10b-nitro-5-tosyl-5,5a,10b,11-tetrahydro-6 H-indolo[2,3-b]quinoline-6-carboxylate (3e)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (26.6 mg, 70% yield); m.p. 193.9-195.0 \mathbb{C} ;

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.48 – 7.33 (m, 4H), 7.33 – 7.17 (m, 2H), 7.17 – 7.03 (m, 4H), 6.89 – 6.78 (m, 2H), 6.62 (s, 2H), 5.52 (d, *J* = 11.9 Hz, 1H), 5.46 (d, *J* = 11.9 Hz, 1H), 5.31 (s, 1H), 3.75 (s, 1H), 2.33 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.4, 151.9, 144.0, 135.9, 135.8, 134.3, 131.9, 131.8, 130.9, 129.6, 129.4, 129.1, 128.7, 128.5, 128.4, 128.2, 127.9, 127.8, 127.3, 127.3, 121.4, 120.2, 119.3, 114.3, 104.4, 79.8, 68.2, 52.2, 34.3, 30.2, 21.6.

HRMS (ESI-TOF) calcd. for $C_{44}H_{45}N_3O_7SNa \ [M + Na]^+ 782.2870$; found: 782.2880.

tert-butyl-11-(3,5-di-tert-butyl-4-hydroxyphenyl)-10b-nitro-5-tosyl-5,5a,10b,11-tetrahydr o-6H-indolo[2,3-b]quinoline-6-carboxylate (3f)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (30.5 mg, 84% yield); m.p. 215.8-216.5 \mathbb{C} ;

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 12.3, 8.1 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.18 (m, 3H), 7.16 – 7.00 (m, 4H), 6.80 (d, *J* = 4.3 Hz, 2H), 6.64 (s, 2H), 5.30 (s, 1H), 3.69 (s, 1H), 2.32 (s, 3H), 1.75 (s, 9H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 151.1, 144.5, 143.9, 135.7, 134.4, 132.2, 131.7, 130.8, 129.1, 128.7, 128.5, 128.3, 127.9, 127.8, 127.4, 120.9, 120.2, 119.0, 114.1, 104.4, 84.0, 80.0, 52.2, 34.3, 30.2, 28.6, 21.7.

HRMS (ESI-TOF) calcd. for $C_{41}H_{47}N_3O_7SNa \ [M + Na]^+ 748.3027$; found: 748.3036.

2,6-di-*tert*-butyl-4-(9-fluoro-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3b]quinolin-11-yl)phenol (3g)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford yellow solid (29.1 mg, 73% yield); m.p. 209.3-210.2 °C; 84.5:15.5 er. The er was determined by HPLC, Chiralpak IC, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 29.8$ min, $t_{minor} = 33.6$ min.

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 – 7.72 (m, 2H), 7.72 – 7.63 (m, 2H), 7.67 – 7.57 (m, 2H), 7.34 – 7.23 (m, 4H), 7.22 – 6.95 (m, 5H), 6.63 (s, 2H), 6.47 (dd, *J* = 8.8, 2.8 Hz, 1H), 5.35 (s, 1H), 3.84 (s, 1H), 2.40 (s, 3H), 2.37 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 158.0 (d, *J* = 242.4 Hz), 154.5, 145.3, 144.2, 139.82, 139.8, 135.9, 134.5, 132.9, 131.5, 130.0, 129.2, 128.6, 128.5, 128.5, 128.0, 127.9, 127.6, 127.4, 122.6 (d, *J* = 8.7 Hz), 119.7, 119.0 (d, *J* = 23.3 Hz), 117.9 (d, *J* = 26.1 Hz), 116.1 (d, *J* = 8.0 Hz), 103.9 (d, *J* = 2.0 Hz), 81.8, 51.8, 34.3, 30.1, 21.6.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄FN₃O₇S₂Na [M + Na]⁺ 820.2497 found: 820.2514.

2,6-di-*tert*-butyl-4-(8-fluoro-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3b]quinolin-11-yl)phenol (3h)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford yellow solid (28.7 mg, 82% yield); m.p. 202.2-203.1 °C; 83.5:16.5 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 9.3$ min, $t_{minor} = 15.2$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.67 – 7.58 (m, 2H), 7.55 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.40 (dd, *J* = 10.0, 2.4 Hz, 1H), 7.36 – 7.22 (m, 4H), 7.21 – 7.03 (m, 4H), 6.69 (dd, *J* = 8.8, 5.7 Hz, 1H), 6.56 (m, 3H), 5.32 (s, 1H), 3.77 (s, 1H), 2.42 (s, 3H), 2.36 (s, 3H), 1.38 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 164.9 (d, J = 250.6 Hz), 154.4, 145.5, 145.3, 144.2, 135.8, 134.3, 133.4, 132.5, 132.4, 131.6, 130.1, 129.2, 128.5, 128.5, 128.5, 128.0, 127.9, 127.7, 127.4, 120.0, 116.4 (d, J = 2.8 Hz), 109.7 (d, J = 22.9 Hz), 103.9, 102.6 (d, J = 28.7 Hz), 81.9, 51.6, 34.3, 30.2, 21.7, 21.6. HRMS (ESI-TOF) calcd. for C₄₃H₄₄FN₃O₇S₂Na [M + Na]⁺ 820.2497; found: 820.2502.

2,6-di-*tert*-butyl-4-(7-fluoro-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3b]quinolin-11-yl)phenol (3i)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (21.9 mg, 55% yield); m.p. 215.6-216.5 \mathbb{C} ;

¹**H NMR (400 MHz, CDCl₃)** δ 8.08 – 7.94 (m, 2H), 7.82 (s, 1H), 7.67 – 7.59 (m, 2H), 7.47 (dd, J = 7.9, 1.2 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.27 – 7.15 (m, 3H), 7.08 – 6.95 (m, 3H), 6.85 (td, J = 8.0, 4.4 Hz, 1H), 6.73 (dd, J = 7.9, 1.2 Hz, 1H), 6.57 (s, 2H), 5.32 (s, 1H), 3.87 (s, 1H), 2.47 (s, 3H), 2.36 (s, 3H), 1.38 (s, 18H).

¹³C NMR (101MHz, CDCl₃) δ 154.4, 150.0 (d, *J* = 251.6 Hz), 144.7, 144.4, 136.2, 135.4, 134.3, 132.0, 131.8, 131.6, 129.5, 129.3, 128.4, 128.3, 128.2, 128.2, 128.1, 127.9, 127.3, 126.4 (d, *J* = 3.7 Hz), 125.3, 123.6 (d, *J* = 6.6 Hz), 119.9, 119.3 (d, *J* = 19.8 Hz), 104.1 (d, *J* = 1.7 Hz), 82.4, 51.6, 34.4, 30.2, 21.7.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄FN₃O₇S₂Na [M + Na]⁺ 820.2497; found: 820.2502.

2,6-di-*tert*-butyl-4-(9-chloro-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3b]quinolin-11-yl)phenol (3j)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford yellow solid (31.7 mg, 78% yield); m.p. 232.8-233.7 °C; 79:21 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 17.5$ min, $t_{minor} = 27.4$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.4, 2.0 Hz, 2H), 7.66 – 7.55 (m, 4H), 7.26 (m, 5H), 7.20 – 7.02 (m, 4H), 6.78 (d, J = 2.4 Hz, 1H), 6.40 (s, 2H), 5.33 (s, 1H), 3.76 (s, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 1.39 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 145.3, 144.3, 142.4, 136.1, 135.8, 134.4, 133.1, 132.1, 131.4, 130.6, 130.1, 129.3, 128.6, 128.5, 128.0, 127.9, 127.6, 127.3, 122.4, 120.9, 119.6, 117.8, 115.9, 103.9, 81.8, 51.8, 34.3, 30.1, 21.7.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄ClN₃O₇S₂Na [M + Na]⁺ 836.2201; found: 836.2204.

2,6-di-*tert*-butyl-4-(7-chloro-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3b]quinolin-11-yl)phenol (3k)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (18.3 mg, 45% yield); m.p. 225.7-226.4 \mathbb{C} ;

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.81 (s, 1H), 7.66 – 7.52 (m, 3H), 7.42 – 7.32 (m, 3H), 7.25 – 7.18 (m, 3H), 7.11 – 6.86 (m, 4H), 6.65 (s, 2H), 5.31 (s, 1H), 3.90 (s, 1H), 2.47 (s, 3H), 2.37 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.2, 152.8, 144.6, 144.4, 142.0, 136.0, 135.4, 134.1, 133.1, 132.2, 131.4, 129.5, 129.5, 128.4, 128.2, 128.1, 128.1, 127.9, 127.5, 127.4, 127.0, 125.1, 124.4, 124.2, 124.0, 120.2, 117.8, 103.6, 82.7, 51.3, 34.4, 30.2, 21.7.

HRMS (**ESI-TOF**) calcd. for C₄₃H₄₄ClN₃O₇S₂Na [M + Na]⁺ 836.2201; found: 836.2204.

4-(10-bromo-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl) -2,6-di-*tert*-butylphenol (3l)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (19.8 mg, 46% yield); m.p. 240.6-241.3 °C; 78.5:21.5 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{minor} = 18.2$ min, $t_{major} = 20.2$ min,.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.71 (s, 1H), 7.65 – 7.60 (m, 2H), 7.57 (dd, J = 7.9, 1.3 Hz, 1H), 7.49 – 7.28 (m, 3H), 7.27 – 7.11 (m, 3H), 7.06 (ddd, J = 7.5, 6.3, 1.3 Hz, 2H), 6.98 (dt, J = 7.8, 1.4 Hz, 1H), 6.94 – 6.82 (m, 1H), 6.60 (s, 2H), 5.30 (s, 1H), 3.88 (s, 1H), 2.45 (s, 3H), 2.37 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.8, 144.4, 143.5, 136.3, 135.5, 135.3, 134.1, 132.1, 129.5, 128.7, 128.5, 128.4, 128.2, 128.2, 127.9, 127.9, 126.9, 125.6, 124.2, 124.0, 120.2, 117.8, 113.0, 103.7, 82.5, 51.6, 34.4, 30.2, 21.7.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄BrN₃O₇S₂Na [M + Na]⁺ 880.1696; found: 880.1700,.

4-(9-bromo-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)

-2,6-di-tert-butylphenol (3m)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (35.2 mg, 82% yield); m.p. 232.8-233.5 °C; 80:20 er. The er was determined by HPLC, Chiralpak IC, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 30.0$ min, $t_{minor} = 33.3$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.4, 2.2 Hz, 2H), 7.61 – 7.49 (m, 4H), 7.42 – 7.35 (m, 1H), 7.32 – 7.24 (m, 3H), 7.21 (d, J = 2.2 Hz, 1H), 7.18 – 7.03 (m, 4H), 6.93 (d, J = 2.2 Hz, 1H), 6.74 (s, 2H), 5.45 (s, 1H), 3.70 (s, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.5, 145.4, 144.3, 142.9, 135.7, 134.9, 134.3, 133.3, 133.2, 131.4, 130.1, 129.5, 129.2, 128.6, 128.4, 128.1, 128.0, 127.9, 127.5, 127.3, 122.7, 119.5, 116.2, 115.3, 103.9, 81.7, 51.7, 34.3, 30.1, 21.6.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄BrN₃O₇S₂Na [M + Na]⁺ 880.1696, found: 880.1692.

4-(7-bromo-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl) -2,6-di-tert-butylphenol (3n)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (20.7 mg, 48% yield); m.p. 230.4-231.0 \mathbb{C} ;

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.81 (s, 1H), 7.66 – 7.52 (m, 3H), 7.42 – 7.32 (m, 3H), 7.25 – 7.18 (m, 3H), 7.11 – 6.86 (m, 4H), 6.65 (s, 2H), 5.31 (s, 1H), 3.90 (s, 1H), 2.47 (s, 3H), 2.37 (s, 3H), 1.39 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.8, 144.4, 143.5, 136.3, 135.5, 135.3, 134.1, 132.1, 129.5, 128.7, 128.5, 128.4, 128.2, 128.2, 127.9, 127.8, 127.5, 126.9, 125.6, 124.0, 120.2, 117.8, 113.0, 103.7, 82.5, 51.6, 34.4, 30.2, 21.7.

HRMS (ESI-TOF) calcd. for C₄₃H₄₄BrN₃O₇S₂Na [M + Na]⁺ 880.1696, found: 880.1711.

11-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-i ndolo[2,3-b]quinoline-9-carbonitrile (30)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (28.6 mg, 71% yield); m.p. 184.5-185.3 \mathbb{C} ;

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 – 7.82 (m, 2H), 7.74 (d, *J* = 8.7 Hz, 1H), 7.58 (td, *J* = 8.9, 8.4, 1.7 Hz, 3H), 7.47 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.34 – 7.28 (m, 4H), 7.20 – 7.05 (m, 5H), 6.52 (s, 2H), 5.38 (s, 1H), 3.71 (s, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 1.40 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.8, 147.2, 145.8, 144.5, 135.7, 135.6, 135.1, 134.2, 133.6, 131.0, 130.2, 129.3, 128.8, 128.5, 128.1, 128.0, 127.6, 127.4, 121.5, 119.3, 118.0, 114.9, 106.0, 103.4, 81.7, 51.7, 34.3, 30.1, 21.7, 21.7.

HRMS (ESI-TOF) calcd. for C₄₄H₄₄N₄O₇S₂Na [M + Na]⁺ 827.2544; found: 827.2549.

2,6-di-*tert*-butyl-4-(9-methyl-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)phenol (3p)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (32.9 mg, 83% yield); m.p. 181.3-182.1 ℃;

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.9 Hz, 2H), 7.67 – 7.58 (m, 3H), 7.55 (d, J = 8.5 Hz, 1H), 7.34 – 6.96 (m, 9H), 6.60 (s, 3H), 5.29 (s, 1H), 3.80 (s, 1H), 2.37 (s, 3H), 2.35 (s, 3H), 1.38 (s, 18H).
¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.9, 144.1, 142.7, 142.4, 141.5, 136.0, 134.5, 133.2, 132.8, 132.1, 131.9, 130.8, 129.9, 129.2, 128.4, 128.4, 128.0, 127.7, 127.6, 127.3, 121.0, 120.3, 114.7, 104.7, 81.7, 51.7, 34.3, 30.2, 21.7, 21.6, 21.2.

HRMS (ESI-TOF) calcd. for C₄₄H₄₇N₃O₇S₂Na [M + Na]⁺ 816.2748; found: 816.2758.

2,6-di-*tert*-butyl-4-(8-methyl-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)phenol (3q)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (30.2 mg, 76% yield); m.p. 176.6-177.3 °C; 92:8 er. The er was determined by HPLC, Chiralpak IA, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 9.4$ min, $t_{minor} = 12.0$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.67 – 7.59 (m, 2H), 7.56 (dd, J = 7.9, 1.3

Hz, 1H), 7.49 – 7.44 (m, 1H), 7.35 – 7.15 (m, 4H), 7.17 – 7.13 (m, 2H), 7.13 – 7.01 (m, 2H), 6.88 – 6.25 (m, 4H), 5.28 (s, 1H), 3.79 (s, 1H), 2.38 (s, 3H), 2.35 (s, 3H), 2.31 (s, 3H), 1.36 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.9, 144.1, 143.9, 142.6, 136.0, 134.5, 133.6, 132.0, 131.3, 130.5, 129.9, 129.2, 128.7, 128.4, 128.3, 128.0, 127.7, 127.6, 127.4, 123.5, 120.3, 118.1, 115.2, 104.5, 81.7, 51.6, 34.3, 30.2, 21.9, 21.6.

HRMS (ESI-TOF) calcd. for $C_{44}H_{47}N_3O_7S_2Na [M + Na]^+ 816.2748$; found: 816.2753.

2,6-di-*tert*-butyl-4-(2-methyl-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)phenol (3r)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (32.1 mg, 81% yield); m.p. 193.8-194.7 \mathbb{C} ;

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.48 – 7.34 (m, 6H), 7.34 – 7.27 (m, 4H), 7.23 (ddd, *J* = 8.6, 6.1, 2.9 Hz, 1H), 7.17 (s, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 6.88 – 6.47 (m, 3H), 3.51 (s, 1H), 2.36 (s, 3H), 2.29 (d, *J* = 11.3 Hz, 6H), 1.31 (s, 18H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.0, 145.8, 145.1, 143.6, 143.3, 135.3, 134.2, 133.6, 131.8, 130.7, 131.3, 130.6, 130.0, 129.2, 128.3, 128.1, 127.6, 127.6, 127.5, 124.2, 121.3, 120.0, 117.8, 115.1, 104.4, 82.0, 51.6, 34.9, 30.5, 21.8, 21.5, 21.5.

HRMS (ESI-TOF) calcd. for $C_{44}H_{47}N_3O_7S_2$ [M + Na]⁺ 816.2748; found: 816.2745.

2,6-di-*tert*-butyl-4-(4-methyl-10b-nitro-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)phenol (3s)

It was purified by flash chromatography (petroleum ether / EtOAc, 8:1) to afford white solid (22.2 mg, 56% yield); m.p. 197.0-197.7 \mathbb{C} ;

¹**H NMR** (**400 MHz**, **DMSO-***d*₆) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.36 (m, 6H), 7.29 (dt, *J* = 29.7, 7.4 Hz, 5H), 7.16 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.62 (s, 3H), 3.54 (s, 1H), 2.36 (s, 3H), 2.31 (s, 3H), 2.16 (s, 3H), 1.32 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1, 147.3, 145.9, 144.6, 143.1, 135.3, 135.3, 134.7, 134.4, 133.3, 132.6, 131.8, 130.6, 130.6, 130.0, 130.0, 129.5, 128.6, 127.5, 127.5, 120.1, 120.1, 119.3, 114.7, 104.6, 82.0, 51.8, 36.0, 30.5, 27.1, 21.4, 21.1.

HRMS (ESI-TOF) calcd. for $C_{44}H_{47}N_3O_7S_2$ [M + Na]⁺ 816.2748; found: 816.2766.

3. Scale-up reaction for the synthesis of 3

Compound **1a** (695 mg, 1.5 mmol) and Compound **2a** (473 mg, 1.5 mmol) was dissolved in DCM (15 mL) and triethylamine (42 μ L, 0.3 mmol) was added in sealed tube. The mixture was stirred at 50 °C for 7 days. The solution concentrated under rotatory evaporation and the crude was purified by column chromatography (petroluem ether / EtOAc = 8/1), affording compound **3a** as a white solid (882 mg, 75% yield).

4. Synthesis of compound 4

Zinc powder (65 mg, 1 mmol, 20 equiv) was added to a solution of **3a** (39.0 mg, 0.05 mmol, 1 equiv) and trimethylsilyl chloride (0.13 mL, 1 mmol, 20 equiv) in methanol at 0 °C. The mixture stirred at 0 °C for 12 h. The suspension was filtered and washed by saturated NaHCO₃. The filtrate extracted with DCM. The combined organic ftactions were dried by MgSO₄, filtered and concentrated by rotatory evaporation. Then the residue was purified by column chromatography(petroluem ether / EtOAc = 5/1), affording compound **4** as a white solid (20.6 mg, 55% yield).

4-(10b-amino-5,6-ditosyl-5a,6,10b,11-tetrahydro-5H-indolo[2,3-b]quinolin-11-yl)-2,6-di-*t* ert-butylphenol (4)

It was purified by flash chromatography (petroleum ether / EtOAc, 5:1) to afford white solid (20.6 mg, 55% yield); >20:1 dr; m.p. 164.2-165.0 \mathbb{C} ;

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.81 (m, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 1H), 7.40 (dd, J = 8.0, 1.3 Hz, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.21 – 7.10 (m, 4H), 7.07 – 6.92 (m, 2H), 6.84 (s, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.62 (s, 2H), 6.16 (dd, J = 7.7, 1.3 Hz, 1H), 5.25 (s, 1H), 4.32 (s, 2H), 3.50 (s, 1H), 2.37 (d, J = 6.0 Hz, 6H), 1.37 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 144.2, 143.8, 143.5, 136.8, 134.8, 134.6, 134.3, 129.8, 129.5, 129.2, 129.1, 128.2, 128.0, 128.0, 127.3, 127.1, 127.0, 126.1, 122.5, 121.9, 114.3, 80.5, 79.6, 47.9, 34.3, 30.25, 21.7, 21.6.

HRMS (ESI-TOF) calcd. for $C_{43}H_{47}N_3O_5S_2$ [M + K]⁺ 788.2589; found: 788.2877.

5. Optimization of conditions for catalytic asymmetric version

Table S1 Optimization of reaction conditions with catalysts

The reaction was carried out with **1a** (0.05 mmol), **2a** (0.05 mmol) and **cat** (20 mol%) in 0.5 mL of DCM at room temperature. The yield refers to the isolated yield.

Table S	$2O_1$	ptimiz	zation	of	reaction	conditions	with	other	parameters
---------	--------	--------	--------	----	----------	------------	------	-------	------------

	Ö		ŎН		
	tBu t	:Bu	^t Bu、人, ^t Bu	c cF₂	
NO ₂			Υ Υ		1
	\sim	Cot A (20 mall/)			1
+ \\			NO ₂		.
· NŲ	\int	1 eq additive		H H ~ CF	3
Ts		0.5 mL solvent, rt			1
1a	20 NH IS			A	1
	Zd		Ts''as		

entry	solvent	additive	time (days)	vield (%) ^b	ee (%) ^c
1	DCM	-	4	75	75
2	toluene	-	8	40	65
3	MTBE	-	8	34	71
4	THF	-	8	trace	-
5	CHCl ₃	-	4	97	72
6	CH ₃ CN	-	3	84	33
7	EA	-	3	62	59
8	DMF	-	2	80	1
9	DCM	(D)-ethyl tartrate	7	72	57

10	DCM	(L)-ethyl tartrate	7	67	56
11	DCM	(R)-BINOL	7	78	82
12	DCM	(S)-BINOL	7	75	74
13 ^d	DCM	-	7	96	73
14 ^d	CHCl ₃	-	7	98	72
$15^{\rm f}$	DCM	-	7	70	80

^{*a*}Unless otherwise noted, the reaction was carried out with **1a** (0.05 mmol), **2a** (0.05 mmol) and **cat** (20 mol%) in 0.5 mL of solvent at room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}Run at 0 °C. ^{*e*}Run at -10 °C.

6. X-ray crystal structure of compound 3a

Single crystals of compound **3a** were prepared from the mixture solvent of dichloromethane and EtOH. A suitable crystal was selected for structure determination on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2^[1], the structure was solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J, Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- [2] Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- [3] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

ORTEP of 3a (at 50% level)

Table 1 Crystal data and structure refinement for 3a
--

Identification code	3 a
Empirical formula	$C_{43}H_{45}N_3O_7S_2\\$
Formula weight	779.94
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	14.5995(2)
b/Å	10.0324(2)
c/Å	27.7318(5)
α/°	90
β/°	104.9954(18)
$\gamma/^{\circ}$	90

Volume/Å ³	3923.48(13)
Z	4
$\rho_{calc}g/cm^3$	1.320
μ/mm^{-1}	1.680
F(000)	1648.0
Crystal size/mm ³	0.17 imes 0.12 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2 Θ range for data collection/ $^{\circ}$	6.6 to 142.102
Index ranges	$-17 \le h \le 12, -11 \le k \le 11, -34 \le l \le 33$
Reflections collected	17801
Independent reflections	7407 [$R_{int} = 0.0350, R_{sigma} = 0.0407$]
Data/restraints/parameters	7407/7/511
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0552, wR_2 = 0.1513$
Final R indexes [all data]	$R_1 = 0.0696, wR_2 = 0.1659$
Largest diff. peak/hole / e Å-3	0.70/-0.49

7. Determination of the absolute configuration of 3a by ECD spectrum

Based on the experimental crystal structure of enantiomers, there are only two possible configurations (*C7R*, *C8R*, *C9R*)-**3a** and (*C7S*, *C8S*, *C9S*)-**3a**. To further determine the precise configuration of our chiral product, theoretical calculation of the ECD spectrum has been performed and compared with the experimental spectrum. For the ECD spectrum calculations, all structures were optimized at B3LYP¹ level of theory with $6-311+g(d,p)^2$ basis set for all atoms. Empirical dispersion correction has been considered by using Grimme's DFT empirical dispersion correction with the Becke-Jonson (D3BJ) damping function.³ Optimized minima were verified at the same level of theory by harmonic vibrational analysis to have no imaginary frequency. CD spectra were calculated by TDDFT at the CAM-B3LYP⁴/Def2SVP⁵ level. All DFT geometry optimizations and TDDFT calculations were performed with Gaussian 16 program.⁶

- (a) Becke, A. D. Phys. Rev. 1988, A38, 3098. (b) Becke, A. D. J.Chem. Phys. 1993, 98, 5648.(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
- [2] (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650–654.
 (b) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648.
- [3] Grimme, S.; Ehrlich, S.; Georigk, L. J. Compt. Chem. 2011, 32, 1456-1465.
- [4] Yanai, T. V.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
- [5] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E. et al. Gaussian, Inc., Wallingford CT, 2019.

8. ¹H NMR and ¹³C NMR spectra for compounds 3 and 4

HPLC spectra of 3a

Detector VWD1A, Wavelength=254 nm	Detector	VWD1A,Wavelength=254 nm
--	----------	-------------------------

Peak	Ret.Time [min]	Area	Height	Area%
	11.738	5928.79	220.19	51.45
	14.055	5595.53	151.29	48.55
		11524.32		100.00

Detector	VWD1A,Waveleng	th=254 nm	_	_
Peak	Ret.Time [min]	Area	Height	Area%
	10.578	17907.24	851.46	90.98
	13.189	1774.45	69.77	9.02
		19681.68		100.00

⊨ 9000000 -2.50 DMSO-- 8500000 ____3.52 ____2.31 - 1. 99 1.31 6.6.7.7.7.7.7.9.9 17 8000000 - 7500000 - 7000000 ر ۲ ۲ کرکر کر - 6500000 5 S 5 - 6000000 5500000 $\begin{smallmatrix} & 88 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 77 \\ & 73 \\ & 33$ 3000000 OH - 5000000 .^tBu ^tBu、 4500000 2000000 NO_2 4000000 - 1000000 3500000 Bs - 3000000 . 0 - 2500000 7.8 7.6 7.4 7.2 7.0 6.8 6.6 fl (ppm) _ 2000000 . 1500000 _ 1000000 500000 - 0 1. 27] 1. 00 Å **H** Ψ 18. 17--500000 3. 38 . 0.89. 0.0 3.5

¹H NMR spectrum of 3b

3.0

2.0

1.5

1.0

0.5

2.5

3.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

f1 (ppm)

HPLC spectra of 3c

Detector	VWD1A.	Wave]	ength=254	nm
Defector	, "Din,	"uvoi	Long th 201	11111

Peak	Ret.Time [min]	Area	Height	Area%
	17.215	3770.37	112.66	53.45
	33.397	3283.96	29.66	46.55
		7054.33		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	17.414	3754.16	91.18	80.76
	36.268	894.17	7.00	19.24
		4648.34		100.00

¹H NMR spectrum of 3g

¹³C NMR spectrum of 3g

HPLC spectra of 3g

Detector VWD1A, Wavelength=254 nm					
	Peak	Ret.Time [min]	Area	Height	Area%
		29.712	1587.86	18.47	50.38
		33.515	1563.64	16.10	49.62
			3151.50		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	29.789	9564.71	110.50	84.40
	33.653	1767.98	19.05	15.60
		11332.69		100.00

¹H NMR spectrum of 3h

¹³C NMR spectrum of compound of 3h

180

HPLC spectra of 3h

$Detector$ v_{mDIA} , wavelength=204 m	Detector	VWD1A, Wave	length=254 nm
--	----------	-------------	---------------

Peak	Ret.Time [min]	Area	Height	Area%
	9.319	857.98	38.07	50.93
	15.155	826.70	17.55	49.07
		1684.68		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	9.316	733.17	32.68	83.64
	15.188	143.37	3.21	16.36
		876.54		100.00

S42

HPLC spectra of 3j

Detector	VWD1A,Wavelength=254	nm
----------	----------------------	----

Peak	Ret.Time [min]	Area	Height	Area%
	16.859	5765.13	175.42	51.48
	26.568	5433.61	82.71	48.52
		11198.73		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	17.572	10997.89	304.53	79.08
	27.409	2909.90	42.47	20.92
		13907.79		100.00

¹H NMR spectrum of 3k

HPLC spectra of 31

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	18.259	330.64	8.14	53.59
	20.229	286.40	7.50	46.41
		617.04		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	18.194	575.99	15.55	21.51
	20.216	2101.71	52.05	78.49
		2677.70		100.00

¹H NMR spectrum of 3m

HPLC spectra of 3m

Detector VWD1A, Wavelength=254 nm

	Peak	Ret.Time [min]	Area	Height	Area%
		30.468	4187.63	49.77	49.55
		33.749	4264.29	44.09	50.45
			8451.93		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	30.022	4721.38	56.05	80.14
	33.297	1169.83	13.15	19.86
		5891.21		100.00

¹H NMR spectrum of 3n

¹H NMR spectrum of 30

HPLC spectra of 3q

Peak	Ret.Time [min]	Area	Height	Area%
	9.464	759.40	36.77	49.70
	12.057	768.50	25.14	50.30
		1527.90		100.00

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	9.371	9205.78	452.60	92.28
	12.072	769.68	27.24	7.72
		9975.46		100.00

¹H NMR spectrum of 3r

¹H NMR spectrum of compound of 4

¹³C NMR spectrum of compound of 4