Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Skeletal Photoinduced Rearrangement of Diarylethenes: Ethene Bridge Effects.

A. V. Zakharov, S. M. Timofeeva, A. V. Yadykov, M. M. Krayushkin, V. Z. Shirinian*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation. E-mail: svbegunt@mail.ru

Table of Contents

I. Synthesis and characterization of starting diarylethenes	2
I.1. Synthesis of Monooxime 1c	2
I.2. Synthesis of Ketoximes 1d	2
II. ¹ H NMR monitoring of photoreaction 1d	4
III. DFT calculations	5
IV. Molecular orbitals	21
V. UV-vis spectra of obtained compounds	23
VI. Copies of ¹ H and ¹³ C NMR spectra	
VII. Copies of ¹ H and ¹³ C NMR spectra of photoproducts	35
VIII. Copies of HRMS spectra	42

I. Synthesis and characterization of starting diarylethenes

I.1. Synthesis of Monooxime 1c.

Scheme S1.

The mixture of diarylcyclopentenone (DCP) **1a** (2.0 mmol), hydroxylamine hydrochloride (6.0 mmol) and anhydrous sodium acetate (6.0 mmol) in ethanol (7 mL) was refluxed for 3 h and poured into crushed ice (70 mL). The residue was filtered off, washed with water (2×30 mL) and recrystallized from cold ethanol.

(*E*)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone oxime (1c)

HO Beige powder, yield 64% (0.42 g); m.p. 223-225°C; ¹H NMR (300 MHz, DMSO-d₆) $\delta = 1.71$ (s, 3H, CH₃), 2.79-2.81 (m, 2H, CH₂), 2.94-2.95 (m, 2H, CH₂), 7.28-7.36 (m, 5H, H^{arom}), 7.49-7.50 (m, 3H, H^{arom}), 7.86-7.87 (m, 2H, H^{arom}), 10.69 (s, 1H, NOH); ¹³C NMR (75 MHz, DMSO-d₆) $\delta = 11.4, 25.9, 32.4, 126.0$ (2C), 127.1, 127.6, 128.3 (2C), 129.5 (2C), 129.9 (2C), 130.8, 133.2, 134.6, 137.2, 142.8, 146.2, 159.2, 165.9; HRMS (ESI-TOF) m/z [M + H]+ calc. for C₂₁H₁₈N₂O₂ 331.1441, found 331.1441; MS (EI) m/z 330 (21%) [M], 105 (33%), 77 (35%), 43 (100%).

Scheme S2.

To cooled (12 °C) solution of DCP **1a** (3.0 mmol) and fresh-prepared n-butyl nitrite (3.6 mmol) in dioxane (15 mL) conc. hydrochloric acid (0.36 mL) was added dropwise and solution was stirred at room temperature for 2 h. The reaction mixture was poured into cold water (100 mL) and extracted with ethyl acetate (3×30 mL), combined organic phases were washed with water (50

mL), dried with magnesium sulfate and evaporated in vacuum. The residue was purified by column chromatography eluting by petrol. ester / ethyl acetate 3:1.

(E)-5-(hydroxyimino)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone (1d)

Yellow powder, yield 18% (0.19 g); m.p. 211-213°C; ¹H NMR (300 MHz, DMSO-d₆) δ = 1.97 (s, 3H, CH₃), 3.74 (s, 2H, CH₂), 7.31-7.34 (m, 2H, H^{arom}), 7.37-7.43 (m, 3H, H^{arom}), 7.52-7.53 (m, 3H, H^{arom}), 7.85-7.87 (m, 2H, H^{arom}), 12.51 (s, 1H, NOH); ¹³C NMR (75 MHz, DMSO-d₆) δ = 12.4, 31.1, 126.3 (2C), 126.6, 128.3, 128.5 (2C), 129.6 (2C), 129.8 (2C), 131.3,

132.3,132.6, 140.9, 150.8, 151.9, 152.7, 159.6, 190.2; HRMS (ESI-TOF) m/z [M + H]+ calc. for C₂₁H₁₆N₂O₃ 345.1234, found 345.1233; MS (EI) m/z 344 (30%) [M], 196 (19%), 154 (38%), 105 (48%), 77 (46%), 43 (100%).

II. ¹H NMR monitoring of photoreaction 1d.

Fig. S1. ¹H NMR monitoring of photoreaction of **1d** in DMSO-d₆ induced by UV light (365 nm).

Fig. S2. Energy profile of the [1,5]-shift and proton elimination of a **1a**.

Cartesian coordinate columns of the optimized structure of compound 1f''1 (B3LYP/6-31g(d,p)

PCM=toluene

Imaginary Freq = 0

EE + Thermal Enthalpy Correction = -1051.265438

EE + Thermal Free Energy Correction = -1051.331207

1	С	2.5090800	-0.7883270	-0.0444190
2	С	1.2829440	-1.5416990	0.0576290
3	С	1.6314290	-2.9972590	-0.0886670
4	0	3.0786800	-3.0253620	-0.1326410
5	С	3.6168620	-1.7622670	-0.1225070
6	С	2.5467790	0.5752440	-0.2077840
7	С	1.1949030	1.2943070	-0.3494760
8	С	0.1436120	0.6111640	0.5211070
9	С	0.1161760	-0.8854370	0.2348790
10	С	3.7481100	1.3464740	-0.3577080
11	С	3.7028420	2.7061590	-0.4155000
12	С	2.4524220	3.4380160	-0.3003800
13	С	1.2749790	2.7919450	-0.2184050
14	0	-1.2209960	0.9691030	0.1186900
15	С	-1.9053910	-0.2133150	0.0859960
16	Ν	-1.2000710	-1.3079580	0.1611190
17	0	4.8158290	-1.5898450	-0.1805530
18	С	-3.3554780	-0.1414340	-0.0618990
19	С	-4.1021410	-1.3293210	-0.1538580

20	С	-5.4841350	-1.2719030	-0.2963770
21	С	-6.1341550	-0.0343920	-0.3499090
22	С	-5.3961020	1.1479780	-0.2594470
23	С	-4.0115850	1.0995880	-0.1150860
24	С	0.2814790	0.9118240	2.0205340
25	Η	0.8768120	1.0909120	-1.3957540
26	Н	1.3027740	-3.6093410	0.7568150
27	Н	1.2507980	-3.4476020	-1.0122460
28	Н	4.6913730	0.8125550	-0.3787990
29	Н	4.6261490	3.2698750	-0.5096550
30	Н	2.4872130	4.5230670	-0.2651440
31	Н	0.3377000	3.3337720	-0.1304670
32	Н	-3.5825910	-2.2800800	-0.1125760
33	Η	-6.0574880	-2.1910070	-0.3669610
34	Н	-7.2134680	0.0069860	-0.4615860
35	Н	-5.9000710	2.1086360	-0.3002010
36	Η	-3.4329710	2.0131640	-0.0411000
37	Η	1.2726680	0.6163310	2.3735700
38	Н	0.1469780	1.9789300	2.2139890
39	Н	-0.4692440	0.3542680	2.5859960

Transition state of [1,5]-shift of compound **1f"2** (B3LYP/6-31g(d,p), Berny algorithm)

PCM=toluene

Imaginary Freq = 1

EE + Thermal Enthalpy Correction = -1051.225175

EE + Thermal Free Energy Correction = -1051.290168

1	С	2.5750540	-0.7172210	0.1111000
2	С	1.4115810	-1.4713490	0.0231500
3	С	1.7883790	-2.9064040	-0.1954090
4	0	3.2295570	-2.9097790	-0.1683480
5	С	3.7226180	-1.6313120	-0.0203350
6	С	2.5153650	0.6915760	-0.0345680
7	С	1.1725880	1.2853270	-0.0566140
8	С	0.1297650	0.5403300	0.7631290
9	С	0.1842300	-0.7881020	0.0120760
10	С	3.6287040	1.4999660	-0.3780560
11	С	3.4553460	2.8232320	-0.7165170
12	С	2.1625420	3.4159960	-0.7142030
13	С	1.0584350	2.6890060	-0.3521370
14	0	-1.2385600	0.9308500	0.4103700
15	С	-1.8726840	-0.2311470	0.0476600
16	Ν	-1.1222840	-1.2670870	-0.1718190
17	0	4.9136660	-1.4100210	-0.0104240
18	С	-3.3267210	-0.1773610	-0.0847360
19	С	-4.0195420	-1.3047570	-0.5588570
20	С	-5.4038940	-1.2665690	-0.6850810
21	С	-6.1086150	-0.1075750	-0.3434850
22	С	-5.4236490	1.0149880	0.1266760

23	С	-4.0370540	0.9844120	0.2579300
24	С	0.2595110	0.5566590	2.2802320
25	Н	0.6277690	0.3321390	-0.9989370
26	Н	1.4230340	-3.5709310	0.5949500
27	Н	1.4494010	-3.2983960	-1.1606000
28	Н	4.6108280	1.0404670	-0.3851520
29	Н	4.3159060	3.4252710	-0.9915210
30	Н	2.0586720	4.4656620	-0.9731310
31	Н	0.0764610	3.1479880	-0.3026570
32	Н	-3.4580620	-2.1940890	-0.8225590
33	Н	-5.9362290	-2.1386900	-1.0518010
34	Н	-7.1894720	-0.0807500	-0.4442240
35	Н	-5.9701220	1.9144340	0.3927900
36	Н	-3.4990980	1.8504250	0.6259210
37	Н	1.2542180	0.2176730	2.5795600
38	Н	0.1102410	1.5716450	2.6591020
39	Н	-0.4866100	-0.0998130	2.7364920

Cartesian coordinate columns of the optimized structure of compound $1f''_3$ (B3LYP/6-31g(d,p)

PCM=toluene

Imaginary Freq = 0

EE + Thermal Enthalpy Correction = -1051.287096

EE + Thermal Free Energy Correction = -1051.352311

1	С	2.5408150	-0.7547770	-0.0532280
2	С	1.4198580	-1.5040420	-0.1523110
3	С	1.7736760	-2.9515310	-0.0818160
4	0	3.2026540	-2.9624050	0.0769560
5	С	3.6921140	-1.6743700	0.0812740
6	С	2.5339540	0.7153610	-0.1387430
7	С	1.2890880	1.3903220	0.0166280
8	С	0.1313030	0.5070270	0.4216730
9	С	0.1600350	-0.7639630	-0.4354350
10	С	3.6884230	1.4661060	-0.3933150
11	С	3.6097650	2.8545280	-0.5163300
12	С	2.3840770	3.5067130	-0.3810080
13	С	1.2257230	2.7741030	-0.0998080
14	0	-1.2179310	0.9604510	0.0908190
15	С	-1.9035320	-0.2204900	-0.1343980
16	Ν	-1.2058690	-1.2832660	-0.3412280
17	0	4.8759950	-1.4437670	0.1789820
18	С	-3.3686430	-0.1330510	-0.1207910
19	С	-4.1301980	-1.2570800	-0.4792200
20	С	-5.5197200	-1.1900380	-0.4621790

21	С	-6.1607650	-0.0026950	-0.0945790
22	С	-5.4066520	1.1179940	0.2584410
23	С	-4.0141260	1.0564060	0.2480560
24	С	0.1473310	0.2702690	1.9434960
25	Η	0.2795420	-0.4211760	-1.4823570
26	Н	1.5095440	-3.5018490	-0.9926470
27	Н	1.3151530	-3.4654360	0.7711860
28	Η	4.6376170	0.9519420	-0.4945910
29	Н	4.5096870	3.4263020	-0.7211640
30	Н	2.3264150	4.5858610	-0.4861120
31	Η	0.2716670	3.2775450	0.0218390
32	Н	-3.6175730	-2.1681870	-0.7674790
33	Η	-6.1053120	-2.0613970	-0.7388070
34	Η	-7.2454960	0.0477130	-0.0848310
35	Η	-5.9028220	2.0403990	0.5442060
36	Н	-3.4219810	1.9207780	0.5254150
37	Н	-0.0647790	1.2185060	2.4439100
38	Н	-0.6134120	-0.4587190	2.2347030
39	Н	1.1219380	-0.0844040	2.2828290

Cartesian coordinate columns of the optimized structure of compound 1f'1 (B3LYP/6-31g(d,p)

PCM=toluene

Imaginary Freq = 0

EE + Thermal Enthalpy Correction = -1396.426402

EE + Thermal Free Energy Correction = -1396.515841

1	С	-2.7534640	1.1540940	-0.6326800
2	С	-1.5640630	1.6032750	-1.3153870
3	С	-1.9257810	1.8168930	-2.7595320
4	0	-3.3563310	1.6020900	-2.8165830
5	С	-3.8623960	1.2019260	-1.6019850
6	С	-2.7360960	0.6226480	0.6359540
7	С	-1.3670350	0.4583160	1.3050100
8	С	-0.4350410	1.5937670	0.8923690
9	С	-0.4110860	1.7296010	-0.6252590
10	С	-3.8922820	0.1171340	1.3198020
11	С	-3.8097990	-0.3062080	2.6122600
12	С	-2.5694990	-0.2409690	3.3643660
13	С	-1.4286580	0.1690790	2.7775110
14	0	0.9776780	1.2674500	1.1371540
15	С	1.6312440	1.6332480	-0.0056610
16	Ν	0.8965850	1.9204960	-1.0436300
17	0	-5.0418890	0.9489990	-1.4693780

18	С	3.0911000	1.6273990	0.0304050
19	С	3.8159210	1.9514540	-1.1302170
20	С	5.2061990	1.9461750	-1.1058460
21	С	5.8878620	1.6171710	0.0707430
22	С	5.1722180	1.2946860	1.2258360
23	С	3.7790630	1.2999590	1.2108820
24	С	-0.7242470	2.9316880	1.5883940
25	С	2.0681190	-3.7500640	0.2114770
26	Ν	1.2961450	-4.4181770	-0.8521610
27	С	1.2878430	-2.5050010	0.7452640
28	С	1.0792030	-3.4612790	-1.9529250
29	С	-0.7973990	-3.5691700	0.2043540
30	Ν	0.0164810	-2.3519440	0.0082540
31	С	-0.0135400	-4.8222300	-0.3074300
32	С	0.3110430	-2.2026600	-1.4323440
33	Н	-1.7173800	2.8315710	-3.1130110
34	Н	-1.4432680	1.1069700	-3.4408970
35	Н	-0.9413010	-0.4664060	0.8354630
36	Н	-4.8375980	0.1259960	0.7889990
37	Н	-4.7026170	-0.6662400	3.1152650
38	Н	-2.5831430	-0.5118710	4.4161630
39	Н	-0.4976790	0.2250760	3.3348240
40	Н	3.2729960	2.2032300	-2.0344070
41	Н	5.7619370	2.1978800	-2.0038650
42	Н	6.9736100	1.6138020	0.0859920
43	Н	5.6999170	1.0413890	2.1401890
44	Н	3.2171380	1.0573080	2.1054960
45	Н	-1.7554130	3.2388500	1.3957710
46	Н	-0.5845490	2.8425830	2.6688030
47	Н	-0.0545050	3.7082190	1.2100540
48	Н	2.2522970	-4.4779630	1.0095460
49	Н	3.0410930	-3.4630450	-0.2024080

50	Н	1.0491680	-2.6067980	1.8097320
51	Η	1.8640770	-1.5817720	0.6258950
52	Н	2.0565440	-3.1889780	-2.3665320
53	Н	0.5183690	-3.9718310	-2.7435600
54	Η	-1.0361290	-3.6507740	1.2702880
55	Н	-1.7415780	-3.4368220	-0.3346810
56	Н	-0.5664290	-5.3432740	-1.0967890
57	Н	0.1607670	-5.5409180	0.5009930
58	Н	0.8963040	-1.2868920	-1.5669930
59	Η	-0.6393480	-2.0658150	-1.9592720

Transition state of [1,5]-shift of compound **1f'2** (B3LYP/6-31g(d,p), Berny algorithm)

PCM=toluene

Imaginary Freq = 1

EE + Thermal Enthalpy Correction = -1396.421476

EE + Thermal Free Energy Correction = -1396.505854

1	С	2.3657480	-1.6045860	-0.4157780
2	С	1.1233120	-1.9891160	-1.0225840
3	С	1.4426220	-2.5040010	-2.4010780
4	0	2.8819430	-2.4517270	-2.4963420
5	С	3.4389790	-1.9003850	-1.3514390
6	С	2.4084170	-0.8433220	0.7571080
7	С	1.1239910	-0.4475520	1.3865850
8	С	-0.0205070	-1.4068470	1.1055310
9	С	-0.0438580	-1.7999070	-0.3639360
10	С	3.6149920	-0.3295250	1.3298370
11	С	3.5943700	0.3813310	2.5031010
12	С	2.3756320	0.6315480	3.2130690
13	С	1.1949260	0.1750710	2.7020490
14	0	-1.3425740	-0.7580370	1.2142050
15	С	-2.0446740	-1.2072770	0.1193510
16	Ν	-1.3614700	-1.8121970	-0.8075520
17	0	4.6441290	-1.7355250	-1.2767750
18	С	-3.4719380	-0.9045460	0.0752640
19	С	-4.2251510	-1.2501090	-1.0619380
20	С	-5.5849570	-0.9645120	-1.1118000
21	С	-6.2126820	-0.3301250	-0.0338080

22	С	-5.4705110	0.0145310	1.0975050
23	С	-4.1075080	-0.2711060	1.1571320
24	С	-0.0433360	-2.6299120	2.0366880
25	С	-0.7545930	3.9100910	-0.1863490
26	Ν	0.1489730	4.0373600	-1.3414320
27	С	-0.5246830	2.5509210	0.5452850
28	С	-0.0738210	2.9005660	-2.2499080
29	С	1.8203490	2.6880010	-0.0702700
30	Ν	0.6005140	1.8348020	-0.1142850
31	С	1.5418430	4.0029210	-0.8664630
32	С	0.2501090	1.5511770	-1.5341290
33	Н	1.1209000	-3.5398120	-2.5541290
34	Н	1.0148680	-1.8925280	-3.2047990
35	Н	0.8521400	0.6421230	0.6247550
36	Н	4.5488510	-0.5567300	0.8278320
37	Н	4.5304530	0.7404850	2.9225560
38	Н	2.4053950	1.1487790	4.1671190
39	Н	0.2640360	0.3245230	3.2436520
40	Н	-3.7259490	-1.7401810	-1.8906470
41	Н	-6.1598670	-1.2355890	-1.9922400
42	Н	-7.2750150	-0.1091950	-0.0762020
43	Н	-5.9549510	0.5024660	1.9380660
44	Н	-3.5296290	-0.0170820	2.0384970
45	Н	0.9070640	-3.1656500	1.9613120
46	Н	-0.1880530	-2.3225790	3.0765880
47	Н	-0.8497070	-3.3128050	1.7540020
48	Н	-0.5710910	4.7524730	0.4876710
49	Н	-1.7865140	3.9890180	-0.5416160
50	Н	-0.2568780	2.6864230	1.5972020
51	Н	-1.3993630	1.8977580	0.5064520
52	Н	-1.1159620	2.9259250	-2.5826700
53	Н	0.5586270	3.0318990	-3.1331030

54	Н	2.0471420	2.8800340	0.9809830
55	Н	2.6475260	2.1114750	-0.4913170
56	Н	2.2030480	4.0808760	-1.7346750
57	Н	1.7171730	4.8809460	-0.2373760
58	Н	-0.5949290	0.8596090	-1.5435950
59	Н	1.1041530	1.0399180	-1.9842860

Cartesian coordinate columns of the optimized structure of compound $1f^{\prime}3~(\mbox{B3LYP/6-31g}(d,p)$

PCM=toluene

Imaginary Freq = 0

EE + Thermal Enthalpy Correction = -1396.442785

EE + Thermal Free Energy Correction = -1396.529484

1	C	2.4621410	-1.4628010	-0.5348830
2	С	1.2590540	-1.7965040	-1.2090020
3	С	1.6044740	-1.9982690	-2.6619690
4	0	3.0160840	-1.7399330	-2.7551890
5	С	3.5279570	-1.3936680	-1.4975490
6	С	2.4282360	-0.9198000	0.7957920
7	С	1.1884620	-0.9391550	1.5221560
8	С	0.0457860	-1.7678050	0.9689120
9	С	0.0653580	-1.8154200	-0.5472770
10	С	3.5352650	-0.2698830	1.4028410
11	С	3.4180000	0.3388420	2.6438970
12	С	2.1946950	0.3389150	3.3373780
13	С	1.0984100	-0.3125400	2.7757060
14	0	-1.2735950	-1.1394850	1.1894240
15	С	-1.9520340	-1.3126710	-0.0078680
16	Ν	-1.2333040	-1.6957350	-1.0229970
17	0	4.7072580	-1.0824680	-1.3962210
18	С	-3.3618560	-0.9519880	-0.0300840
19	С	-4.0932600	-1.0306790	-1.2326390
20	С	-5.4380460	-0.6812960	-1.2603720

21	С	-6.0817780	-0.2444170	-0.0958700
22	С	-5.3650410	-0.1661580	1.0996470
23	С	-4.0169040	-0.5194730	1.1388220
24	С	-0.0088420	-3.1660560	1.6093630
25	С	-1.0535430	3.6619630	0.0945530
26	Ν	-0.0906970	4.0212760	-0.9561220
27	С	-0.6876890	2.2934090	0.7396910
28	С	-0.1225500	3.0053450	-2.0182940
29	С	1.6909350	2.7187780	0.2090360
30	Ν	0.5307260	1.7722180	0.0162220
31	С	1.2608780	4.0939140	-0.3834120
32	С	0.2404420	1.5997800	-1.4567950
33	Н	1.4090570	-3.0241570	-2.9962290
34	Н	1.0699950	-1.3197890	-3.3392100
35	Н	0.7802070	0.8517100	0.4271900
36	Н	4.4735240	-0.2563930	0.8588480
37	Н	4.2858110	0.8250880	3.0823950
38	Н	2.1132390	0.8081780	4.3131550
39	Н	0.1536890	-0.3523350	3.3118400
40	Н	-3.5872520	-1.3711560	-2.1296230
41	Н	-5.9910890	-0.7493160	-2.1928120
42	Н	-7.1330840	0.0260950	-0.1218320
43	Н	-5.8592570	0.1639590	2.0089880
44	Н	-3.4642890	-0.4765900	2.0706600
45	Н	0.9412390	-3.6812660	1.4410820
46	Н	-0.1766910	-3.0882310	2.6884620
47	Н	-0.8112430	-3.7614850	1.1630310
48	Н	-1.0579600	4.4506820	0.8511310
49	Н	-2.0516930	3.6187930	-0.3482030
50	Н	-0.4142450	2.3702230	1.7933670
51	Н	-1.4676830	1.5377870	0.6423800
52	Н	-1.1225620	2.9917020	-2.4587700
53	Н	0.5820800	3.2971360	-2.8009770
54	Н	1.9013500	2.7482740	1.2789840
55	Н	2.5497970	2.2763960	-0.2972080

56	Н	1.9571990	4.4038100	-1.1665510
57	Н	1.2692090	4.8630480	0.3931450
58	Н	-0.5655250	0.8697960	-1.5436960
59	Н	1.1398120	1.1746430	-1.9040580

IV. Molecular orbitals

Molecular orbitals of $\mathbf{1f}$ and $\mathbf{2f}$ according to B3LYP/6-31g(d,p) level of theory.

N⁰/ Nº	Compound	НОМО	LUMO
1			
2			
3	O H N Ph		
4			
5			

V. UV-vis spectra of obtained compounds

Fig. S3. Absorption spectra of an acetonitrile solution of 1c obtained under irradiation with UV light ($\lambda = 365 \text{ nm}$); C = $3.0 \times 10^{-5} \text{ M}$, T = 298° K.

Fig. S4. UV absorption spectrum of diarylethene 1c in acetonitrile solution (C = 3.0×10^{-5} M, T = 298° K).

Fig. S5. UV absorption spectrum of photoproduct 2c in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S6. Absorption spectra of an acetonitrile solution of 1c with 2 eq DIPEA obtained under irradiation with UV light ($\lambda = 365 \text{ nm}$); C = $3.0 \times 10^{-5} \text{ M}$, T = 298° K.

Fig. S7. Absorption spectra of an acetonitrile solution of 1d obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S8. UV absorption spectrum of diarylethene 1d in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S9. UV absorption spectrum of photoproduct 2**d** in acetonitrile solution (C = 3.0×10^{-5} M),

Fig. S10. Absorption spectra of an acetonitrile solution of 1f obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S11. Absorption spectra of an acetonitrile solution of 1f with 2 eq DIPEA obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S12. Absorption spectra of an acetonitrile solution of 1g obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298°K and colored intermediate 1gB observed at 525 nm (on inset).

Fig. S13. Absorption spectra of 1g, 1gB and 2g in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S14. Absorption spectra of an acetonitrile solution of 1h obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S15. UV absorption spectrum of diarylethene 1h in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S16. UV absorption spectrum of photoproduct 2h in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S17. Absorption spectra of an acetonitrile solution of 1i obtained under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S18. UV absorption spectrum of diarylethene 1i in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S19. UV absorption spectrum of photoproduct 2i in acetonitrile solution (C = 3.0×10^{-5} M), T = 298° K.

Fig. S20. Changes in the absorption spectrum of diarylethene 1j-*E* under irradiation with UV light ($\lambda = 365$ nm); C = 3.0×10^{-5} M, T = 298° K.

Fig. S21. Changes in the absorption spectrum of diarylethene 1j' under irradiation with UV light (365 nm) in acetonitrile solution in the presence of 10 eq CF₃COOH (C = 3.0×10^{-5} M), T = 298° K.

VI. Copies of ¹H and ¹³C NMR spectra (E)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone oxime (1c)

(E)-5-(hydroxyimino)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone (1d)

VII. Copies of ¹H and ¹³C NMR spectra of photoproducts

N-(5-methyl-1-oxo-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-4-yl)benzamide (2a)

N-(5-methyl-3-oxo-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-4-yl)benzamide (2b)

(*E*)-*N*-(1-(hydroxyimino)-5-methyl-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-4-yl)benzamide (2c)

(*E*)-*N*-(2-(hydroxyimino)-5-methyl-1-oxo-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-4-yl)benzamide (2d)

N-(5-methyl-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-4-yl)benzamide (2e)

N-(5-methyl-1-oxo-1,3-dihydronaphtho[1,2-*c*]furan-4-yl)benzamide (2f)

N-(5-methyl-3-oxo-1,3-dihydronaphtho[1,2-*c*]furan-4-yl)benzamide (2g)

VIII. Copies of HRMS spectra (E)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone oxime (1c)

(E)-5-(hydroxyimino)-3-(5-methyl-2-phenyloxazol-4-yl)-2-phenylcyclopent-2-enone (1d)

(E)-N-(1-(hydroxyimino)-5-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-4-

yl)benzamide (2c)

N-(5-methyl-3-oxo-1,3-dihydronaphtho[1,2-*c*]furan-4-yl)benzamide (2g)