Electronic Supplementary Information

Straightforward synthesis of multifunctional porous polymer

nanomaterials for CO₂ capture and removal of contaminants

Shashikant Shingdilwar, Devendra Kumar, Bhanendra Sahu and Sanjib Banerjee*

Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India

*Corresponding Author: E-mail: sanjib.banerjee@iitbhilai.ac.in (S. Banerjee)

Entry	Time	Polymer	$M_{n,SEC}^{c}$	D^{c}
	(h)	grafting ^b (%)	$(g mol^{-1})$	
P1	0.5	16	8900	1.28
P2	1	29	15900	1.27
P3	2	37	20400	1.25
P4	4	48	26300	1.23
P5	6	54	29700	1.25
P6	12	60	32900	1.24

Table S1. Reaction conditions and results of the kinetics study of SC-ATRP of GMA/VBC from MSN-Br in xylene at 60 °C.^a

^aReaction Conditions: $[GMA+VBC]_0/[MSN-Br]_0 = 200$. ^bDetermined from TGA. ^cObtained from SEC measurements of the cleaved polymer samples.

Fig. S1. SEC traces of prepared MPGMAN-CH₂Cl copolymers.