Electronic Supplementary Information

Exploiting the Reversible Covalent Bonding of Boronic Acids for Self-

Healing/Recycling of Main-Chain Polybenzoxazines

Sevinc Gulyuz^a, Yusuf Yagci^a, Baris Kiskan^{*,a}

^aIstanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey.

CONTENTS:

Title	Page
Synthesis of <i>p</i> -cresol and benzylamine based benzoxazine (C-Bn)	2
Figure S1: ¹ H NMR spectrum of PPO ₉₀₀ -Bz.	2
Figure S2: FTIR spectrum of PPO ₉₀₀ -Bz	3
Figure S3: ¹ H NMR spectrum of PPO ₆₀₀ -Bz.	3
Figure S4: FTIR spectrum of PPO ₆₀₀ -Bz.	4
Figure S5: GPC chromatograms of PPO ₉₀₀ -Bz (A) and PPO ₆₀₀ -Bz (B)	4
Figure S6: The PPO ₉₀₀ -Bz (right) and PPO ₉₀₀ -Bz-Bor (left) in molds before thermal treatment (A), cured PPO ₉₀₀ -Bz-Bor (B) and cured PPO ₉₀₀ -Bz (C)	5
Figure S7: The overlaid FTIR spectra of cured PPO ₉₀₀ -Bz-Bor (a) and PPO ₆₀₀ -Bz-Bor (b)	5
Figure S8: ¹ H NMR spectrum of C-Bn.	6
Scheme S1: Synthesis, oligomerization of C-Bn monomer and reaction between oligo C-Bn and PhB(OH) ₂	6
Figure S9: ¹ H NMR spectra of oligo C-Bn (a) and boron modified oligo C-Bn (b)	7
Figure S10: Images of solubility tests for cured PPO ₉₀₀ -Bz-Bor in different solvents	7
Table S1. Solvent fractions of PPO900-Bz-Bor in different solvents at 30 °C	8
Figure S11: Swelling ratio vs time graphs for cured PPO ₉₀₀ -Bz-Bor film in acetone and water.	8
Figure S12: Image of a representative set-up for self-healing experiments.	9
Figure S13: Images of cured PPO ₆₀₀ -Bz-Bor (A) and recycled (2 times) (B)	9
Figure S14: Overlaid DSC thermograms for cured PPO ₉₀₀ -Bz-Bor and annealed sample.	9
Scheme S2: Formation and rearrangement of phenoxymethyl type bridges	10
Figure S15: Stress-strain analysis of PPO ₆₀₀ -Bz-Bor (A), PPO ₆₀₀ -Bz (B) and healing efficiencies of PPO ₆₀₀ -Bz-Bor (A'), PPO ₆₀₀ -Bz (B').	10
Figure S16: Overlaid DSC thermograms of PPO_{900} -Bz (a) and PPO_{900} -Bz/PhB(OH) ₂ 10%wt mixture (b)	11
Figure S17: Normalized relaxation module (G) vs time graphs for PPO900-Bz-Bor, self-healed sample and PPO900-Bz as reference	11
Table S2: Thermal properties of the cured ^a PPO ₉₀₀ -Bz and PPO ₉₀₀ -Bz-Bor polymers.	12

Synthesis of *p*-cresol and benzylamine based benzoxazine (C-Bn)

In a round bottomed flask equipped with a stirrer *p*-cresol (10 g, 92.5 mmol), benzylamine (9.9 g, 92.5 mmol) and paraformaldehyde (5.6 g, 186 mmol) was dissolved in toluene:EtOH (2:1, v:v) (150 mL). The mixture was refluxed for 12 h. After cooling the content, the reaction solution was filtered with an ordinary filter paper. The solvent was removed by rotary evaporator and the remaining was dissolved in CHCl₃. The chloroform solution was washed with 1 M NaOH_(aq) solution three times and deionized water with 2 times. Then, the chloroform solution was dried by using anhydrous Na₂SO₄ and the solid particles filtered. The remaining solution was evaporated. Crystallization from acetone/ethanol mixture gave the desired product. (Yield: \sim 80%)

Typical curing procedure of C-Bn with $PhB(OH)_2$ is as follows: C-Bn (99.1 mg, 0.41 mmol) and 10 % wt $PhB(OH)_2$ (11.01 mg, 0.09 mmol) were dissolved in 0.5 mL of $CHCl_3$ in a glass vial. The solvent was evaporated at room temperature for 1 day and in a vacuum for 1 days. After the solvent removal, mixture was exposed to thermal curing at 200 °C for 4 h in an open-air oven.

Figure S1: ¹H NMR spectrum of PPO₉₀₀-Bz. *Residue of DMSO and water.

Figure S2: FTIR spectrum of PPO₉₀₀-Bz

Figure S3: ¹H NMR spectrum of PPO₆₀₀-Bz. *Residue of DMSO and water.

Figure S4: FTIR spectrum of PPO₆₀₀-Bz.

Figure S5: GPC chromatograms of PPO₉₀₀-Bz (A) and PPO₆₀₀-Bz (B)

Figure S6: The PPO_{900} -Bz (right) and PPO_{900} -Bz-Bor (left) in molds before thermal treatment (A), cured PPO_{900} -Bz-Bor (B) and cured PPO_{900} -Bz (C)

Figure S7: The overlaid FTIR spectra of cured PPO₉₀₀-Bz-Bor (a) and PPO₆₀₀-Bz-Bor (b)

Figure S8: ¹H NMR spectrum of C-Bn. *CHCl₃ and H₂O

Scheme S1: Synthesis, oligomerization of C-Bn monomer and reaction between oligo C-Bn and $PhB(OH)_2$

Figure S9: 1H NMR spectra of oligo C-Bn (a) and boron modified oligo C-Bn (b)

Figure S10: Images of solubility tests for cured PPO₉₀₀-Bz-Bor in different solvents

Solvent	Gel fraction (%-wt)		
EtOH	91		
DMF	91		
DMSO	94		
1,4-Dioxane	93		
CHCl ₃	90		
Acetone	93		
EtOAc	94		
THF	93		
Toluene	99		
Hexane	99		
Water	88		

Table S1. Solvent fractions of PPO_{900} -Bz-Bor in different solvents at 30 °C.

Figure S11: Swelling ratio vs time graphs for cured PPO900-Bz-Bor film in acetone and water. Curve fitting added as dashed lines.

Figure S12: Image of a representative set-up for self-healing experiments

Figure S13: Images of cured PPO₆₀₀-Bz-Bor (A) and recycled (2 times) (B)

Figure S14: Overlaid DSC thermograms for cured PPO_{900} -Bz-Bor and annealed sample. Annealing was performed as follows: A piece of film was heated up to 100 °C and then immediately dropped in liquid nitrogen.

Scheme S2: Formation and subsequent rearrangement of phenoxymethyl type bridges

Figure S15: Stress-strain analysis of PPO_{600} -Bz-Bor (A), PPO_{600} -Bz (B) and healing efficiencies of PPO_{600} -Bz-Bor (A'), PPO_{600} -Bz (B')

Figure S16: Overlaid DSC thermograms of PPO_{900} -Bz (a) and PPO_{900} -Bz/PhB(OH)₂ 10%wt mixture (b)

Figure S17: Normalized relaxation module (G) vs time graphs for PPO900-Bz-Bor, self-healed sample and PPO900-Bz as reference

Cured Sample	T _{5%}	T _{10%}	T _c	T _{max}
	(°C)	(°C)	(%)	(°C)
PPO ₉₀₀ -Bz	331	358	15	405
PPO ₉₀₀ -Bz-Bor	220	323	18	415
PPO ₉₀₀ -Bz-Bor 3 rd recycle	277	339	22	416
PPO ₉₀₀ -Bz-Bor 5 th recycle	314	352	25	416

Table S2: Thermal properties of the cured^a PPO₉₀₀-Bz and PPO₉₀₀-Bz-Bor polymers.

^a Curing of polymers was performed in an opne-air oven device at *ca.* 180 °C for 30 min. $T_{5\%}$: The temperature for which the weight loss is 5% by mass, $T_{10\%}$: The temperature for which the weight loss is 10% by mass, T_c : The char yield at 800 °C, T_{max} : The temperature for maximum weight loss that extracted from derivative TGA graph (Fig. 7).