Supplementary Information

Biocompatible poly(N-(ω-acryloyloxy-n-alkyl)-2-pyrrolidone)s with widelytunable lower critical solution temperatures (LCSTs): a promising alternative to poly(N-isopropylacrylamide)

Shin-nosuke Nishimura,*^a Kei Nishida,^{a†} Tomoya Ueda,^b Shohei Shiomoto^a and Masaru Tanaka^a*

Table of Contents

Exp	erimental Procedures (methods, materials, measurements, syntheses, and characterizations)	S-4			
Figures					
S1.	NMR spectra of NHMeP	S-12			
S2.	NMR spectra of NHBuP	S-			
	13				
S3.	NMR spectra of NHPnP	S-14			
S4.	NMR spectra of NHHxP	S-			
	15				
S5.	NMR spectra of NAMeP	S-16			
S6.	NMR spectra of NAEtP	S-17			
S7.	NMR spectra of NAPrP	S-18			
S8.	NMR spectra of NABuP	S-19			
S9 .	NMR spectra of NAPnP	S-20			
S10	NMR spectra of NAHxP	S-21			
S11	NMR spectra of PNAMeP	S-22			
S12	NMR spectra of PNAEtP	S-23			
S13	NMR spectra of PNAPrP	S-24			
S14	NMR spectra of PNABuP	S-25			
S15	NMR spectra of PNAPnP	S-26			
S16	NMR spectra of PNAHxP	S-27			
S17	DSC thermograms of PNAEtP	S-28			
S18	Photographs of PNABuP aqueous solutions with rhodamine B and proteins	S-29			
S19	¹ H NMR spectrum of P(NAMeP ₅₀ - <i>co</i> -NAPrP ₅₀)	S-30			
S20	¹ H NMR spectrum of P(NAPrP ₅₀ - <i>co</i> -NABuP ₅₀)	S-			
	31				
S21	¹ H NMR spectrum of P(NABuP ₅₀ - <i>co</i> -NAPnP ₅₀)	S-32			
S22	¹ H NMR spectrum of P(NAEtP ₅₀ - <i>co</i> -NAHxP ₅₀)	S-			
	33				
S23	. Thermo-responsive behavior of P(NAR ₁ P _x - <i>co</i> -NAR ₂ P _{100-x})	S-34			
S24	¹ H NMR spectrum of P(NAEtP ₁ - <i>co</i> -NAHxP ₉₉)	S-35			
S25	¹ H NMR spectrum of P(NAEtP ₃ - <i>co</i> -NAHxP ₉₇)	S-36			
S26	¹ H NMR spectrum of P(NAEtP ₅ - <i>co</i> -NAHxP ₉₅)	S-37			
S27	¹ H NMR spectrum of P(NAEtP ₁₀ - <i>co</i> -NAHxP ₉₀)	S-			
	38				

S28. ¹ H NMR spectrum of P(NAEtP ₂₀ - <i>co</i> -NAHxP ₈₀)	S-
39	
S29. ¹ H NMR spectrum of P(NAEtP ₃₀ - <i>co</i> -NAHxP ₇₀)	S-
40	
S30. ¹ H NMR spectrum of P(NAEtP ₄₀ - <i>co</i> -NAHxP ₆₀)	S-
41	
S31. ¹ H NMR spectrum of P(NAEtP ₆₀ - <i>co</i> -NAHxP ₄₀)	S-
42	
S32. ¹ H NMR spectrum of P(NAEtP ₇₀ - <i>co</i> -NAHxP ₃₀)	S-
43	
S33. ¹ H NMR spectrum of P(NAEtP ₈₀ - <i>co</i> -NAHxP ₂₀)	S-
44	
S34. ¹ H NMR spectrum of P(NAEtP ₉₀ - <i>co</i> -NAHxP ₁₀)	S-
45	
S35. ¹ H NMR spectrum of P(NAEtP ₉₅ - <i>co</i> -NAHxP ₅)	S-46
S36. ¹ H NMR spectrum of P(NAEtP ₉₇ -co-NAHxP ₃)	S-47
S37. ¹ H NMR spectrum of P(NAEtP ₉₉ - <i>co</i> -NAHxP ₁)	S-48
S38. DSC thermograms of PNARPs under wet condition	S-49
S39. Hemolysis test of the (co)polymers at 20 °C	S-
50	
S40. ¹ H NMR spectra of PNAMeP in deuterated-PBS and deuterated-water containing with salts	S-51
S41. Viability of RAW264.7 cells after mixing with PNAMeP	S-52
Table S1. Summary of the copolymerization of NARPs	S-53

Experimental Procedures

Methods

Materials

Solvents of special grade were used unless otherwise specified. 4-Aminobutanol, 5-aminopentanol, 6aminohexanol, *N*-(2-hydroxyethyl)-2-pyrrolidone (NHEtP), *N*-(3-hydroxypropyl)-2-pyrrolidone (NHPrP), *y*butyrolactone, 2-pyrrolidone, acryloyl chloride, triethylamine, and 2,2'-azobis(isobutyronitrile) (AIBN) were purchased from Tokyo Chemical Industries Co., Ltd. (Japan). Dichloromethane, toluene, dimethylformamide (DMF), diethyl ether, methanol, and 12 M hydrochloric acid were purchased from Kanto Chemicals Co., Inc. (Japan). Paraformaldehyde, potassium hydroxide, potassium carbonate anhydrous, urea, lithium bromide, sodium chloride, and magnesium sulfate anhydrous were purchased from FUJIFILM Wako Pure Chemical Co., Ltd. (Japan). Chloroform-*d* was purchased from Merck/Sigma-Aldrich (Germany). AIBN was purified by recrystallization from methanol prior to use.

Measurements

The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were acquired using an AVANCE III (Bulker Daltonics Inc., USA) spectrometer (400 MHz) at 25 °C. The values of number-average molecular weight (M_n) and polydispersity index (D) of the synthesized polymers were determined by size exclusion chromatography (SEC) on an HPLC system (Prominence; Shimadzu Co., Japan) equipped with a refractive index (RI) detector using DMF (10 mM LiBr) as an eluent (flow rate 1.0 mL/min, temperature: 40 °C, column: TSKgel ALPHA-M (Tosoh Co., Japan)). Poly(methyl methacrylate) (PMMA) was purchased from Agilent Technologies Ltd. (USA) and used as the calibration standard. The differential scanning calorimetry (DSC) measurements were performed on a X-DSC7000

(Seiko Instruments Inc., Japan). The samples for DSC measurements under wet condition were prepared according to our previous reports.^{S1}

Synthesis Procedure

Synthesis of N-hydroxymethyl-2-pyrrolidone (NHMeP)

2-Pyrrolidinone 106.2 g (1.25 mol) and potassium hydroxide 0.3 g (5.34 mmol) were mixed and heated at 80 °C. Paraformaldehyde 37.8 g (1.25 mol as formaldehyde) was added to the mixture and stirred for 30 min at 80 °C. After reaction, the mixture was cooled to ambient temperature and added toluene 200 mL to precipitate the resultant molecule. The precipitation was collected and further purified twice from toluene to give the pure *N*-hydroxymethyl-2-pyrrolidone (NHMeP) as a white solid (77.2 g, 53.6%).

¹H NMR [400 MHz, chloroform-*d*, tetramethylsilane (TMS)] (Figure S1A): δ = 2.05 ppm (-NCH₂CH₂CH₂C(=O)-), *quin*, 2H, Hz), 2.39 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H, Hz), 3.58 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H, Hz), 4.78 ppm (-NCH₂CH₂CH₂C(=O)-, *s*, 2H, Hz), 5.09 ppm (-CH₂OH, *s*, 1H, Hz). ¹³C NMR [75 MHz, chloroform-*d*, TMS] (Figure S1B): δ = 18.03 ppm (-NCH₂CH₂CH₂C(=O)-), 31.56 ppm (-NCH₂CH₂CH₂C(=O)-), 46.27 ppm (-NCH₂CH₂CH₂C(=O)-), 66.43 ppm (-CH₂OH), 176.28 ppm (-NCH₂CH₂CH₂C(=O)-).

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 116.0633, [M+H]⁺_{obs.} = 116.0699.

EA_{obs.} (EA_{calc.}): H; 7.84% (7.88%), C; 52.30% (52.16%), N; 12.17% (12.17%).

Synthesis of *N*-(4-hydroxybutyl)-2-pyrrolidone (NHBuP)

4-Aminobutanol 75.0 g (0.84 mol) and γ -butyrolactone 72.4 g (0.84 mol) was mixed and stirred at ambient temperature for 1 h. The resultant mixture was transferred to autoclave and stirred at 250 °C for 8 h. The objective molecule was collected by distillation (169-171 °C, 3 mmHg) to obtained the pure *N*-(4-hydroxybutyl)-2-pyrrolidone (NHBuP) as a colorless liquid (90.0 g, 70.7%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S2A): $\delta = 1.54$ ppm (-CH₂CH₂CH₂CH₂OH, *quin*, 2H), 1.60 ppm (-CH₂CH₂CH₂CH₂CH₂OH-, *quin*, 2H), 2.02 ppm (-NCH₂CH₂CH₂C(=O)-, *quin*, 2H), 2.37 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 2.95 ppm (-CH₂CH₂CH₂CH₂OH, *s*, 1H), 3.31 ppm (-CH₂CH₂CH₂OH, *t*, 2H), 3.39 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 3.64 ppm (-CH₂CH₂CH₂CH₂OH, *t*, 2H). ¹³C NMR [75 MHz, chloroform-*d*, TMS] (Figure S2B): $\delta = 18.03$ ppm (-NCH₂CH₂CH₂CH₂C(=O)-), 23.96 ppm (-CH₂CH₂CH₂CH₂OH), 29.66 ppm (-CH₂CH₂CH₂CH₂OH), 31.08 ppm (-NCH₂CH₂CH₂C(=O)-), 42.47 ppm (-CH₂CH₂CH₂OH), 47.45 ppm (-NCH₂CH₂CH₂C(=O)-), 61.92 ppm (-CH₂CH₂CH₂CH₂OH), 175.4 ppm (-N(CH₂CH₂CH₂C(=O)-).

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 158.1103, [M+H]⁺_{obs.} = 158.1158.

EA_{obs.} (EA_{calc.}): H; 9.57% (9.67%), C; 61.13% (61.12%), N; 8.90% (8.91%).

Synthesis of N-(5-hydroxypentyl)-2-pyrrolidone (NHPnP)

This molecule was synthesized by the same method with NHBuP. b.p.: 192-194 °C (3 mmHg). Yield: 101.3 g (70.4%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S3A): δ = 1.38 ppm (-CH₂CH₂CH₂CH₂CH₂OH, *quin*, 2H), 1.59 ppm (- $CH_2CH_2CH_2CH_2CH_2OH$, m, 4H), 2.02 ppm $(-NCH_2CH_2CH_2C(=O))$ -, quin, 2H), 2.09 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂OH, t, 2H), 3.39 ppm (-NCH₂CH₂CH₂C(=O)-, t, 2H), 3.63 ppm (-CH₂CH₂CH₂CH₂CH₂OH, t, 2H). ¹³C NMR [75 MHz, chloroform-d, TMS] (Figure S3B): δ = 18.16 ppm (-NCH₂CH₂CH₂C(=O)-), 22.99 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂OH), 27.35 ppm (-CH₂CH₂CH₂CH₂CH₂OH), 31.46 ppm (-CH₂CH₂CH₂CH₂CH₂OH), 32.68 ppm (-NCH₂CH₂CH₂C(=O)-), 42.85 ppm (-CH₂CH₂CH₂CH₂CH₂OH), 47.20 ppm (-NCH₂CH₂CH₂C(=O)-), 62.94 ppm (-CH₂CH₂CH₂CH₂CH₂OH), 175.25 ppm (-NCH₂CH₂CH₂C(=O)-). HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 172.1259, [M+H]⁺_{obs.} = 172.1308.

EA_{obs.} (EA_{calc.}): H; 9.93% (10.01%), C; 63.24% (63.13%), N; 8.16% (8.18%).

Synthesis of N-(6-hydroxyhexyl)-2-pyrrolidone (NHHxP)

This molecule was synthesized by the same method with NHBuP.

b.p.: 211-213 °C (3 mmHg).

Yield: 119.3 g (64.4%).

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 186.1416, [M+H]⁺_{obs.} = 186.1464.

EA_{obs.} (EA_{calc.}): H; 10.24% (10.34%), C; 64.91% (64.83%), N; 7.54% (7.56%).

Synthesis of N-acryloyloxymethyl-2-pyrrolidone (NAMeP)

NHMeP 6.22 g (54.0 mmol) and triethylamine 6.01 g (59.4 mmol) was dissolved to dichloromethane 200 mL and cooled under ice bath. Acryloyl chloride 4.89 g (54.0 mmol) was dissolved to dichloromethane 90 mL and added dropwise to the mixture, and then the solution stirred at ambient temperature for 12 h. The resultant mixture was washed with 1 M HCl_{aq} 100 mL × 3, 5% K₂CO_{3aq} 100 mL × 3, and sat. NaCl_{aq} × 1. The organic layer was collected and dried over MgSO₄ anhydrous, and then the solvent was removed *in vacuo* to give a crude. The objective molecule was collected by distillation (76-78 °C, 0.5 mmHg) in the presence of BMH (Seiko Chemical Co., Ltd.) as a polymerization inhibitor for high temperature to obtain the pure *N*-acryloyloxymethyl-2-

pyrrolidone (NAMeP) as a colorless liquid (6.75 g, 73.5%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S5A): δ = 2.05 ppm (-NCH₂CH₂CH₂C(=O)-, *quin*, 2H), 2.39 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 3.57 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 5.44 ppm (-CH₂OC(=O)CHCH_aH_b, *s*, 2H), 5.89 ppm (-CH₂OC(=O)CHCH_aH_b, *d*, 1H), 6.14 ppm (-CH₂OC(=O)CHCH_aH_b, *dd*, 1H), 6.48 ppm (-CH₂OC(=O)CHCH_aH_b, *d*, 1H). ¹³C NMR [75 MHz, chloroform-*d*, TMS] (Figure S5B): δ = 17.91 ppm (-NCH₂CH₂CH₂C(=O)-), 30.68 ppm (-NCH₂CH₂CH₂C(=O)-), 46.70 ppm (-NCH₂CH₂CH₂C(=O)-), 65.52 ppm (-CH₂OC(=O)CHCH_aH_b), 127.88 ppm (-CH₂OC(=O)CHCH_aH_b), 131.94 ppm (-CH₂OC(=O)CHCH_aH_b), 165.89 ppm (-CH₂OC(=O)CHCH_aH_b), 176.20 ppm (-NCH₂CH₂CH₂C(=O)-).

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 170.0739, [M+H]⁺_{obs.} = 170.0739. EA_{obs.} (EA_{calc.}): H; 6.53% (6.55%), C; 56.64% (56.80%), N; 8.17% (8.28%).

Synthesis of N-(2-acryloyloxyethyl)-2-pyrrolidone

This molecule was synthesized by the same method with NAMeP.

b.p.: 83-85 °C (0.5 mmHg).

Yield: 7.64 g (77.3%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S6A): $\delta = 2.04$ ppm (-NCH₂CH₂CH₂C(=O)-, *quin*, 2H), 2.39 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 3.47 ppm (-NCH₂CH₂CH₂C(=O)-, *t*, 2H), 3.59 ppm (-CH₂CH₂OC(=O)CHCH_aH_b, *t*, 2H), 4.31 ppm (-CH₂CH₂OC(=O)CHCH_aH_b, *t*, 2H), 5.88 ppm (-CH₂CH₂OC(=O)CHCH_aH_b, *d*, 1H), 6.11 ppm (-CH₂CH₂OC(=O)CHCH_aH_b, *dd*, 1H), 6.41 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), *d*, 1H). ¹³C NMR [75 MHz, chloroform-*d*, TMS] (Figure S6B): $\delta = 18.27$ ppm (-NCH₂CH₂C(=O)-), 30.84 ppm (-NCH₂CH₂CC(=O)-), 41.76 ppm (-CH₂CH₂OC(=O)CHCH_aH_b, 48.16 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), 62.16 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), 128.12 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), 131.44 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), 166.08 ppm (-CH₂CH₂OC(=O)CHCH_aH_b), 175.33 ppm (-NCH₂CH₂CH₂C(=O)-).

HRMS (FAB MASS, m/z): $[M+H]^{+}_{theo.}$ = 184.0895, $[M+H]^{+}_{obs.}$ = 184.0995.

EA_{obs.} (EA_{calc.}): H; 7.04% (7.15%), C; 58.96% (59.00%), N; 7.67% (7.65%).

Synthesis of N-(3-acryloyloxypropyl)-2-pyrrolidone

This molecule was synthesized by the same method with NAMeP.

b.p.: 94-96 °C (0.5 mmHg).

Yield: 7.98 g (74.9%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S7A): $\delta = 1.92 \text{ ppm} (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, quin, 2H), 2.04$ ppm (-NCH_2CH_2CH_2C(=O)-, quin, 2H), 2.37 ppm (-NCH_2CH_2CH_2C(=O)-, t, 2H), 3.39 ppm (-N(CH_2CH_2CH_2OC(=O)CHCH_aH_b)CH_2CH_2CH_2C(=O)-, m, 4H), 4.18 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, t, 2H), 5.83 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, d, 1H), 6.14 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, dd, 1H), 6.41 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, dd, 1H), 6.41 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b, d, 1H). ¹³C NMR [75 MHz, chloroform-*d*, TMS] (Figure S7B): $\delta = 17.79$ ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), 26.81 ppm (-CH_2CH_2CH_2OC(=O)CHCH_aH_b), 31.08 ppm (-NCH_2CH_2CH_2C(=O)-), 39.62 ppm (-NCH_2CH_2CH_2C(=O)-), $CH_2CH_2CH_2OC(=O)CHCH_aH_b)$, 47.21 ppm (-N $CH_2CH_2CH_2C(=O)$ -), 62.16 ppm (- $CH_2CH_2CH_2OC(=O)CHCH_aH_b$), 128.36 ppm (- $CH_2CH_2CH_2OC(=O)CHCH_aH_b$), 130.96 ppm (- $CH_2CH_2CH_2OC(=O)CHCH_aH_b$), 166.32 ppm (- $CH_2CH_2CH_2OC(=O)CHCH_aH_b$), 175.09 ppm (- $NCH_2CH_2CH_2C(=O)$ -). HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 198.1052, [M+H]⁺_{obs.} = 198.1079. EA_{obs.} (EA_{calc.}): H; 7.59% (7.67%), C; 60.88% (60.90%), N; 7.05% (7.10%).

Synthesis of N-(4-acryloyloxybutyl)-2-pyrrolidone

This molecule was synthesized by the same method with NAMeP.

b.p.: 104-106 °C (0.5 mmHg).

Yield: 9.24 g (80.6%).

¹H NMR [400 MHz, chloroform-d, TMS] (Figure S8A): δ = 1.63 ppm (-CH₂CH₂CH₂CC(=0)CHCH_aH_b, m, 4H), 1.69 2H), 2.43 ppm (-NCH₂CH₂CH₂C(=O)-, t, ppm (ppm $(-NCH_2CH_2CH_2C(=O))$ -, quin, 2H), 3.33 CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b, t, 2H), 3.40 ppm (-NCH₂CH₂CH₂CH₂C(=O)-, t, 2H), 4.19 ppm (-CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b, t, 2H), 5.83 ppm (-CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, d, 1H), 6.14 ppm (-CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b, dd, 1H), 6.45 ppm (-CH₂CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b, d, 1H). ¹³C NMR [75 MHz, chloroform-d, TMS] (Figure S8B): δ = 17.79 ppm (-NCH₂CH₂CH₂C(=O)-), 23.96 ppm (-CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b), 26.09 ppm (-CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b)-), 31.56 ppm (-NCH₂CH₂CH₂C(=O)-), 42.47 ppm (-CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 47.21 ppm (-NCH₂CH₂CH₂CH₂C(=O)-), 64.30 ppm (- $CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 128.83 ppm $(-CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 130.97 ppm (-CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 166.32 ppm (-CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 175.09 ppm (-NCH₂CH₂CH₂C(=O)-).

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 211.1208, [M+H]⁺_{obs.} = 212.1287. EA_{obs.} (EA_{calc.}): H; 8.02% (8.11%), C; 62.53% (62.54%), N; 6.63% (6.63%).

Synthesis of N-(5-acryloyloxypentyl)-2-pyrrolidone

This molecule was synthesized by the same method with NAMeP.

b.p.: 111-113 °C (0.5 mmHg).

Yield: 9.21 g (75.6%).

31.08 (- $CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ ppm $(-NCH_2CH_2CH_2C(=O)-),$ 42.47 ppm $CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 46.98 $(-NCH_2CH_2CH_2C(=O)-),$ 64.30 (ppm ppm $CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b)$, 128.36 ppm (- $CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b)$, 130.97 (ppm $CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 166.32 ppm $(-CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b)$, 175.10 ppm (- $NCH_2CH_2CH_2C(=O)-).$

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 226.1365, [M+H]⁺_{obs.} = 226.1445.

EA_{obs.} (EA_{calc.}): H; 8.34% (8.50%), C; 63.91% (63.98%), N; 6.19% (6.22%).

Synthesis of N-(6-acryloyloxyhexyl)-2-pyrrolidone

This molecule was synthesized by the same method with NAMeP.

b.p.: 121-123 °C (0.5 mmHg).

Yield: 10.25 g (79.0%).

¹H NMR [400 MHz, chloroform-*d*, TMS] (Figure S10A): δ = 1.34 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, *m*, 4H), 1.53 ppm $(-CH_2CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b,$ quin, 2H), 1.68 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, quin, 2H), 2.02 ppm (-NCH₂CH₂CH₂C(=O)-, quin, 2H), 2.38 ppm (-NCH₂CH₂CH₂C(=O)-, t, 2H), 3.28 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, t, 2H), 3.38 ppm (-NCH₂CH₂CH₂C(=O)-, t, 2H), 4.14 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, t, 2H), 5.82 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b, d, 1H), 6.12 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CCH₂OC(=O)CHCH_aH_b, dd, 1H), 6.41 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b, d, 1H). ¹³C NMR [75 MHz, chloroform-d, TMS] (Figure S10B): δ = 18.01 ppm (-NCH₂CH₂CH₂C(=O)-), 25.68 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b), 26.45 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 27.23 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 28.49 ppm (-42.37 $CH_2CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 31.06 ppm $(-NCH_2CH_2CH_2C(=O)-),$ ppm (- $CH_2CH_2CH_2CH_2CH_2CH_2OC(=O)CHCH_aH_b),$ 47.10 64.52 (ppm $(-NCH_2CH_2CH_2C(=O)-),$ ppm CH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b), 128.62 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)CHCH_aH_b), 130.55 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 166.22 ppm (-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CC(=O)CHCH_aH_b), 174.79 ppm (- $NCH_2CH_2CH_2C(=O)-).$

HRMS (FAB MASS, m/z): [M+H]⁺_{theo.} = 240.1512, [M+H]⁺_{obs.} = 240.1583. EA_{obs.} (EA_{calc.}): H; 8.84% (8.85%), C; 65.28% (65.25%), N; 5.84% (5.85%).

General Method for Synthesis of PNARPs by Radical Polymerization

In a typical synthesis of PNARPs, NARPs (20 mmol) and AIBN (1/200 equiv.) were dissolved in DMF. The solutions were poured into a two-neck flask at a constant monomer concentration of 2 M, and deoxygenated by bubbling dry Ar for 30 min. Then, the reaction mixtures were placed in a preheated oil bath at 60 °C. After polymerization for 40 min, the mixtures were cooled to room temperature and poured into a large excess of diethyl ether to precipitate PNARPs. The resultant polymers were further purified by reprecipitation method from the acetone/diethyl ether system. The solvents were removed in *vacuo* to obtain the pure polymers as a

white solid (PNAMeP) or colorless viscous liquid (PNAEtP, PNAPrP, PNABuP, PNAPnP, and PNAHxP). The chemical structure of the polymers was characterized by ¹H NMR spectroscopy. The values of M_n and D were estimated from SEC analysis. The T_g s were determined by DSC measurement.

¹H NMR [400 MHz, chloroform-d, TMS]: **PNAMeP** (Figure S11): δ = 1.38-2.57 ppm (methylene of main chain, 2H; methine of main chain, 1H; -NCH₂CH₂C(=O), 2H; -NCH₂CH₂C(=O), 2H), 3.48-3.65 ppm (-NCH₂CH₂CH₂C(=O), 2H), 5.24-5.44 ppm (>NCH₂OC(=O)-, 2H). **PNAEtP** (Figure S12): δ = 1.35-2.55 ppm (methylene of main chain, 2H; 2H; >NCH₂CH₂OC(=O)-, 2H), 4.07-4.26 ppm (>NCH₂CH₂OC(=O)-, 2H). **PNAPrP** (Figure S13): δ = 1.36-2.51 ppm (methylene of main chain, 2H; methine of main chain, 1H; >NCH₂CH₂CH₂OC(=O)-, 2H; -NCH₂CH₂CH₂CC(=O), 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.22-3.54 ppm (>NCH₂CH₂CH₂OC(=O)-, 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.91-4.18 ppm (>NCH₂CH₂CH₂OC(=O)-, 2H). **PNABuP** (Figure S14): δ = 1.34-2.49 ppm (methylene of main chain, 2H; methine of main chain, 1H; >N CH₂CH₂CH₂CC(=O)-, 2H; >NCH₂CH₂CH₂CH₂CC(=O)-, 2H; -NCH₂CH₂CH₂CC(=O), 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.22-3.51 ppm (>NCH₂CH₂CH₂CH₂CC(=O)-, 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.91-4.59 ppm $(>NCH_2CH_2CH_2CH_2OC(=O)-, 2H)$. **PNAPnP** (Figure S15): $\delta = 1.24-2.47$ ppm (methylene of main chain, 2H; methine $>NCH_2CH_2CH_2CH_2CH_2OC(=0)-,$ 2H; of main chain, 1H; >NCH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H; >NCH₂CH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H; -NCH₂CH₂CH₂C(=O), 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.24-3.33 ppm ppm $(-NCH_2CH_2CH_2C(=O)),$ $(>NCH_2CH_2CH_2CH_2CH_2OC(=O)-,$ 2H), 3.36-3.45 2H), 3.90-4.11 ppm (>NCH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H). **PNAHxP** (Figure S16): δ = 1.22-2.50 ppm (methylene of main chain, 2H; methine of main chain, 1H; >NCH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H; >NCH₂CH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H; >NCH₂CH₂CH₂CH₂CH₂CH₂CCH₂OC(=O)-, 2H; >NCH₂CH₂CH₂CH₂CH₂CH₂OC(=O)-, 2H; -NCH₂CH₂CH₂C(=O), 2H; -NCH₂CH₂CH₂C(=O), 2H), 3.21-3.32 ppm (>NCH₂CH₂CH₂CH₂CH₂CH₂CC(=O)-, 2H), 3.34-3.44 ppm (-NCH₂CH₂CH₂C(=O), 2H), 3.88-4.12 ppm (>NCH₂CH₂CH₂CH₂CH₂CH₂CC(=O)-, 2H). The values of M_n , D, and T_g were shown in Table 1.

General method for synthesis of copolymers (P(NAR₁P_x-co-NAR₂P_{100-x})) by radical polymerization

In a typical synthesis of P(NAR₁P_x-*co*-NAR₂P_{100-x}), NARPs (total of 6 mmol), whose feed composition is shown in Table 2 and S1, with AIBN (1/200 equiv.) were dissolved in DMF. The solutions were poured into a two-neck flask at a constant monomer concentration of 2 M, and deoxygenated by bubbling dry Ar for 30 min. Then, the reaction mixtures were placed in a preheated oil bath at 60 °C. After polymerization for 40 min, the mixtures were cooled to room temperature and poured into a large excess of diethyl ether to precipitate P(NAR₁P_x-*co*-NAR₂P_{100-x})s. The resultant copolymers were further purified by reprecipitation method from the methanol/diethyl ether system. The solvents were removed in *vacuo* to obtain the pure copolymers as a colorless viscous liquid. The chemical structure and component of the copolymers was characterized by ¹H NMR spectroscopy. The values of M_n and D were estimated from SEC analysis. The T_g s were determined by DSC measurement.

¹H NMR [400 MHz, chloroform-d, TMS] (Figure S19-S22, S24-S37): P(NAMeP_x-co-NAPrP_{100-x}) (x means composition of NAMeP unit): δ = 1.38-2.53 ppm (methylene of main chain , 2(x/100) + 2((100-x)/100)H; methine of main chain, (x/100) + ((100-x)/100)H; -NCH₂CH₂C(=O) of PNAMeP, 2(x/100)H; -NCH₂CH₂C(=O) of PNAMeP, 2(x/100)H); >NCH₂CH₂CH₂OC(=O)- of PNAPrP, 2((100-x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAPrP, 2((100x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAPrP, 2((100-x)/100)H), 3.22-3.49 ppm (>NCH₂CH₂CH₂OC(=O)- of PNAPrP, 2((100-x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAPrP, 2((100-x)/100)H), 3.50-3.60 ppm (-NCH₂CH₂CH₂C(=O) of PNAMeP, 2(x/100)H), 3.95-4.16 ppm (>NCH₂CH₂CH₂OC(=O)- of PNAPrP, 2((100-x)/100)H), 5.21-5.41 ppm $(>NCH_2OC(=O)- of PNAMeP, 2(x/100)H)$. **P(NAEtP_x-co-NAHxP_{100-x})** (x means composition of NAEtP unit): $\delta = 1.22-$ 2.49 ppm (methylene of main chain , 2(x/100) + 2((100-x)/100)H; methine of main chain, (x/100) + ((100-x)/100)H; methine (x/100-x)/100) + (((1 x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAEtP, 2(x/100)/H; -NCH₂CH₂C(=O) of PNAEtP, 2(x/100)H; 2((100-x)/100)H; >NCH₂CH₂CH₂CH₂CH₂CH₂OC(=O)of PNAHxP, 2((100-x)/100)H; >NCH₂CH₂CH₂CH₂CH₂CH₂CH₂OC(=O)- of PNAHxP, 2((100-x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAHxP, 2((100-x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAHxP, 2((100-x)/100)H), 3.21-3.32 ppm (>NCH₂CH₂CH₂CH₂CH₂CH₂CC(=O)- of PNAHxP, 2((100-x)/100)H), 3.34-3.44 ppm (-NCH₂CH₂CH₂C(=O) of PNAHxP, 2((100-x)/100)H), 3.45-3.63 ppm (-NCH₂CH₂CH₂C(=O) of PNAEtP, 2(x/100)H; >NCH₂CH₂OC(=O)- of PNAEtP, 2(x/100)H), 3.88-4.12 ppm (>NCH₂CH₂CH₂CH₂CH₂CH₂CC(=O)- of PNAHxP, 2((100-x)/100)H), 4.09-4.25 ppm (>NCH₂CH₂OC(=O)- of PNAEtP,). **P(NAPrP_x-co-NABuP_{100-x})** (x means composition of NAPrP unit): $\delta = 1.38-2.49$ ppm (methylene of main chain , 2(x/100) + 2((100-x)/100)H; methine of main chain, (x/100) + ((100-x)/100)H; $>NCH_2CH_2CH_2OC(=0)$ - of PNAPrP, 2(x/100)H; -NCH₂CH₂CH₂C(=O) of PNAPrP, 2(x/100)H; -NCH₂CH₂CH₂C(=O) of PNAPrP, 2(x/100)H), 3.22-3.54 ppm of $(>NCH_2CH_2CH_2OC(=O)$ of PNAPrP, 2(x/100)H; $-NCH_2CH_2CH_2C(=O)$ PNAPrP, 2(x/100)H;>NCH₂CH₂CH₂CH₂CC(=O)- of PNABuP, 2((100-x)/100)H; -NCH₂CH₂CH₂C(=O) of PNABuP, 2((100-x)/100)H), 3.94-4.19 ppm (>NCH₂CH₂CH₂OC(=O)- of PNAPrP, 2(x/100)H); >NCH₂CH₂CH₂CH₂OC(=O)- of PNABuP, 2((100-x)/100)H). **P(NABuP_x-co-NAPnP_{100-x})** (x means composition of NABuP unit): $\delta = 1.27-2.46$ ppm (methylene of main chain , 2(x/100) + 2((100-x)/100)H; methine of main chain, (x/100) + ((100-x)/100)H; >N CH₂CH₂CH₂CH₂OC(=O)- of PNABuP, 2(x/100)H; >NCH₂CH₂CH₂CH₂CC(=O)- of PNABuP, 2(x/100)H; -NCH₂CH₂CH₂C(=O) of PNABuP, 2(x/100)H; -NCH₂CH₂CH₂C(=O) of PNABuP, 2(x/100)H; >NCH₂CH₂CH₂CH₂CH₂OC(=O)- of PNAPnP, 2((100-x)/100)H; x)/100)H; -NCH₂CH₂CH₂C(=O) of PNAPnP, 2((100-x)/100)H; -NCH₂CH₂C(=O) of PNAPnP, 2((100-x)/100)H), 3.22-3.51 ppm (>NCH₂CH₂CH₂CH₂OC(=O)- of PNABuP, 2(x/100)H; -NCH₂CH₂CH₂C(=O) of PNABuP, 2(x/100)H; >NCH₂CH₂CH₂CH₂CH₂CH₂CC(=O)- of PNAPnP, 2((100-x)/100)H), 3.36-3.45 ppm (-NCH₂CH₂CH₂CH₂C(=O) of PNAPnP, 2((100-x)/100)H),3.91-4.59 $(>NCH_2CH_2CH_2CH_2OC(=O)-$ PNABuP, 2(x/100)H;ppm of (>NCH₂CH₂CH₂CH₂CH₂CC(=O)- of PNAPnP, 2((100-x)/100)H).

The values of M_n , D, and T_g were shown in Table XX.

Calculation of log P value

Magenau and coworkers have demonstrated that log P/Connolly molecular surface area (SA) values can provide the log P values for predicting and assessing hydrophobicity of polymers.^{S2} Therefore, the log P/SA values of PNARPs was computed for predicting polymer hydrophobicity/hydrophobicity balance according to previous reports. The log P values and Connolly molecular surface area (SA) (probe radius = 1.4 Å) of PNARPs decamers were determined with Chem3D Pro (ver. 19.1) (CambridgeSoft Corp., MA, USA) after MM2 minimization of the models. PNARPs showed the saturation of log P/SA values around decamers. Therefore, log P values of PNARPs was represented as that of the decamers.

References

S1 S. Nishimura, T. Ueda, D. Murakami and M. Tanaka, Org. Mater., 2021, 3, 214-220.

S2 A. J. D. Magenau, J. A. Richards, M. A. Pasquinelli, D. A. Savin and R. T. Mathers, *Macromolecules*, 2015, **48**, 7230-7236.

Figure S1. (A) ¹H and (B) ¹³C NMR spectra of NHMeP in chloroform-*d* at 25 °C.

Figure S2. (A) ¹H and (B) ¹³C NMR spectra of NHBuP in chloroform-*d* at 25 °C.

Figure S3. (A) ¹H and (B) ¹³C NMR spectra of NHPnP in chloroform-*d* at 25 °C.

Figure S4. (A) ¹H and (B) ¹³C NMR spectra of NHHxP in chloroform-*d* at 25 °C.

Figure S5. (A) ¹H and (B) ¹³C NMR spectra of NAMeP in chloroform-*d* at 25 °C.

Figure S6. (A) ¹H and (B) ¹³C NMR spectra of NAEtP in chloroform-*d* at 25 °C.

Figure S7. (A) ¹H and (B) ¹³C NMR spectra of NAPrP in chloroform-*d* at 25 °C.

Figure S8. (A) ¹H and (B) ¹³C NMR spectra of NABuP in chloroform-*d* at 25 °C.

Figure S9. (A) ¹H and (B) ¹³C NMR spectra of NAPnP in chloroform-*d* at 25 °C.

Figure S10. (A) ¹H and (B) ¹³C NMR spectra of NAHxP in chloroform-*d* at 25 °C.

Figure S11. (A) ¹H NMR spectrum of PNAMeP in chloroform-*d* at 25 °C.

Figure S12. (A) ¹H NMR spectrum of PNAEtP in chloroform-*d* at 25 °C.

Figure S13. (A) ¹H NMR spectrum of PNAPrP in chloroform-*d* at 25 °C.

Figure S14. (A) ¹H NMR spectrum of PNABuP in chloroform-*d* at 25 °C.

Figure S15. (A) ¹H NMR spectrum of PNAPnP in chloroform-*d* at 25 °C.

Figure S16. (A) ¹H NMR spectrum of PNAHxP in chloroform-*d* at 25 °C.

Figure S17. DSC thermograms of PNARPs under dry condition at a heating rate of 5 °C min⁻¹.

Figure S18. Photographs of (A) rhodamine B and (B) proteins with PNABuP aqueous solution (1 wt%) below and above LCST. The solutions with rhodamine B were excited by UV light (365 nm). The proteins were used a protein molecular weight marker (broad) purchased from Takara Bio Inc. (Japan).

Figure S19. (A) ¹H NMR spectrum of PNAMeP₅₀-*co*-PNAPrP₅₀ in chloroform-*d* at 25 °C.

Figure S20. (A) ¹H NMR spectrum of PNAPrP₅₀-*co*-PNABuP₅₀ in chloroform-*d* at 25 °C.

Figure S21. (A) ¹H NMR spectrum of PNABuP₅₀-*co*-PNAPnP₅₀ in chloroform-*d* at 25 °C.

Figure S22. (A) ¹H NMR spectrum of PNAEtP₅₀-*co*-PNAHxP₅₀ in chloroform-*d* at 25 °C.

Figure S23. Thermo-responsive behavior of $PNAR_1P_{50}$ -*co*- $PNAR_2P_{50}$ in water at 1.0 wt% of polymer concentration. Hating rate: 1 °C min⁻¹.

Figure S24. ¹H NMR spectrum of PNAEtP₁-co-PNAHxP₉₉ in chloroform-d at 25 °C.

]

Figure S25. ¹H NMR spectrum of PNAEtP₃-*co*-PNAHxP₉₇ in chloroform-*d* at 25 °C.

Figure S26. ¹H NMR spectrum of PNAEtP₅-co-PNAHxP₉₅ in chloroform-d at 25 °C.

Figure S27. ¹H NMR spectrum of PNAEtP₁₀-*co*-PNAHxP₉₀ in chloroform-*d* at 25 °C.

Figure S28. ¹H NMR spectrum of PNAEtP₂₀-*co*-PNAHxP₈₀ in chloroform-*d* at 25 °C.

Figure S29. ¹H NMR spectrum of PNAEtP₃₀-*co*-PNAHxP₇₀ in chloroform-*d* at 25 °C.

Figure S30. ¹H NMR spectrum of PNAEtP₄₀-*co*-PNAHxP₆₀ in chloroform-*d* at 25 °C.

Figure S31. ¹H NMR spectrum of PNAEtP₆₀-*co*-PNAHxP₄₀ in chloroform-*d* at 25 °C.

Figure S33. ¹H NMR spectrum of PNAEtP₈₀-*co*-PNAHxP₂₀ in chloroform-*d* at 25 °C.

Figure S34. ¹H NMR spectrum of PNAEtP₉₀-*co*-PNAHxP₁₀ in chloroform-*d* at 25 °C.

Figure S37. ¹H NMR spectrum of PNAEtP₉₉-*co*-PNAHxP₁ in chloroform-*d* at 25 °C.

Figure S38. DSC thermograms of PNARPs under wet condition at a heating rate of 5 °C min⁻¹. The water contents for the polymers' samples were 41.3 wt% (PNAMeP), 39.2 wt% (PNAEtP), 38.8 wt% (PNAPrP), 39.6 wt% (PNABuP), 38.5 wt% (PNAPnP), and 39.0 wt% (PNAHxP).

Figure S39. Hemolysis test of the (co)polymers at 20 °C. Red asterisk means the polymers having LCST below 37 °C.

Figure S40. ¹H NMR spectra of PNAMeP in (A) deuterated-PBS and (B) deuterated-water containing 137 mM of sodium chloride and 2.7 mM potassium chloride at 37 °C. These spectra were collected after dissolution for 0, 3,

Figure S41. Viability of RAW264.7 after mixing with PNAMeP for 0, 3, 6, and 24 h. The cell density is equal to 1.0×10^4 cell well⁻¹ (96 well plate). **p < 0.01, ****p < 0.001, N. S. means not significant.

 Table S1.
 Summary of the cloud point of PNABuP aqueous solutions with various polymer

 concentration.

Polymer concentration (%)	Cloud point, <i>T</i> _c (°C)
0.10	35.5
0.30	32.3
0.50	30.9
1.0	29.7
2.0	29.8
3.0	30.5
5.0	32.1
10.0	33.4
20.0	36.4
40.0	40.9

P(NAR P	Feed compositio	nposition		NAR ₁ P content (%)					
- <i>co</i> - NAR ₂ P _{100-x})	NAR ₁ P (mmol)	NAR ₂ P (mmol)	Conv. ^{a)} (%)	Theoretical	Actual ^{a)}	[−] <i>M</i> n ^{b)} (g mol ⁻¹)	Ð ^{b)} (M _w /M _n)	T _{g, dry} c) (°C)	LCST ^{d)} (°C)
P(NAMeP ₅₀ - <i>co</i> - NAPrP ₅₀)	3.00	3.00	88	50.0	50.0	41,500	1.91	12.3	47.9
P(NAPrP ₅₀ - <i>co</i> - NABuP ₅₀)	3.00	3.00	91	50.0	49.8	43,100	1.92	-11.3	42.2
P(NABuP ₅₀ <i>-co-</i> NAPnP ₅₀)	3.00	3.00	84	50.0	50.2	47,000	2.08	-21.6	13.1
P(NAEtP ₅₀ <i>-co-</i> NAHxP ₅₀)	3.00	3.00	86	50.0	50.0	41,300	1.89	-15.6	18.3

Table S2. Summary of the copolymerization of NARPs in this study.

a) The conversion of monomers and composition of resultant polymers were evaluated by ¹H NMR analysis.

b) The number-average molecular weights and polydispersity indexes were calculated by SEC analysis (PMMA

std.) in DMF (LiBr 10 mM) at 40 °C.

c) The glass transition temperatures were determined by DSC analysis (5 °C min⁻¹).

d) The LCSTs were determined by measuring transmittance at 600 nm (1 °C min⁻¹).