Influence of Solvent on RAFT-mediated Polymerization of Benzyl Methacrylate (BzMA) and How to Overcome the Thermodynamic/Kinetic Limitation of Morphology Evolution during Polymerization-Induced Self-Assembly

Cheng-Lin Yang,^a Feng Zhong^{*,b} Cai-Yuan Pan,^a Wen-Jian Zhang,^a and Chun-Yan Hong^{*,a}

^aCAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China

^bSchool of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China

^cInstitute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China.

Email: 97062@ahu.edu.cn

Email: hongcy@ustc.edu.cn

Synthesis of the Macro-RAFT Agent PEG₄₅-CPADB

PEG₄₅-OH (3.8 g, 2.0 mmol), CPADB (2.23 g, 8 mmol) and DMAP(98 mg, 0.8 mmol) were dissolved into 50 mL of dichloromethane (CH₂Cl₂) and then the solution was stirred in a low temperature reactor at 0 °C for 0.5 h. DCC(1.65 g, 8 mmol) was dissolved in 10 ml of dichloromethane, and then slowly dripped into the above cold solution. The reaction system was stirred for three days in the low temperature reactor at 0 °C. After removing the insoluble matter by filtration, most of the solvent was removed by a rotary evaporator. The concentrated solution was dropwise added into a large amount of cold diethyl ether to afford some pink precipitates. The precipitates were collected by filtration and then dissolved into the CH₂Cl₂ again. The procedure of precipitation was repeated three times, and the product was dried in vacuum to obtain a pink solid powder, which was characterized by ¹H NMR and GPC.

Figure S1. (A) The ¹H NMR spectrum and (B) GPC trace of the macro-CTA PEG₉₀-CPADB.

Figure S2. Transmittance versus wavelength plots recorded under different concentrations of BzMA at 70 °C in different ethanol/water mixture: (A) ethanol/water (7/3, w/w); (B) ethanol/water (5/5, w/w); (C) ethanol/water (3/7, w/w). The transmittance versus concentration of BzMA plots at $\lambda = 700$ nm in different ethanol/water mixture are summarized in Figure 2. The transmittance at $\lambda = 700$ nm was chosen to avoid the absorption bands of the dithiobenzoate chain-ends at approximate 300 and 507 nm.

Figure S3. The images of the initial reaction mixtures (before polymerization) of PEG_{90} -CPADB-mediataed RAFT polymerization of BzMA (BzMA/PEG_{90}-CPADB = 120) at 20 % solid content in different solvents, Sample 1: ethanol/water (7/3, w/w); Sample 2: ethanol/water (5/5, w/w) and Sample 3: ethanol/water (3/7, w/w).

Figure S4. ¹H NMR spectra of the reaction mixture (RAFT polymerization of BzMA targeted to PEG_{90} -*b*-PBzMA₁₂₀ at different polymerization times. 2,2'- bipyridine was used as an internal standard to calculate the conversion of the monomer BzMA) in different solvents, (A) ethanol/water (7/3, w/w); (B) ethanol/water (5/5, w/w); (C) ethanol/water (3/7, w/w). 50 µL of the reaction mixture was taken out for ¹H NMR (DMSO-d₆) characterization at specific time of polymerization. The monomer BzMA conversions at different polymerization time were calculated according to the following equation: Conversion (%)_{BzMA} = (1 - a_t/a₀) × 100%

The integral value of vinyl protons of BzMA (a) at 0 h and t h of polymerization is denoted as a_0 and a_t , respectively.

Table S1. Summary of results obtained by RAFT polymerization of BzMA in different solvents (varying mass ratio of ethanol/water), monomer conversion, M_n and M_w/M_n of the resultant polymers, morphology of the resultant nano-objects.

Samples	Solvent Composition	Conv. of BzMA ^a (%)	$M_{ m n,NMR}{}^b$ (kg/mol)	Actual DP _{PBzMA} ^b	M _{n,GPC} ^c (kg∕mol)	$M_{ m w}/M_{ m n}{}^c$	Morphology ^d
PEG ₉₀ -b-PBzMA ₆₀		99	14.6	59	14.4	1.11	S
PEG ₉₀ -b-PBzMA ₈₀	Ethanol/Water	99	18.4	80	17.7	1.12	S
PEG ₉₀ -b-PBzMA ₁₀₀	(7/3,w/w)	99	21.9	99	21.5	1.13	S
PEG ₉₀ -b-PBzMA ₁₂₀		99	25.4	119	24.1	1.13	S
PEG ₉₀ - <i>b</i> -PBzMA ₆₀		100	14.8	60	14.9	1.14	S+W
PEG ₉₀ -b-PBzMA ₈₀	Ethanol/Water	100	18.3	79	18.0	1.14	W+V
PEG ₉₀ -b-PBzMA ₁₀₀	(5/5,w/w)	100	21.9	100	21.4	1.20	V
PEG ₉₀ -b-PBzMA ₁₂₀		100	25.1	118	24.9	1.15	V
PEG ₉₀ -b-PBzMA ₆₀		100	14.8	60	15.2	1.22	S
PEG ₉₀ -b-PBzMA ₈₀	Ethanol/Water	100	18.4	80	18.6	1.24	S
PEG ₉₀ -b-PBzMA ₁₀₀	(3/7,w/w)	100	21.9	100	20.3	1.28	S
PEG ₉₀ -b-PBzMA ₁₂₀		100	25.3	119	22.5	1.31	S

^{*a*} Monomer conversions were determined by ¹H NMR of the reacted solution;

 $^{b}M_{n,NMR}$ and Actual DP_{PBzMA} were determined by ¹H NMR of the resultant polymer as shown in Figure S5-S7;

^{*c*} $M_{n,GPC}$ and M_w/M_n were determined by GPC;

^d Morphologies of the nano-objects were identified by TEM, wherein S represents spherical micelles, W is worm-like micelles, V represents vesicles.

Figure S5. ¹H NMR spectra of the block copolymers (A) PEG₉₀-*b*-PBzMA₆₀, (B) PEG₉₀-*b*-PBzMA₈₀, (C) PEG₉₀-*b*-PBzMA₁₀₀, and (D) PEG₉₀-*b*-PBzMA₁₂₀ obtained by RAFT dispersion polymerization of BzMA in ethanol/water (7/3, w/w) with varying BzMA/PEG₉₀-CPADB (60~120).

Figure S6. ¹H NMR spectra of the block copolymers (A) PEG₉₀-*b*-PBzMA₆₀, (B) PEG₉₀-*b*-PBzMA₈₀, (C) PEG₉₀-*b*-PBzMA₁₀₀, and (D) PEG₉₀-*b*-PBzMA₁₂₀ obtained by RAFT dispersion+emulsion polymerization of BzMA in ethanol/water (5/5, w/w) with varying BzMA/PEG₉₀-CPADB (60~120).

Figure S7. ¹H NMR spectra of the block copolymers (A) PEG₉₀-*b*-PBzMA₆₀, (B) PEG₉₀-*b*-PBzMA₈₀, (C) PEG₉₀-*b*-PBzMA₁₀₀, and (D) PEG₉₀-*b*-PBzMA₁₂₀ obtained by RAFT emulsion polymerization of BzMA in ethanol/water (3/7, w/w) with varying BzMA/PEG₉₀-CPADB (60~120).

Figure S8. GPC curves of the block copolymers PEG_{90} -*b*-PBzMA_{60~120} obtained by RAFT polymerization of BzMA with varying BzMA/PEG₉₀-CPADB (60~120) in different solvents, (A) ethanol/water (7/3, w/w); (B) ethanol/water (5/5, w/w); (C) ethanol/water (3/7, w/w).

Figure S9. (A) The ¹H NMR spectrum and (B) GPC trace of the macro-CTA PEG₄₅-CPADB.

Table S2. Summary of results obtained by RAFT dispersion polymerization of BzMA, monomer conversion,

Samples ^a	Solvent composition	Conv. of monomer ^a (%)	$M_{\mathrm{n},NMR}^{b}$ (kg/mol)	Actual units of BzMA ^b	Actual units of HPMA ^b	$M_{ m n}{}_{,GPC}{}^c$ (kg/mol)	$M_{ m w}/M_{ m n}{}^c$	Morphology ^d
PEG ₄₅ - <i>b</i> -PBzMA ₆₀	Ethanol/Water (7/3,w/w)	100	12.7	60	-	12.1	1.09	V
PEG ₄₅ -b-PBzMA ₁₂₀		99	22.9	118	-	21.7	1.10	V
PEG ₄₅ -b-PBzMA ₆₀	Ethanol/Water (3/7,w/w)	100	12.7	60	-	12.5	1.23	Р
PEG ₄₅ -b-PBzMA ₁₂₀		100	22.5	115	-	22.7	1.36	Р
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₆₀	Ethanol/Water (7/3,w/w)	95	14.0	46	12	15.1	1.11	S
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₈₀		96	17.2	61	15	18.4	1.10	S
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₁₀₀		94	20.1	75	18	20.8	1.12	S
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₁₂₀		95	23.9	92	23	24.6	1.11	S
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₆₀	Ethanol/Water (3/7,w/w)	100	14.4	48	12	15.6	1.14	W
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₈₀		99	17.8	64	16	18.9	1.09	V
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₁₀₀		99	21.2	80	20	23.4	1.17	V
PEG ₉₀ - <i>b</i> - P(BzMA _{0.8} - <i>co</i> - HPMA _{0.2}) ₁₂₀		99	24.6	96	24	27.4	1.15	V

 M_n and M_w/M_n of the resultant polymers, morphology of the resultant nano-objects.

^{*a*} The monomer conversions were calculated according to the ¹H NMR spectra of the reaction media.

^{*b*} The $M_{n,NMR}$ of the block polymer, actual units of BzMA and HPMA in the resultant block polymers were calculated based on the ¹H NMR spectra as shown in Figure S10, S11, S14 and S16.

^{*c*} The M_n and M_w/M_n of the resultant block polymer were determined by GPC.

^d Morphologies of the nano-objects were identified by TEM, wherein S represents spherical micelles, W is worm-like micelles, and V denotes vesicles.

Figure S10. ¹H NMR spectra of the block copolymers (A) PEG_{45} -*b*-PBzMA₆₀ and (B) PEG_{45} -*b*-PBzMA₁₂₀ obtained by PEG_{45} -CPADB-mediated RAFT dispersion polymerization of BzMA in ethanol/water (7/3, w/w) with varying BzMA/PEG₄₅-CPADB (60 and 120).

Figure S11. ¹H NMR spectra of the block copolymers (A) PEG_{45} -*b*-PBzMA₆₀ and (B) PEG_{45} -*b*-PBzMA₁₂₀ obtained by PEG_{45} -CPADB-mediated RAFT dispersion polymerization of BzMA in ethanol/water (3/7, w/w) with varying BzMA/PEG₄₅-CPADB (60 and 120).

Figure S12. GPC curves of the block copolymers PEG_{45} -*b*-PBzMA₆₀ and PEG_{45} -*b*-PBzMA₁₂₀ obtained by RAFT polymerization of BzMA with varying BzMA/PEG₄₅-CPADB (60 and 120) in (A) ethanol/water (7/3, w/w); and (B) ethanol/water (3/7, w/w).

Figure S13. Images of PEG_{45} -*b*-PBzMA_x precipitations obtained by RAFT emulsion polymerization of BzMA in ethanol/water (3/7, w/w) with varying feed molar ratio of BzMA/PEG₄₅-CPADB, (A) BzMA/PEG₄₅-CPADB = 60 and (B) BzMA/PEG₄₅-CPADB = 120.

Figure S14. ¹H NMR spectra of the block copolymers (A) PEG₉₀-*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})₆₀, (B) PEG₉₀-*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})₈₀, (C) PEG₉₀-*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})₁₀₀, and (D) PEG₉₀-*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})₁₂₀ obtained by RAFT emulsion copolymerization of BzMA and HPMA in ethanol/water (3/7, w/w) with varying (BzMA+HPMA)/PEG₉₀-CPADB (60~120).

A

Figure S15. GPC curves of the block copolymers PEG_{90} -*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})_{60~120} obtained by RAFT copolymerization of BzMA and HPMA with varying (BzMA+HPMA)/PEG₄₅-CPADB (60~120) in different solvents, (A) ethanol/water (7/3, w/w); (B) ethanol/water (3/7, w/w).

Figure S16. ¹H NMR spectra of the block copolymers (A) PEG_{90} -*b*-P($BzMA_{0.8}$ -*co*-HPMA_{0.2})_{60}, (B) PEG_{90} -*b*-P($BzMA_{0.8}$ -*co*-HPMA_{0.2})_{80}, (C) PEG_{90} -*b*-P($BzMA_{0.8}$ -*co*-HPMA_{0.2})_{100}, and (D) PEG_{90} -*b*-P($BzMA_{0.8}$ -*co*-HPMA_{0.2})_{120} obtained by RAFT dispersion copolymerization of BzMA and HPMA in ethanol/water (7/3, w/w) with varying (BzMA+HPMA)/PEG_{90}-CPADB (60~120).

Figure S17. TEM images of PEG_{90} -*b*-P(BzMA_{0.8}-*co*-HPMA_{0.2})_x nano-objects obtained by RAFT dispersion copolymerization of BzMA and HPMA in ethanol/water (7/3, w/w) with varying feed molar ratio of (BzMA+HPMA)/PEG₉₀-CPADB, (A) (BzMA+HPMA)/PEG₉₀-CPADB = 60, (B) (BzMA+HPMA)/PEG₉₀-CPADB = 80, (C) (BzMA+HPMA)/PEG₉₀-CPADB = 100 and (D) (BzMA+HPMA)/PEG₉₀-CPADB = 120.