# **Electronic Supplementary Information**

Cyanate ester resins with superior dielectric, mechanical, and flame retardant properties by introducing fluorinated hyperbranched polyaryletherketone

Junliang Zhang<sup>a</sup>, Chaofan Wang<sup>a</sup>, Wenzhuo Feng<sup>b</sup>, Yusheng Tang<sup>a</sup>\*

<sup>a</sup>Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

<sup>b</sup>Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

\*Corresponding author, Email: tys@nwpu.edu.cn (Y. Tang)

#### Materials

Bisphenol A dicyanate ester (BADCy, density 1.171 g/cm<sup>3</sup>, molar mass 278.31 g/mol) resin was received from Jiangsu Wuqiao Resin Factory Co., Ltd. (Jiangsu, China). Bisphenol AF (BPAF, 98%), N-Methylpyrrolidone (NMP,  $\geq$ 99.0%), and benzyl triethyl ammonium chloride (TEBAC, >98.0%) were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). Difluorobenzophenone (DFBP, 99%), phloroglucinol (PG,  $\geq$ 99.0%) and epichlorohydrin (ECH, >99.0%) were all purchased from Macklin Reagent Co., Ltd. (Shanghai, China). Anhydrous potassium carbonate (K<sub>2</sub>CO<sub>3</sub>, >99.0%) and sodium hydroxide (NaOH, >99.0%) were both bought from Komeo Chemical Reagent Co., Ltd. (Tianjin, China). All the chemicals were used as received without further treatment.

#### Methods

<sup>1</sup>H nuclear magnetic resonance (NMR): <sup>1</sup>H NMR spectra of the samples was measured by Bruker Avance 400 MHz NMR instrument (Bruker, Germany) with tetramethylsilane (TMS) containing CDCl<sub>3</sub> as a solvent.

**Fourier transform infrared spectroscopy (FT-IR):** FT-IR spectra of the samples were measured on Bruker Tensor 27 infrared spectrometer (Bruker, Germany) applying potassium bromide (KBr) tablet compression method with the test wave number range of 4000~400 cm<sup>-1</sup>.

Size exclusion chromatography (SEC): The number average molar mass  $(M_n)$ , weight average molar mass  $(M_w)$ , and molar mass distribution (PDI) of the samples were determined using waters1515 (Waters Technology Co., China.) gel permeation chromatography using tetrahydrofuran (THF) as an eluent at a flow rate of 1.0 mL min<sup>-1</sup> (35°C). The column system was calibrated with polystyrene standards (molar mass

ranging from 1100 to 138600 g mol<sup>-1</sup>). Samples were diluted to a concentration about 10 mg mL<sup>-1</sup> and filtered through 0.45  $\mu$ m Nylon syringe filters before injection.

**Differential scanning calorimetry (DSC):** The curing process of *m*-BADCy resin was measured by DSC1 of Mettler-Toledo (Mettler, Switzerland) at heating rates of 5°C/min, 10°C/min, 15°C/min, and 20°C/min under nitrogen atmosphere. The weight of each sample used was 5~10 mg.

Thermal gravimetric analysis (TGA): TGA was performed by STA 449F3 (NETZSCH Co., Germany) thermal gravimetric analyzer. The test temperature range was 40~800°C, and the heating rate was 10°C/min under argon atmosphere. The mass was about 5 mg for each sample.

**Scanning electron microscopy (SEM):** Scanning electron microscopy was performed on a VEGA3-LMH equipment (TESCAN Co., Czech Republic) to analyze the fracture morphology of the resin. The scanning voltage was 20 kV and the sample was sprayed with gold before testing.

**Limit oxygen index (LOI):** The flame retardant properties of sample was tested by ZR-01 type oxygen index tester (Qingdao shanfang Instrument Co., China) according to ASTM D2863/77 standard. The size of the sample was 80 mm×10 mm×4 mm.

**Vertical combustion test (UL-94):** The flame retardant properties of sample was tested by ZR-02 horizontal and vertical combustion tester (Qingdao shanfang Instrument Co., China) according to ASTM D635-77 standard. The size of the sample was 125 mm×13 mm× 3 mm.

**Conical calorimeter:** The flame retardant properties of sample was tested by the conical calorimeter 6810 (VOUCH Co., China) according to ISO 5660-1: 2005 standard. The heat flux was 50 KW/m<sup>2</sup>, and the sample size was 100 mm× 100 mm× 3 mm.

**Dielectric properties:** Dielectric constant ( $\varepsilon$ ) and dielectric loss tangent (tan $\delta$ ) values of the samples were measured using a Novocontrol Technologies Alpha-N high resolution dielectric analyzer (Novocontrol, Germany) at room temperature. The corresponding dimension of the specimens was 15 mm×15 mm×1 mm. A layer of conductive silver paste was coated on the surface of the sample before testing, and then the sample was dried at 40°C for two hours. The  $\varepsilon$  values in the X-band frequency range (8.2~12.4 GHz) of the samples were measured using a MS4644A vector network analyzer (Anritsu Corp., Japan) according to ASTMD5568-08 at room temperature. The corresponding dimension of the specimens was 22.86 mm×10.14 mm×3 mm.

**Mechanical properties:** The flexural strength of the samples was tested by SANS2CMT5105 electronic universal testing machine (Shenzhen New Sansi Co., China) according to ISO 178-2010 standard. The impact strength of the samples was tested by XCJ-40 impact testing machine (Chengde Materials Testing Co., China) according to ISO 179-2010 standard. The sample sizes for flexural and impact strength tests were 80 mm×15 mm×4 mm and 80 mm×10 mm×4, respectively.

$$In\frac{\beta}{T_p^2} = In\frac{AR}{E} - \frac{E}{RT_p}$$
(Equation S1)  
$$lg\beta = lg\frac{AE}{RG(a)} - 2.315 - 0.4567\frac{E}{RT_p}$$
(Equation S2)  
$$\frac{d(ln\beta)}{d(1/T_p)} \approx \frac{-E}{nR}$$
(Equation S3)

Where,  $\beta$  is the heating rate, K·min<sup>-1</sup>;  $T_p$  is peak temperature, K; A is the frequency factor, min<sup>-1</sup>; R is the ideal gas constant, 8.314 J·mol<sup>-1</sup>·K<sup>-1</sup>; E is the apparent activation energy, kJ·mol<sup>-1</sup>; G(a) is a function related to the conversion rate, n is the order of reaction.

$$A = \frac{2\pi d\varepsilon \tan \delta}{\lambda (\delta - \sin^2 \theta)^{1/2}}$$
 (Equation S4)  
$$|\Gamma|^2 = \left[\frac{(\varepsilon - \sin^2 \theta)^{\frac{1}{2}} - \varepsilon \cos \theta}{(\varepsilon - \sin^2 \theta)^{\frac{1}{2}} + \varepsilon \cos \theta}\right]^2$$
  
$$A + |T|^2 + |\Gamma|^2 = 1$$
 (Equation S6)

Where, A represents energy loss; d is the thickness of the wave-permeable material;  $\lambda$  is the wavelength of electromagnetic waves;  $\theta$  represents the incidence angle of electromagnetic wave through the material surface.



Figure S1. DSC curves of unmodified BADCy and *m*-BADCy resins at different

heating rate

Table S1 Peak temperatures of DSC curves of the curing reaction for unmodified

| Samples  | Peak temperature/°C |          |          |          |  |  |
|----------|---------------------|----------|----------|----------|--|--|
| oumpres  | 5ºC/min             | 10°C/min | 15°C/min | 20°C/min |  |  |
| Sample 0 | 289.8               | 303.5    | 316.9    | 323.8    |  |  |

BADCy and *m*-BADCy resins at different heating rate

| Sample 1 | 268.1 | 291.4 | 297.2 | 304.9 |
|----------|-------|-------|-------|-------|
| Sample 2 | 267.2 | 284.8 | 295.9 | 303.8 |
| Sample 3 | 263.3 | 283.8 | 294.5 | 300.6 |
| Sample 4 | 262.0 | 281.0 | 293.6 | 299.2 |
| Sample 5 | 255.7 | 272.1 | 289.0 | 297.5 |
|          |       |       |       |       |



Figure S2. Kinetic curves of the curing reaction for unmodified BADCy and m-

| DIDG '      | 1 1 1        | <b>T7</b> · · | () 1    | ~        | <b>a</b> 5 |             |
|-------------|--------------|---------------|---------|----------|------------|-------------|
| BADCy resin | calculated b | v Kussinger i | (a) and | ()zawa ( | h          | ) method    |
| Dribejiesin | valuation o  | j itibbiliger | (a) and | O Luna ( | ς,         | , 111001100 |

Table S2 Apparent activation energy and reaction order of unmodified BADCy and

| Samples  | Apparent activation | Apparent activation energy/kJ·mol <sup>-1</sup> |      |  |
|----------|---------------------|-------------------------------------------------|------|--|
| Samples  | Kissinger           | Ozawa                                           | n    |  |
| Sample 0 | 105.1               | 109.3                                           | 0.91 |  |
| Sample 1 | 92.7                | 97.2                                            | 0.91 |  |
| Sample 2 | 87.2                | 88.3                                            | 0.90 |  |
| Sample 3 | 80.9                | 85.7                                            | 0.90 |  |
| Sample 4 | 79.9                | 84.8                                            | 0.90 |  |
| Sample 5 | 72.0                | 77.1                                            | 0.89 |  |
|          |                     |                                                 |      |  |

*m*-BADCy resins



**Figure S3.** The dielectric constant ( $\varepsilon$ ) of unmodified BADCy (Sample 0) and *m*-BADCy (Sample 1-5) resins in X-band frequency range (8.2~12.4 GHz).



### **Multimedia component S1**



m-BADCy with 20 wt% HBPAEK.mp4

## Multimedia component S2



Scheme S1. Schematic diagram of polymerization and thermal degradation of

# BADCy resin