Electronic Supplementary Information

An amino acid-derived ABCBA-type antifouling biohybrid with multistimuli responsivity and contaminant removal capability

Devendra Kumar,[†] Sk Arif Mohammad,[†] Anand Kumar,[†] Shivshankar R. Mane^{*,‡} and Sanjib Banerjee^{*,†} [†]Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India [‡]Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India

*Corresponding Author: E-mail: sanjib.banerjee@iitbhilai.ac.in (S. Banerjee)

s.mane@ncl.res.in (S. R. Mane)

Table of contents :

A. Supporting Tables, Schemes and Figures	
Table S1. Characterization data of PDMAEMA-b-PB-b-PDMAEMA	S3
Table S2. Catalyst recyclability study	S3
Scheme S1. Synthesis of CysMAM	S4
Fig. S1 ATR-IR spectra of L-cysteine (a) and CysMAM	
Fig. S2 ¹ H NMR spectrum of CysMAM	S6
Fig. S3 ¹ H NMR spectrum of monohydroxyl-terminated polybutadiene	S6
Fig. S4 ¹ H NMR spectrum of dihydroxyl-terminated polybutadiene	S7
Fig. S5 ¹ H NMR spectrum of dibromo-terminated polybutadiene	S7
Fig. S6 ¹ H NMR spectrum of PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -PDMAEMA ₂₅	S8
Fig. S7 ATR-IR spectra of PB ₂₂ , Br-PB ₂₂ -Br and PDMAEMA ₂₅ -b-PB ₂₂ -b-PDMAEMA	A_{25} and
PCysMAM ₂₅ - <i>b</i> -PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -PDMAEMA ₂₅ - <i>b</i> -PCysMAM ₂₅	S8
Fig. S8 Kinetics study of alloy-mediated RDRP of DMAEMA	S9
Fig. S9 ¹ H NMR spectrum of PCysMAM ₂₅ - <i>b</i> -PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -PDMAEMA ₂₅	- <i>b</i> -
PCysMAM ₂₅	S9
Fig. S10 Size distributions of the PCysMAM ₂₅ - <i>b</i> -PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -PDMAEM	A ₂₅ - <i>b</i> -
PCysMAM ₂₅ pentablock copolymer aggregates by DLS	S10
Fig. S11 Size distributions of the PCysMAM ₂₅ - <i>b</i> -PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -PDMAEM	A ₂₅ - <i>b</i> -
$PCysMAM_{25}$ pentablock copolymer aggregates at pH 9.5 and 1.5 by DLS.	
Fig. S12 Plot of the hydrodynamic diameter (D_h) as a function of temperature f	or an
aqueous solution of PCysMAM ₂₅ -b-PDMAEMA ₂₅ -b-PB ₂₂ -b-PDMAEMA ₂₅ -b-	-
PCysMAM ₂₅ pentablock copolymer.	
B. References	S12

A. Supporting Tables, Schemes and Figures

Entry	Polymer	[DMAEMA] ₀ /	Conv. ^b	$M_{n,theo}^{c}$	$M_{n,NMR}^{\rm d}$	$M_{n,SEC}^{e}$	Đe
		$[Br-PB_{22}-Br]_0$	(%)	(g mol ⁻¹)	(g mol ⁻¹)	(g mol ⁻¹)	
P1	PDMAEMA ₂₅ - <i>b</i> -PB ₂₂ - <i>b</i> -	50: 22	87	10300	9900	10100	1.17
	PDMAEMA ₂₅						
P2	PDMAEMA ₅₀ -b-PB ₂₂ -b-	100: 22	85	22500	21400	22200	1.16
	PDMAEMA ₅₀						
P3	PDMAEMA75-b-PB22-b-	150: 22	88	32900	32100	32600	1.18
	PDMAEMA ₇₅						
P4	PDMAEMA ₁₀₀ -b-PB ₂₂ -b-	200: 22	82	40100	37400	38800	1.17
	PDMAEMA ₁₀₀						

Table S1. Reaction conditions and molecular characterization data of PDMAEMA-*b*-PB-*b*-PDMAEMA triblock copolymers.^a

^aReaction conditions: solvent = THF; catalyst = Ni-Co alloy; ligand = Me₆TREN; temperature = 25 °C; time = 24 h. ^bDetermined gravimetrically based on monomer feed. ^cCalculated using yield as conversion and the following equation: $M_{n,theo} = ([DMAEMA]_0/[Br-PB_{22}-Br]_0 \times yield \times M_{DMAEMA}) + M_{Br-PB22-Br}$, where M_{DMAEMA} (= 157 g mol⁻¹) and $M_{Br-PB22-Br}$ (= 1350 g mol⁻¹) are the molecular weight of DMAEMA and Br-PB₂₂-Br, respectively. ^dDetermined by ¹HNMR (see equation 5 in the Experimental Section for details). ^eObtained from SEC measurements.

Entry	Cycle	Conv. ^b	$M_{n,theo.}^{c}$	$M_{n,SEC}^{\rm d}$	D^{d}
		(%)	$(g mol^{-1})$	$(g mol^{-1})$	
P1	1 st	86	10250	9900	1.17
P2	2^{nd}	86	10250	9800	1.16
P3	3 rd	85	10200	9800	1.17
P4	4 th	84	10100	9700	1.16
P5	5 th	82	9900	9800	1.15

Table S2. Catalyst recyclability study for alloy-mediated RDRP of DMAEMA from Br-PB₂₂-Br macroinitiator.^a

^aReaction conditions: solvent = THF; catalyst = Ni-Co alloy; ligand = Me₆TREN; temperature = 25 °C; time = 24 h. ^bDetermined gravimetrically. ^cCalculated using the following equation: $M_{n,theo} = ([DMAEMA]_0/[Br-PB_{22}-Br]_0 \times yield \times M_{DMAEMA}) + M_{Br-PB22-Br}$, where M_{DMAEMA} (= 157 g mol⁻¹) and $M_{Br-PB22-Br}$ (= 1350 g mol⁻¹) are the molecular weight of DMAEMA and Br-PB₂₂-Br, respectively. ^dObtained from SEC measurements.

Scheme S1 Synthesis of L-cysteine methacrylamide (CysMAM).

Fig. S1 ATR-IR spectra of L-cysteine and CysMAM.

L-Cysteine methacrylamide was prepared by coupling with L-cysteine monomer with methacryloyl chloride. This was confirmed by two characteristic amide I and amide II absorption bands at 1621 and 1485 cm⁻¹, respectively (Fig. S1).¹

Fig. S2 ¹H NMR spectrum of CysMAM. (*) Solvent (D_2O) peak.

Fig. S3 ¹H NMR spectrum of monohydroxyl-terminated polybutadiene polymer. (*) Solvent (CDCl₃) peak.

Fig. S4 ¹H NMR spectrum of dihydroxyl-terminated polybutadiene polymer (PB). (*) Solvent (CDCl₃) peak.

Fig. S5 ¹H NMR spectrum of dibromo-terminated polybutadiene polymer (Br-PB₂₂-Br). (*) Solvent (CDCl₃) peak.

Fig. S6 ¹H NMR spectrum of PDMAEMA₂₅-*b*-PB₂₂-*b*-PDMAEMA₂₅ triblock copolymer (P1, Table S1).

Fig. S7 ATR-IR spectra of PB₂₂ (a), Br-PB₂₂-Br macroinitiator (b), PDMAEMA₂₅-*b*-PB₂₂-*b*-PDMAEMA₂₅(c) and PCysMAM₂₅-*b*-PDMAEMA₂₅-*b*-PDMAEMA₂₅-*b*-PCysMAM₂₅ (d).

Fig. S8 Plot of a) conversion vs. time, $\ln\{[M]_0/[M]\}$ vs. time and b) evolution of M_n and D with increasing monomer conversion for alloy-mediated RDRP of DMAEMA in THF at 25 °C using Br-PB-Br as the macroinitiator. The non-zero value of M_n at zero conversion is because the Br-PB-Br macroinitiator was used in the polymerization.

Fig. S9 ¹H NMR spectrum of PCysMAM₂₅-*b*-PDMAEMA₂₅-*b*-PB₂₂-*b*-PDMAEMA₂₅-*b*-PCysMAM₂₅ pentablock copolymer (P2, Table 1). (*) Solvent (D₂O) peak.

Fig. S10 Size distributions of the PCysMAM₂₅-*b*-PDMAEMA₂₅-*b*-PB₂₂-*b*-PDMAEMA₂₅-*b*-PCysMAM₂₅ pentablock copolymer aggregates by DLS.

Fig. S11 Size distributions of the PCysMAM₂₅-*b*-PDMAEMA₂₅-*b*-PB₂₂-*b*-PDMAEMA₂₅-*b*-PCysMAM₂₅ pentablock copolymer aggregates at pH 9.5 and 1.5 by DLS.

Fig. S12 Plot of the hydrodynamic diameter (D_h) as a function of temperature for an aqueous solution of PCysMAM₂₅-*b*-PDMAEMA₂₅-*b*-PDMAEMA₂₅-*b*-PCysMAM₂₅ pentablock copolymer at pH 7.

B. References.

1. B. B. Prasad, D. Jauhari and M. P. Tiwari, *Biosens. Bioelectron.*, 2014, **59**, 81-88.