Electronic Supplementary Information

Scandium-catalyzed stereoselective block and alternating copolymerization of

diphenylphosphinostyrenes and isoprene

Tingting Fu,^a Lei Jiang,^a Hanyang Sun,^a Zhaomin Hou,^{a,b,c} Fang Guo*^a

^a State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian

University of Technology, Dalian 116012, China

^b Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^c Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198,

Japan

Fig. S1 ¹H-NMR spectrum of a *p*-StPPh₂ homopolymer prepared by(C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-*o*)₂ (Table 1, Run 1).

Fig. S2 ¹H, ¹³C-NMR spectrum of a *p*-StPPh₂ homopolymer prepared by ($C_5Me_4SiMe_3$)Sc(CH₂C₆H₄NMe₂-*o*)₂ (a) (Table 1, Run 1) and AIBN (b) (A procedure for the polymerize of *p*-StPPh₂ by AIBN: AIBN (1.6 mg 10 µmol) in toluene (2 mL) was added under stirring to a mixture of *p*-StPPh₂ (0.58 g, 2.0 mmol) in toluene (2 mL). The polymerization was carried out at 80 °C for 24 h. The resulting mixture was poured into a large amount of methanol to precipitate the polymer product, which was then collected by filtration, washed with methanol, and dried under vacuum at 40 °C to a constant weight.)

Fig. S3 ¹H-NMR spectrum of an IP homopolymer prepared by $(C_5Me_4SiMe_3)Sc(CH_2C_6H_4NMe_2-o)_2$ (Table 1, Run 2).

Fig. S5 ¹H-NMR spectra of *p*-StPPh₂–IP copolymers with different *p*-StPPh₂ content prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂.

Fig. S6 ¹H-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 3).

Fig. S7 ¹H-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 4).

Fig. S8 ¹H-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 5).

Fig. S9 ¹H-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 6).

Fig. S10 ¹H-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 7).

Fig. S11 ³¹P-NMR spectrum of a *p*-StPPh₂–IP copolymer (Table 1, Run 7).

Fig. S12 ¹H-NMR spectra of *o*-StPPh₂–IP copolymers with different *o*-StPPh₂ content prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-*o*)₂.

Fig. S13 ¹H-NMR spectrum of an *o*-StPPh₂–IP copolymer (Table 2, Run 2).

Fig. S14 ¹H-NMR spectrum of an *o*-StPPh₂–IP copolymer (Table 2, Run 3).

Fig. S16 ¹H-NMR spectrum of an *o*-StPPh₂–IP copolymer (Table 2, Run 5).

Fig. S18 ¹³P-NMR spectrum of an *o*-StPPh₂–IP copolymer (Table 2, Run 2).

Fig. S19 DEPT135-¹³C NMR spectrum of a poly(o-StPPh₂-alt-IP) prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂.

Fig. S20 HSQC NMR spectrum of a poly(o-StPPh₂-alt-IP) prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂.

Fig. S21 gCOSY ¹H-¹H NMR spectrum of a poly(*o*-StPPh₂-*alt*-IP) prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-*o*)₂.

Fig. S22 DSC curve of a *p*-StPPh₂ homopolymer prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-*o*)₂.

Fig. S23 DSC curve of an IP homopolymer prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂.

Fig. S24 DSC curves of *p*-StPPh₂-IP block copolymers with different composition.

Fig. S25 DSC curves of *o*-StPPh₂-IP copolymers with different composition.

Fig. S26 GPC curves of *p*-StPPh₂-IP copolymers with RI detection mode using THF as eluent..

Fig. S27 GPC curves of o-StPPh₂-IP copolymers with RI detection mode using THF as eluent.

Fig. S28 GPC curves of *p*-StPPh₂-IP copolymers with RI detection mode using THF (a) and chloroform (b) as eluent.

Fig. S29 GPC curves of *p*-StPPh₂-IP copolymers with RALS (a) and LALS (b) detection mode using THF as eluent.

Fig. S30 GPC curves of p-StPPh₂ homopolymers prepared by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂ and AIBN with RI detection mode using THF as eluent.

Fig. S31 GPC curves of *p*-StPPh₂-IP copolymers with UV detection mode using THF as eluent.

Fig. S33 GPC curves of o-StPPh₂-IP copolymers with RALS (a) and LALS (b) detection mode using THF as eluent.

Fig. S34 GPC curves of *o*-StPPh₂-IP copolymers with UV detection mode using THF as eluent.

Fig. S35 ³¹P-NMR spectra of (a) p-StPPh₂ monomer with (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂/[Ph₃C][B(C₆F₅)₄] (molar ratio 1/1) and (b) p-StPPh₂ monomer only.

Fig. S36 ³¹P-NMR spectra of (a) *o*-StPPh₂ monomer with ($C_5Me_4SiMe_3$)Sc(CH₂C₆H₄NMe₂-*o*)₂/[Ph₃C][B(C₆F₅)₄] (molar ratio 2/1), (b) *o*-StPPh₂ monomer with ($C_5Me_4SiMe_3$)Sc(CH₂C₆H₄NMe₂-*o*)₂/[Ph₃C][B(C₆F₅)₄] (molar ratio 6/1) and (c) *o*-StPPh₂ monomer only.

	+	PPh ₂	SiMe ₃ -Sc -Sc -Sc -Sc -Sc -Sc -Sc -Sc -Sc -Sc	the way the	PPh ₂ PPh ₂		
Pup	Time (min)	Yield (%)	Composition (mol%) ^b		Conversions	Conversions (mol%)	
Run			p-StPPh ₂	IP(1,4/3,4)	<i>p</i> -StPPh ₂	IP	
1	5	15	0	100(30/70)	0	82	
2	10	17	0	100(32/68)	0	92	
3	15	19	0	100(34/66)	0	99	
4	20	21	3	97(34/66)	3	99	
5	25	28	10	90(34/66)	11	99	
6	35	48	27	73(34/66)	36	99	
7	50	78	42	58(34/66)	74	99	
8	60	91	47	53(34/66)	91	99	

Table S1 A kinetics investigation of p-StPPh₂/IP (feed ratio 250/250) copolymerization^a

^{*a*} Conditions: [Sc] (5 μmol), [Ph₃C][B(C₆F₅)₄] (5 μmol), toluene (3 mL), 25 °C. ^{*b*} Determined by ¹H-NMR.

Table S2 A kinetics investigation of o-StPPh₂/IP (feed ratio 250/250) copolymerization^a

$ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ $								
Run	Time (min)	Yield (%)	Composition (mol%) ^b		Conversions (mol%)			
			o-StPPh₂	IP(1,4/3,4)	<i>o</i> -StPPh₂	IP		
1	60	42	51	49(100/0)	42	40		
2	120	66	51	49(100/0)	66	64		
3	240	97	51	49(100/0)	97	94		

^{*a*} Conditions: [Sc] (5 μmol), [Ph₃C][B(C₆F₅)₄] (5 μmol), toluene (3 mL), 25 °C. ^{*b*} Determined by ¹H-NMR.

Table S3 A kinetics investigation of o-StPPh₂/IP (feed ratio 250/375) copolymerization^a

$ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{SiMe_3} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{SiMe_3} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{SiMe_3} \\ & & \\ $							
	Time	Yield	Composition (mol%) ^b		Conversions (mol%)		
Run	(min)	(%)	o-StPPh ₂	IP(1,4/3,4)	o-StPPh ₂	IP	
1	0.2	90	51	49(100/0)	99	65	
2	0.5	94	44	56(81/19)	99	83	
3	1	96	42	58(77/23)	99	93	
4	8	98	38	62(71/29)	99	96	
5	10	98	38	62(71/29)	99	96	

^{*a*} Conditions: [Sc] (5 μmol), [Ph₃C][B(C₆F₅)₄] (5 μmol), toluene (3 mL), 25 °C. ^{*b*} Determined by ¹H-NMR.

Scheme S1 Possible mechanism of the copolymerization of *p*-StPPh₂ and IP by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-*o*)₂.

Scheme S2 Possible mechanism of the alternating copolymerization of o-StPPh₂ and IP by (C₅Me₄SiMe₃)Sc(CH₂C₆H₄NMe₂-o)₂.