Supporting Information

Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by the high electric field

Wenkang Tu,^{1,2,3} Paulina Maksym,^{1,2,4} Kamil Kaminski,^{1,2} Katarzyna Chat,^{1,2} and Karolina Adrjanowicz^{1,2*}

¹ Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland

² Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a,

41-500 Chorzow, Poland

³ College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

⁴ Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow,

Poland

Figure S1 ¹H NMR spectrum of PHEMA produced in the presence of high electric field (E=140 kV/cm)

¹H-NMR (CDCl₃): δ=4.90 ppm (CH₂-CH₂-OH); δ =4.01 ppm (CO-*CH*₂-CH₂-OH) δ =3.85 ppm (CH₂-CH₂-OH); δ =1.80-2.00 ppm (-CH₂-C(-CH₃)-) δ=0.70-1.10 (CH₂-C(-CH₃)-C(=O)

Figure S2 Dielectric loss ε'' (a) and electrical loss modulus M'' (b) spectra for a PHEMA sample in a temperature region between 293 K and 433 K. The tested sample is obtained through free radical polymerization of HEMA under an electric field of E= 0 kV/cm.

Figure S3 Dielectric loss ε'' (a) and electrical loss modulus M'' (b) spectra for a PHEMA sample in a temperature region between 293 K and 433 K. The tested sample is obtained through free radical polymerization of HEMA under an electric field of E= 60 kV/cm.