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1. Materials and measurements

All experiments were carried out under a nitrogen atmosphere in a vacuum atmospheres
drybox. The solvent of toluene and n-hexane were freshly distilled from Na/benzophenone ketyl.
The solvent of dichloromethane was dried by reflux at the presence of CaH,. The solvents were
transferred into a bottle containing molecular sieves in the drybox under N,. AlEt,Cl (n-hexane
solution, 1M) was purchased from TCl. Polymerization grade ethylene (purity >99.9%) was used
as received.

The 'H and 13C NMR spectra were recorded using a Bruker 600 MHz or 400 MHz {H}
spectrometer operated in the Fourier Transform mode. Chemical shifts 6 are reported downfield
from tetramethylsilane using the residual proton solvent as an internal standard. Coupling
constants are given in Hz. Elemental analyses were performed by using an Vario EL cube
elemental analyzer (Elementar Inc.). Gel permeation chromatography (GPC) analyses of the
molecular weight and molecular weight distribution of the (co)polymers at 150 °C were
performed on a high temperature chromatograph, PL-GPC 220 instrument equipped with a triple
detection array, including a differential refractive index (RI) detector, a two-angle light scattering
(LS) detector, and a four-bridge capillary viscometer. Molecular weight (M,) and polydispersity
(Mw/M,, data are reported relative to polystyrene standards. Differential scanning calorimetric
(DSC) measurements were carried on a Mettler-Toledo DSC 821e instrument. The starting
material such as vanadium trichloride complex, V(N-2,6-Me,C¢H3)Cl; was prepared from VOCI; by
treatment with 2,6-dimethylphenyl isocyanate.

2. Synthesis of binuclear vanadium dichloride complexes

Synthesis of B1 :
7 T . HOOH Toluene Cl/v\ O O V\CI

CI/\ cl

A toluene solution (20 mL) containing V(N-2,6-Me,CgH 3)CI3 (215 mg, 0.78 mmol) was placed
at -30 °C for 2 hours. The 3,3',5,5'-tetramethylbiphenyl-4,4'-diol(94.5 mg, 0.39 mmol) was added
into the solution and the reaction mixture was warmed slowly to room temperature with stirred
for 12 h. The toluene was evaporated under reduced pressure. The resultant solid was dissolved
in @ minimum amount of CH,Cl,, and the solution was layered with n-hexane. The chilled solution
placed in the freezer (-30°C) afforded black purple solid (263 mg, 93%). 'H NMR (CDCl;, 600 MHz,
25°C): & 7.25 (s, 4H, Ar-H), 6.86 (br, 6H, NAr-H), 2.44 (s, 12H, NAr-CHs), 2.37 (s, 12H, Ar-CH;); 13C
NMR (CDClz, 101 MHz, 25°C): 6 17.1, 18.3, 126.0, 126.7, 127.4, 129.6, 137.3, 139.2, 161.8, 168.9.
51y NMR (CDCls, 158 MHz) 8: 59.7 (Avy/, = 540 Hz). Anal. Calcd(%) for C3,H34ClsN,0,V,: C, 53.21; H,
4.74; N, 3.88. Found (%): C, 53.49; H, 4.88; N, 3.72.
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Synthesis of B2 was carried out by the same procedure as that in B1 except that vanadium
trichloride complex S1 (300 mg, 1.08 mmol) and 4,4'-biphenol (101 mg, 0.54 mmol) was used.
Recrystallization afforded the black brown powder (127 mg, 35%). 'TH NMR (CDCl;, 600 MHz,
25°C): 6 7.48 (d, J = 5.2 Hz, 4H, Ar-H), 7.16 (d, J = 5.2 Hz, 4H, Ar-H), 6.90(s, 6H, NAr-H), 2.61(s, 12H,
-CH;). 13C NMR (CDCl3, 101 MHz, 25°C): & 18.6, 116.9, 123.1, 127.5, 129.7, 139.6, 150.4, 152.5,
162.7. 51V NMR (CDCls, 158 MHz) 6: 24.8 (Avy,, = 552 Hz). Anal. Calcd. (%) for CsHyClaN,0,V5: C,
50.48; H, 3.93; N, 4.20. Found (%): C, 50.68; H, 4.16; N, 4.06.

Synthesis of B2 :

Synthesis of B3 :
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Synthesis of B3 was carried out by the same procedure as that in B1 except that 4,4-
methenedi(2,6-methylbiphenol) (100 mg, 0.39 mmol) in place of 3,3',5,5'-Tetramethylbiphenyl-
4,4'-diol was used. Recrystallization obtained brown black solid (244 mg, 85%).'H NMR (CDCl;,
600 MHz, 25°C): & 6.79 (m, 10H, Ar-H), 3.80(s, 2H, -CH»-), 2.36 (s, 12H, -CH3 ), 2.21 (br, 12H, -CH5).
13C NMR (CDCl3, 101 MHz, 25°C): & 16.8, 18.1, 40.6, 125.3, 127.3, 128.6, 129.5, 138.7, 139.0,
167.7.5V NMR (CDCl3, 488 MHz) &: 53.7 (Avy/, = 509 Hz). Anal. Calcd. (%) for Cs3H3ClsN,0,V5: C
53.83; H, 4.93; N, 3.80. Found (%): C, 54.01; H, 5.11; N, 3.66.

Synthesis of B4 :
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V
cl” ‘ CI

Synthesis of B4 was carried out by the same procedure as that in B1 except that BPA (89 mg,
0.39 mmol) in placed. Recrystallization gave the formation of brown black powder. (247 mg,
89%). TH NMR (CDCls, 600 MHz, 25°C): & 7.05 (d, J = 8.4 Hz, 4H, Ar-H), 6.98 (d, J = 8.4 Hz, 4H, Ar-H),
6.87 (br, 6H, Ar-H ), 2.56 (s, 12H, CHs), 1.60(s, 6H, CHs). 13C NMR (CDCls, 101 MHz, 25°C): & 18.6,
30.7, 41.4, 114.9, 126.9, 127.3, 127.5, 129.1, 137.9, 148.8, 167.5. >V NMR (CDCl;, 158 MHz) 6:
18.8 (Avy, = 600 Hz).  Anal. Calcd. (%) for C3;1H3,Cl4N,0,V5: C, 52.57; H, 4.55; N, 3.96. Found (%):
C,52.82; H, 4.58; N, 3.91.

3. Ethylene (co)polymerization procedure.

Polymerizations were performed in a 100 mL autoclave at required temperature. The
polymerization apparatus equipped with magnetically bar was vacuumed and filled by N, for
three times. Then Al cocatalyst solution was injected into the autoclave by a dry syringe to
remove the residuals water and impurity in the autoclave. Then the comonomer and complex
solution was sequentially added by syringe under N, protection. The total volume of the
polymerization medium was fixed to specified volume. The ethylene was fed rapidly to the
prescribed pressure and maintained at the desired constant pressure. The solution was
vigorously stirred immediately. After a specified reaction time, the solution stirring was stopped
and the remaining ethylene was purged. The polymerization solution was poured into ethanol to
precipitate polymer or copolymer. The polymer was collected by filtration and dried in a vacuum
oven at 60 °C.
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4. NMR spectra of binuclear vanadium complexes
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Figure S1. 'H NMR spectrum of vanadium complex B1 in CDCls.
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Figure S2. 13C NMR spectrum of vanadium complex B1 in CDCl5.
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Figure S3. °V NMR spectrum of vanadium complex B1 in CDCls.
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Figure S4. 'H NMR spectrum of vanadium complex B2 in CDCl5.
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Figure S5. 13C NMR spectrum of vanadium complex B2 in CDCls.
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Figure S6. °V NMR spectrum of vanadium complex B2 in CDCls.
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Figure S7. 'H NMR spectrum of vanadium complex B3 in CDCls.
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Figure S8. 13C NMR spectrum of vanadium complex B3 in CDCl5.

S7



Hou~CHz-
single ffise defouple

—53.73

AN

300 || 1ido  [dod] ™ 700

500l /1300 7 foo [ oo

Figure S9. °V NMR spectrum of vanadium complex B3 in CDCls.
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Figure $10. 'H NMR spectrum of vanadium complex B4 in CDCls.

S8



—~167.5
—148.8
—41.4
—~30.7
—~18.6

190 18 [170 160 150 140 130 120 110 100 90 80 70 60 |50 40 30 20 10
f1 [ppm)

Figure S11. 13C NMR spectrum of vanadium complex B4 in CDCls.
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Figure $12. >V NMR spectrum of vanadium complex B4 in CDCls.
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5. NMR spectra of ethylene copolymer with various polar monomers
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Figure $13. 'H NMR spectrum of E/UOH copolymer by B1in 1,1,2,2-tetrachloroethane-d, at 120
°C.
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Figure $14. 'H NMR spectrum of E/UOH copolymer by B2 in 1,1,2,2-tetrachloroethane-d, at 120
°C.
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Figure $15. 'H NMR spectrum of E/UOH copolymer by B3 in 1,1,2,2-tetrachloroethane-d, at 120
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Figure $16. 'H NMR spectrum of E/UOH copolymer by B4 in 1,1,2,2-tetrachloroethane-d, at 120
°C.
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Figure S17. 'H NMR spectrum of E/UOH copolymer by M2 in 1,1,2,2-tetrachloroethane-d, at 120
°C.
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Figure $18. 'H NMR spectrum of E/UA copolymer by B1 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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Figure $19. 'H NMR spectrum of E/UA copolymer by B2 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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Figure $20. 'H NMR spectrum of E/UA copolymer by B3 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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Figure $21. 'H NMR spectrum of E/UA copolymer by B4 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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Figure $22. 'H NMR spectrum of E/UA copolymer by M2 in 1,1,2,2-tetrachloroethane-d, at 120
°C.
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Figure $23. 'H NMR spectrum of E/MA polymer by B1 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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Figure S24. 'H NMR spectrum of E/MMA polymer by B1 in 1,1,2,2-tetrachloroethane-d, at 120 °C.
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6. GPC curves of polymers
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Figure S25. GPC chart of polyethylene obtained by B1 (Table 1, run 2).
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Figure S26. GPC chart of polyethylene obtained by B1 (Table 1, run 4).
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Figure S27. GPC chart of E/Cl-Hex copolymer obtained by B1 (Table 2, run 3)
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Figure S28. GPC chart of polyethylene obtained by M2 (Table 2, run 4).
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Figure $29. GPC chart of E/UOH copolymer obtained by B1 (Table 2, run 6)
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Figure $30. GPC chart of E/UOH copolymer obtained by M2 (Table 2, run 11)
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Figure S31. GPC chart of E/UA copolymer obtained by B1 (Table 2, run 12)
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Figure $32. GPC chart of E/UA copolymer obtained by M2 (Table 2, run 17).
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Figure S33. GPC chart of polymer obtained by B1 at the presence of MA (Table 3, run 1).
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Figure S34. GPC chart of polymer obtained by M2 at the presence of MA (Table 3, run 7).
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Figure S35. GPC chart of polymer obtained by M2 at the presence of MMA (Table 3, run 8).
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Figure S36. GPC chart of polymer obtained by M2 at the presence of MMA (Table 3, run 9).
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7. DSC Charts of Polymers

Differential scanning calorimetric (DSC) analysis was performed using a DSC Q2000
(TA Instruments). The temperature and heat flow of the apparatus were calibrated
with an indium standard. Polymer samples were first equilibrated at 25 °C, followed
by heating from -50 °C to 200 °C at a rate of 10 °C/min under N, flow (50 mL/min).
This temperature was maintained for 5 min then samples were cooled to -50 °C at a
rate of 10 °C/min. This temperature was maintained for 5 min then samples were
reheated to 200 °C at a rate of 10 °C/min. The melting temperature (T,,) was
determined from the second heating scan. The percent crystallinity was calculated
from AHs (J/g)/AHgyq (J/g), where AHyyq is the heat of fusion for a perfectly crystalline
polyethylene; this equals to 293.0 J/g

Size: 1.8400 mg DSC Operatorf xks
Method: Cell constant calibration Run Date: 10-Mar-2022 22:51
Instrument: DSC Q2000 V24 .10 Build 122
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Figure S37. DSC chart of polyethylene obtained by B1.
Sample: Indium File: G il L3 ENDSCtableZ ZLHE \NJX-0310-50.1xt
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Figure $38. DSC chart of E/Cl-Hex copolymer obtained by B1 (Table 2, run 3)
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Figure $39. DSC chart of E/UOH copolymer obtained by B1 (Table 2, run 6)
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Figure S40. DSC chart of E/UOH copolymer obtained by B2 (Table 2, run 8)

Instrument: DSC Q2000 V24.10 Build 122
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Figure S41. DSC chart of E/UOH copolymer obtained by B3 (Table 2, run 9)
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Figure S42. DSC chart of E/UOH copolymer obtained by B4 (Table 2, run 10)
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Figure S$43. DSC chart of E/UA copolymer obtained by B1 (Table 2, run12)
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Figure S44. DSC chart of E/UA copolymer obtained by B1 (Table 2, run 13)
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Figure $45. DSC chart of E/UA copolymer obtained by B2 (Table 2, run 14)
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Figure $46 DSC traces of E/UA copolymer obtained by B3 (Table 2, run 15)
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Figure S47 DSC traces of E/UA copolymer obtained by B4 (Table 2, run 16)
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Figure S48 DSC traces of E/UA copolymer obtained by M2 (Table 2, run 17)

8. FTIR spectra of polymers
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Figure S49. FTIR spectra of polyethylene obtained by B1.
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Figure S50. FTIR spectra of E/Cl-Hex copolymer obtained by B1.
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Figure S51. FTIR spectra of E/UOH copolymer obtained by B1.
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Figure S52. FTIR spectra of E/UA copolymer obtained by B1.
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