Supporting Information for

Design and synthesis of binuclear vanadium catalysts for copolymerization of ethylene and polar monomers

Jinxin Nie, Feiyang Ren, Zhen Li, Kun Tian, Hui Zou* and Xiaohua Hou*

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, People's Republic of China.

Table of Contents

1. Materials and measurements	S2
2. Synthesis of binuclear vanadium dichloride complexes	S2
3. Ethylene (co)polymerization procedure	\$3
4. NMR spectra of binuclear vanadium complexes	S4
5. NMR spectra of ethylene copolymer with various polar monomers	S10
6. GPC curves of polymers	S16
7. DSC charts of polymers	S21
8. FTIR spectra of polymers	S25

1. Materials and measurements

All experiments were carried out under a nitrogen atmosphere in a vacuum atmospheres drybox. The solvent of toluene and *n*-hexane were freshly distilled from Na/benzophenone ketyl. The solvent of dichloromethane was dried by reflux at the presence of CaH₂. The solvents were transferred into a bottle containing molecular sieves in the drybox under N₂. AlEt₂Cl (n-hexane solution, 1M) was purchased from TCI. Polymerization grade ethylene (purity >99.9%) was used as received.

The ¹H and ¹³C NMR spectra were recorded using a Bruker 600 MHz or 400 MHz {H} spectrometer operated in the Fourier Transform mode. Chemical shifts δ are reported downfield from tetramethylsilane using the residual proton solvent as an internal standard. Coupling constants are given in Hz. Elemental analyses were performed by using an Vario EL cube elemental analyzer (Elementar Inc.). Gel permeation chromatography (GPC) analyses of the molecular weight and molecular weight distribution of the (co)polymers at 150 °C were performed on a high temperature chromatograph, PL-GPC 220 instrument equipped with a triple detection array, including a differential refractive index (RI) detector, a two-angle light scattering (LS) detector, and a four-bridge capillary viscometer. Molecular weight (M_n) and polydispersity (M_w/M_n) data are reported relative to polystyrene standards. Differential scanning calorimetric (DSC) measurements were carried on a Mettler-Toledo DSC 821e instrument. The starting material such as vanadium trichloride complex, V(N-2,6-Me₂C₆H₃)Cl₃ was prepared from VOCl₃ by treatment with 2,6-dimethylphenyl isocyanate.

2. Synthesis of binuclear vanadium dichloride complexes Synthesis of B1:

A toluene solution (20 mL) containing V(N-2,6-Me₂C₆H₃)Cl₃ (215 mg, 0.78 mmol) was placed at -30 °C for 2 hours. The 3,3',5,5'-tetramethylbiphenyl-4,4'-diol(94.5 mg, 0.39 mmol) was added into the solution and the reaction mixture was warmed slowly to room temperature with stirred for 12 h. The toluene was evaporated under reduced pressure. The resultant solid was dissolved in a minimum amount of CH₂Cl₂, and the solution was layered with *n*-hexane. The chilled solution placed in the freezer (-30°C) afforded black purple solid (263 mg, 93%). ¹H NMR (CDCl₃, 600 MHz, 25°C): δ 7.25 (s, 4H, Ar-H), 6.86 (br, 6H, NAr-H), 2.44 (s, 12H, NAr-CH₃), 2.37 (s, 12H, Ar-CH₃); ¹³C NMR (CDCl₃, 101 MHz, 25°C): δ 17.1, 18.3, 126.0, 126.7, 127.4, 129.6, 137.3, 139.2, 161.8, 168.9. ⁵¹V NMR (CDCl₃, 158 MHz) δ : 59.7 ($\Delta v_{1/2} = 540$ Hz). Anal. Calcd(%) for C₃₂H₃₄Cl₄N₂O₂V₂: C, 53.21; H, 4.74; N, 3.88. Found (%): C, 53.49; H, 4.88; N, 3.72.

Synthesis of B2:

Synthesis of **B2** was carried out by the same procedure as that in **B1** except that vanadium trichloride complex **S1** (300 mg, 1.08 mmol) and 4,4'-biphenol (101 mg, 0.54 mmol) was used. Recrystallization afforded the black brown powder (127 mg, 35%). ¹H NMR (CDCl₃, 600 MHz, 25°C): δ 7.48 (d, *J* = 5.2 Hz, 4H, Ar-*H*), 7.16 (d, *J* = 5.2 Hz, 4H, Ar-*H*), 6.90(s, 6H, NAr-*H*), 2.61(s, 12H, -*CH*₃). ¹³C NMR (CDCl₃, 101 MHz, 25°C): δ 18.6, 116.9, 123.1, 127.5, 129.7, 139.6, 150.4, 152.5, 162.7. ⁵¹V NMR (CDCl₃, 158 MHz) δ : 24.8 ($\Delta v_{1/2}$ = 552 Hz). Anal. Calcd. (%) for C₂₈H₂₆Cl₄N₂O₂V₂: C, 50.48; H, 3.93; N, 4.20. Found (%): C, 50.68; H, 4.16; N, 4.06.

Synthesis of B3:

Synthesis of **B3** was carried out by the same procedure as that in **B1** except that 4,4methenedi(2,6-methylbiphenol) (100 mg, 0.39 mmol) in place of 3,3',5,5'-Tetramethylbiphenyl-4,4'-diol was used. Recrystallization obtained brown black solid (244 mg, 85%).¹H NMR (CDCl₃, 600 MHz, 25°C): δ 6.79 (m, 10H, Ar-*H*), 3.80(s, 2H, -*CH*₂-), 2.36 (s, 12H, -*CH*₃), 2.21 (br, 12H, -*CH*₃). ¹³C NMR (CDCl₃, 101 MHz, 25 °C): δ 16.8, 18.1, 40.6, 125.3, 127.3, 128.6, 129.5, 138.7, 139.0, 167.7. ⁵¹V NMR (CDCl₃, 488 MHz) δ : 53.7 ($\Delta v_{1/2}$ = 509 Hz). Anal. Calcd. (%) for C₃₃H₃₆Cl₄N₂O₂V₂: C, 53.83; H, 4.93; N, 3.80. Found (%): C, 54.01; H, 5.11; N, 3.66.

Synthesis of B4:

Synthesis of **B4** was carried out by the same procedure as that in **B1** except that BPA (89 mg, 0.39 mmol) in placed. Recrystallization gave the formation of brown black powder. (247 mg, 89%). ¹H NMR (CDCl₃, 600 MHz, 25°C): δ 7.05 (d, *J* = 8.4 Hz, 4H, Ar-H), 6.98 (d, *J* = 8.4 Hz, 4H, Ar-H), 6.87 (br, 6H, Ar-H), 2.56 (s, 12H, CH₃), 1.60(s, 6H, CH₃). ¹³C NMR (CDCl₃, 101 MHz, 25°C): δ 18.6, 30.7, 41.4, 114.9, 126.9, 127.3, 127.5, 129.1, 137.9, 148.8, 167.5. ⁵¹V NMR (CDCl₃, 158 MHz) δ : 18.8 (Δ v_{1/2} = 600 Hz). Anal. Calcd. (%) for C₃₁H₃₂Cl₄N₂O₂V₂: C, 52.57; H, 4.55; N, 3.96. Found (%): C, 52.82; H, 4.58; N, 3.91.

3. Ethylene (co)polymerization procedure.

Polymerizations were performed in a 100 mL autoclave at required temperature. The polymerization apparatus equipped with magnetically bar was vacuumed and filled by N_2 for three times. Then Al cocatalyst solution was injected into the autoclave by a dry syringe to remove the residuals water and impurity in the autoclave. Then the comonomer and complex solution was sequentially added by syringe under N_2 protection. The total volume of the polymerization medium was fixed to specified volume. The ethylene was fed rapidly to the prescribed pressure and maintained at the desired constant pressure. The solution was vigorously stirred immediately. After a specified reaction time, the solution stirring was stopped and the remaining ethylene was purged. The polymerization solution and dried in a vacuum oven at 60 °C.

Figure S2. ¹³C NMR spectrum of vanadium complex B1 in CDCl₃.

Figure S3. ⁵¹V NMR spectrum of vanadium complex B1 in CDCl₃.

Figure S4. ¹H NMR spectrum of vanadium complex B2 in CDCl₃.

Figure S6. ⁵¹V NMR spectrum of vanadium complex B2 in CDCl₃.

300 1100 900 700 500 300 100 -100 -300 -500 -700 -900 -1100 -13 fl (ppm)

Figure S9. ⁵¹V NMR spectrum of vanadium complex B3 in CDCl₃.

Figure S10. ¹H NMR spectrum of vanadium complex B4 in CDCl₃.

Figure S11. ¹³C NMR spectrum of vanadium complex B4 in CDCl₃.

Figure S12. ⁵¹V NMR spectrum of vanadium complex B4 in CDCl₃.

5. NMR spectra of ethylene copolymer with various polar monomers

Figure S13. ¹H NMR spectrum of E/UOH copolymer by **B1** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S14. ¹H NMR spectrum of E/UOH copolymer by **B2** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S16. ¹H NMR spectrum of E/UOH copolymer by **B4** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S17. ¹H NMR spectrum of E/UOH copolymer by M2 in 1,1,2,2-tetrachloroethane- d_2 at 120

Figure S18. ¹H NMR spectrum of E/UA copolymer by **B1** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S19. ¹H NMR spectrum of E/UA copolymer by **B2** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S20. ¹H NMR spectrum of E/UA copolymer by **B3** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S21. ¹H NMR spectrum of E/UA copolymer by **B4** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S22. ¹H NMR spectrum of E/UA copolymer by M2 in 1,1,2,2-tetrachloroethane- d_2 at 120

°C.

Figure S23. ¹H NMR spectrum of E/MA polymer by **B1** in 1,1,2,2-tetrachloroethane- d_2 at 120 °C.

Figure S24. ¹H NMR spectrum of E/MMA polymer by B1 in 1,1,2,2-tetrachloroethane-d₂ at 120 °C.

6. GPC curves of polymers

Figure S25. GPC chart of polyethylene obtained by B1 (Table 1, run 2).

Figure S26. GPC chart of polyethylene obtained by B1 (Table 1, run 4).

Figure S27. GPC chart of E/Cl-Hex copolymer obtained by B1 (Table 2, run 3)

Figure S28. GPC chart of polyethylene obtained by M2 (Table 2, run 4).

Figure S29. GPC chart of E/UOH copolymer obtained by B1 (Table 2, run 6)

Figure S30. GPC chart of E/UOH copolymer obtained by M2 (Table 2, run 11)

Figure S31. GPC chart of E/UA copolymer obtained by B1 (Table 2, run 12)

Figure S32. GPC chart of E/UA copolymer obtained by M2 (Table 2, run 17).

Figure S33. GPC chart of polymer obtained by B1 at the presence of MA (Table 3, run 1).

Figure S34. GPC chart of polymer obtained by M2 at the presence of MA (Table 3, run 7).

Figure S35. GPC chart of polymer obtained by M2 at the presence of MMA (Table 3, run 8).

Figure S36. GPC chart of polymer obtained by M2 at the presence of MMA (Table 3, run 9).

7. DSC Charts of Polymers

Differential scanning calorimetric (DSC) analysis was performed using a DSC Q2000 (TA Instruments). The temperature and heat flow of the apparatus were calibrated with an indium standard. Polymer samples were first equilibrated at 25 °C, followed by heating from -50 °C to 200 °C at a rate of 10 °C/min under N₂ flow (50 mL/min). This temperature was maintained for 5 min then samples were cooled to -50 °C at a rate of 10 °C/min. This temperature was maintained for 5 min then samples were cooled to -50 °C at a rate of 10 °C/min. This temperature was maintained for 5 min then samples were reheated to 200 °C at a rate of 10 °C/min. The melting temperature (T_m) was determined from the second heating scan. The percent crystallinity was calculated from ΔH_f (J/g)/ ΔH_{std} (J/g), where ΔH_{std} is the heat of fusion for a perfectly crystalline polyethylene; this equals to 293.0 J/g

Figure S38. DSC chart of E/Cl-Hex copolymer obtained by B1 (Table 2, run 3)

Figure S39. DSC chart of E/UOH copolymer obtained by B1 (Table 2, run 6)

Figure S40. DSC chart of E/UOH copolymer obtained by B2 (Table 2, run 8)

S22

Figure S41. DSC chart of E/UOH copolymer obtained by B3 (Table 2, run 9)

Figure S42. DSC chart of E/UOH copolymer obtained by B4 (Table 2, run 10)

Figure S43. DSC chart of E/UA copolymer obtained by B1 (Table 2, run12)

Figure S44. DSC chart of E/UA copolymer obtained by B1 (Table 2, run 13)

Figure S45. DSC chart of E/UA copolymer obtained by B2 (Table 2, run 14)

Figure S46 DSC traces of E/UA copolymer obtained by B3 (Table 2, run 15)

Figure S47 DSC traces of E/UA copolymer obtained by B4 (Table 2, run 16)

Figure S48 DSC traces of E/UA copolymer obtained by M2 (Table 2, run 17)

8. FTIR spectra of polymers

Figure S49. FTIR spectra of polyethylene obtained by B1.

Figure S50. FTIR spectra of E/Cl-Hex copolymer obtained by B1.

Figure S51. FTIR spectra of E/UOH copolymer obtained by B1.

Figure S52. FTIR spectra of E/UA copolymer obtained by B1.