Electronic Supplementary Information

Structure-Property Correlation of Crosslinked Domain Hydrogels Exhibiting Thermoresponsive Mechanical Toughening and Hybridization with Photoluminescent Carbon Dots

Shohei Ida¹*, Takahiro Okuno¹, Miki Morimura¹, Kazumasa Suzuki¹, Hiroki Takeshita¹, Masatoshi Oyama², Keiji Nakajima², and Shokyoku Kanaoka¹*

 Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan

2) Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga 520-3004, Japan

Correspondence: ida.s@mat.usp.ac.jp (S.I.), and kanaoka.s@mat.usp.ac.jp (S.K.)

Fig. S1 ¹H NMR spectra of PDMAAm macro-CTAs. Reaction condition: see Table 1. DP_n and $M_{n, NMR}$ were calculated from the ratio of integral values between *a* and *d*.

Fig. S2 Verification of propagation of PNIPAAm from PDMAAm macro-CTA by RAFT polymerization in the absence of BIS crosslinker. Reaction condition: [DMAAm unit] = 1500 mM, [NIPAAm] = 500 mM, [APS] = 5.0 mM in H₂O at 60 °C for 90 min.

Sample	Weight Ratio $W_{\text{cooling}}/W_{\text{heating}}$	Heating State		Cooling State	
		Elastic Modulus (kPa)	Breaking Strain (%)	Elastic Modulus (kPa)	Breaking Strain (%)
G _{D200N25}	1.02	2.36 ± 0.68	139 ± 7.76	2.81 ± 0.56	58.0 ± 16.4
G _{D300N25}	0.95	3.01 ± 0.57	119 ± 33.9	2.01 ± 0.12	94.8 ± 22.2
G _{D500N25}	1.01	4.06 ± 0.47	118 ± 28.0	4.09 ± 0.36	74.0 ± 35.6
G _{D700N25}	0.98	1.90 ± 0.23	97.6 ± 26.1	1.81 ± 0.30	86.7 ± 25.2

Table S1. Results of uniaxial tensile tests of the gels with CD structure in heating and cooling states

 prepared from various PDMAAm macro-CTAs with different molecular weights.

Fig. S3 Temperature dependence of the storage modulus (G') and the loss modulus (G'') of $G_{D300N25}$ and $G_{D500N25}$ (heating rate: 1.0 °C/min).

Gel Code	$q_{\max} (\mathrm{nm}^{-1})$	$D(\mathrm{nm})^{b}$	$R_{\rm CD} \left({\rm nm} \right)^c$	$C_{\rm CD} \left({\rm mM}\right)^d$	N _{PDMAAm} ^e
G _{D300N25}	0.27	23	5.1	0.76	12
G _{D300N50}	0.20	32	9.3	0.24	25
G _{D300N75}	0.12	54	20	0.035	87

Table S2. Structural parameters of the gels with CD structure obtained from SAXS analysis^{*a*}.

^{*a*} The gels were prepared from PDMAAm macro-CTA ($DP_{n, NMR} = 330$, $M_w/M_{n, SEC} = 1.22$) synthesized with the condition identical to that of **D**₃₀₀. The calculation method of each parameter is described in our previous study.^{1 *b*} The distance between CDs obtained from SAXS profile (= $2\pi/q_{max}$). ^{*c*} The average radius of CD, which is calculated from *D* and the end-to-end distance of PDMAAm with $DP_n = 330$, L_D (= 13.2 nm; this value corresponds to the value of polyacrylamide with same DP_n in water²): $R_{CD} = (D - L_D)/2$. ^{*d*} The concentration of CD in the network, which is calculated from the volume of a single CD and volume fraction of CDs in the network on the assumption that each CD is spherical and the volume fraction corresponds to the molar ratio of monomeric units. ^{*e*} The average number of PDMAAm chains connected to one CD, which is calculated from C_{CD} and the feed concentration of PDMAAm macro-CTA at the gel preparation.

Fig. S4 Swelling behavior in water of the gels having CD structure with various composition prepared from D_{200} . Preparation condition of $G_{D200N25}$: see Entry 4 in Table 2. Preparation condition of $G_{D200N50}$ and $G_{D200N75}$: [DMAAm unit] + [NIPAAm] = 2000 mM, [BIS] = 20 mM, [APS] = 5.0 mM in H₂O at 60 °C for 90 min.

Sample	Weight Ratio W _{cooling} /W _{heating}	Heating State		Cooling State	
		Elastic Modulus (kPa)	Breaking Strain (%)	Elastic Modulus (kPa)	Breaking Strain (%)
G _{D300N50}	0.95	6.74 ± 0.52	53.7 ± 15.1	6.85 ± 0.79	29.9 ± 11.6
G _{D300N75}	0.92	8.58 ± 2.04	93.1 ± 32.3	6.72 ± 0.94	64.5 ± 31.3
G _{D200N50}	0.99	4.79 ± 0.56	70.9 ± 19.6	5.10 ± 0.47	57.5 ± 21.1
G _{D200N75}	0.99	16.1 ± 3.51	102 ± 47.3	8.89 ± 1.35	40.4 ± 23.2

Table S3. Results of uniaxial tensile tests of the gels with various compositions in heating and coolingstates prepared from D_{300} and D_{200} .

Fig. S5 Uniaxial tensile tests of $G_{D200N50}$ and $G_{D200N75}$ in heating and cooling states.

Fig. S6 (a) Absorption and (b) photoluminescence spectra of C-dots dispersion in water (0.10 g/L).

Fig. S7 Appearance of a gel containing 0.50 g/L of C-dots. Preparation condition: [DMAAm unit of D_{300}] = 1000 mM, [NIPAAm] = 1000 mM, [BIS] = 20 mM in C-dots dispersion in water (0.50 g/L) at 60 °C for 18 h.

Fig. S8 Temperature dependence of G' and G'' of the CD gel containing C-dots and the gel without C-dots ($G_{D300N50}$) (heating rate: 1.0 °C/min).

Table S4. Results of uniaxial tensile tests of the gel containing C-dots and the corresponding gel inthe absence of C-dots ($G_{D300N50}$).

	Heatin	g State	Cooling State		
Sample	Elastic Modulus	Breaking Strain	Elastic Modulus	Breaking Strain	
	(kPa)	(%)	(kPa)	(%)	
C-dots Gel	9.73 ± 0.59	58.8 ± 19.7	7.73 ± 0.43	42.9 ± 3.5	
G _{D300N50}	6.74 ± 0.52	53.7 ± 15.1	6.85 ± 0.79	29.9 ± 11.6	

References

- M. Morimura, S. Ida, M. Oyama, H. Takeshita and S. Kanaoka, *Macromolecules*, 2021, 54, 1732-1741.
- 2. G. S. Misra and S. N. Bhattacharya, Eur. Polym. J., 1979, 15, 125-128.