### **SUPPORTING INFORMATION:**

### The effect of surface-active statistical copolymers in lowenergy miniemulsion and RAFT polymerization

Manon Rolland,<sup>a</sup> Eric Dufresne,<sup>a, b</sup> Nghia P. Truong,<sup>a,c\*</sup> Athina Anastasaki<sup>a,\*</sup>

<sup>a</sup>Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.

<sup>b</sup>Laboratory of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.

<sup>c</sup>Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3152, Australia.

#### **Materials**

4-Cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (ECT, 95%) was procured from ABCR. Styrene (STY, 99%), 2,2'-azobis(2-methylpropionitrile) (AIBN), di(ethylene glycol) methyl ether methacrylate (DEGMA, 95%), 2-hydroxypropyl methacrylamide (HPMA, 99%), diethyl ether (> 99.8%), triethylene glycol methyl ether methacrylate (TEGMA, 93%), poly(ethylene glycol) methyl ether methacrylate (PEGMA,  $M_n$ =300), methacrylamide (MAAm, 98%), sodium dodecyl sulfate (SDS), 4,4'azobis(4-cyanovaleric acid) (ACPA) were obtained from Sigma Aldrich. 2-Hydroxyethyl methacrylate (HEMA, 97%) was bought from ACROS. Dimethyl sulfoxide (DMSO, 95%) was bought from Chemie Brunschwig. Petroleum ether, (40 - 60°C analysis, < 2% Hexane) was obtained from ProLabo. Acetone was acquired from Thommen-Furler. Acetone-d6 (99.8%), chloroform-d (CDCl<sub>3</sub>, 99.8%), dimethyl sulfoxide-d6 (DMSO-d6, 99.8%), deuterium oxide-<sup>18</sup>O (99%) were purchased from ResaChem. The AIBN was recrystallized in methanol before use. A membrane with molecular weight cut-off of 3.5 kDa was utilized for dialysis. Deionized water was utilized for all miniemulsion experiments. All monomers were purified through basic alumina before being used. Other chemicals were used as received.

#### Instrumentations

Manual shaking was utilized to form all miniemulsion.

<sup>1</sup>**H nuclear magnetic resonance (**<sup>1</sup>**H-NMR)** spectra were measured in DMSO-d6, Deuterium oxide-<sup>18</sup>O or a mixture of Acetone-d6 : Chloroform-d (5:1, v/v) on a Bruker Avance-300 or 400 spectrometer. Chemical shifts are given in ppm and are referenced to residual solvent proton signals.

Size-exclusion chromatography (SEC) was measured on Shimadzu equipment with a CBM-20A system controller, a SIL-20A automatic injector, an LC-20AD pump (flow rate at 1 mL min<sup>-1</sup>), a 10.0  $\mu$ m bead-size guard column (50 × 7.5 mm) followed by three KF-805L columns (300 × 8 mm, bead size: 10  $\mu$ m, pore size maximum: 5000 Å), an SPD-20A ultraviolet detector, and a RID-20A differential refractive

index detector. Column temperature was maintained at 40 °C using a CTO-20A oven. *N*,*N*-dimethylacetamide was used as eluent (HPLC grade, Acros, with 0.03% w/v LiBr). Molecular weights were determined according to calibration with commercial narrow molecular weight distribution poly(methyl methacrylate) standards with molecular weights ranging from 5000 to  $1.5 \times 10^6$  g mol<sup>-1</sup> (Agilent Technology). Before injection, all samples were passed through 0.45 µm filters and water was removed by drying sample under air (only for miniemulsion experiments).

**Transmission electron microscopy (TEM)** images were taken using Jeol JEM 1400 (High Voltage: 80 kV, 120 kV, Emitter: LaB6 crystal) transmission electron microscope. TEM samples were prepared as follows: 2  $\mu$ L of latex were diluted in 400  $\mu$ L of deionized water and a droplet was put onto a carbon film grid (300 Mesh, Cu, Electron Microscopy Science), after which samples were allowed to dry under ambient atmosphere and temperature.

**Dynamic light scattering (DLS)** measurements were carried out using Malvern Zetasizer Advance Series-Pro (Red Label, 10 mW, 633 nm). The sample refractive index (RI) was set at 1.59 for styrene. The dispersant viscosity and RI were set to 0.89 Ns m<sup>-2</sup>. To determine particle size, all measurements were carried out without dilution.

**Inverse Pendant** measurements were undertaken with an optical setup comprising a light source  $(3.5'' \times 6'')$  White, LED Backlight (Edmundoptics)), a lens  $(0.5 \times -1.0 \times \text{VariMagTL}^{TM})$  Telecentric Lens (Edmundoptics)) and a camera (CMOS Camera from Thorlabs, DCC3240M – High-Sensitivity USB 3.0, 1280 × 1024, Global Shutter, Monochrome Sensor).

#### Procedures

1.1- Standard synthesis of P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (A0, A1, A2, A3 and A4 - 0, 10, 20, 30 and 43 % HPMA) utilized as macro-chain transfer agent (macro-CTA) - Model example: A2 (20 % HPMA)

DEGMA (2 g, 0.0106 mol, 40 equiv.), ECT (70 mg, 0.00027 mol, 1 equiv.), HPMA (0.76 g, 0.0053 mol, 20 equiv.), and ACPA (7 mg, 0.0002 mol, 0.1 equiv.) were dissolved in DMSO (10 mL) and placed in a 25 mL round bottom flask. After closing the flask with a septum, the solution was degassed with nitrogen for one hour and placed in a preheated oil bath (70 °C) at 300 rpm. After 8.5 hours, the reaction was cooled down in an ice bath, exposed to air and sampled to determine the DEGMA and HPMA conversion by <sup>1</sup>H-NMR. The solution was then dialyzed against acetone (500 mL) for 1 hour to remove DMSO from the solution. Then, the solution was precipitated in a mixture of petroleum ether: diethyl ether (1:1, v/ v), isolated by centrifugation, and re-dissolved in acetone. This step was repeated three times to remove unreacted monomers. The product was dried in a vacuum oven for 48 h and analyzed by SEC and <sup>1</sup>H-NMR. Conversion of DEGMA was calculated by the integral area of a peak at 6.0 ppm (I<sub>6.0</sub>) and a peak in the range 3.8–4.3 (I<sub>3.8–4.3</sub>) using the following equation: Conversion of DEGMA =  $100 \times [1-(2 \times I_{6.0}/I_{3.8–4.3})]$ . Conversion of HPMA was calculated by the integral area of a peak at 5.3 ppm (I<sub>5.3</sub>) and a peak in the range 4.6–4.7 (I<sub>4.5–4.8</sub>) using the following equation: Conversion of HPMA =  $100 \times [1-(I_{5.3}/I_{4.5-4.8})]$ .

For A0 (0 % HPMA), A1(10 % HPMA), A3(30 % HPMA), and A4(43 % HPMA), the same standard procedure was followed by only modifying the molar ratio between ECT, DEGMA and HPMA and by monitoring the reaction time and conversion by <sup>1</sup>H-NMR . For A0 the molar ratio was maintained at [ECT]: [DEGMA] : [HPMA]= 1: 40: 0 (5h), for A1 at [ECT]: [DEGMA] : [HPMA]= 1: 40: 9 (8h30), for A3 at [ECT]: [DEGMA] : [HPMA]= 1: 40: 40 (7h10) and for A4 at [ECT]: [DEGMA] : [HPMA]= 1: 40: 60 (7h). It is noted that for polymer A0, the polymer was purified by precipitating in only petroleum benzene instead of the mixture with diethyl ether.

## 1.2- Standard procedure for the formation of styrene miniemulsion by simple hand shaking (A0-A6, B0-B4, C0, D0, E0 and F0-F2) and study of the miniemulsion stability - Mass ratio

A macro-CTA (25 mg) was placed in a 2 mL glass vial and was dissolved with an aqueous solution of SDS (0.25 mg of SDS in 2 mL of deionized water). Then, styrene (35  $\mu$ L) was added on the top of the SDS and macro-CTA solution. The vial was capped and then shaken by hand for 10 seconds. The resulting latexes were photographed just after shaking and subsequently analyzed by DLS to determine particle size and polydispersity. Latexes formed with A0, A1 and A2 were then placed on the bench and photographed after 2 and 8 days to monitor phase separation.

## 1.3- Standard procedure for interfacial tension measurement (IFT) using inverse pendant measurements (A0-A6, B0-B4, C0, D0, E0 and F0-F2)

Aqueous solution of macro-CTA (25 mg / 2 ml) were prepared and placed in a quartz cuvette. Then, a stabilized styrene droplet was formed inside the solution and illuminated by an external light source. For each measurement of the interfacial tension, a series of ten different droplets were imaged through telecentric lens and analyzed through MATLAB codes<sup>1</sup> where the droplets contour is detected and fitted to its theoretical shape. It is noted that for the inverse pendant drop method, pictures were taken upside down and flipped before analyzing with the MATLAB code. Also for macro-CTAs A0, B0 and E0 the mixture was cooled down in the fridge prior the measurement to avoid emulsification as their  $T_{cp}$  is very close from room temperature.

#### 1.4- Evaluation of macro-CTAs (A0-A4) solubility in the styrene and water phase

The macro-CTAs (25 mg) were dissolved in 1 mL of styrene and 1 mL of water separately. Then, a digital picture was taken to show the macro-CTAs immediate solubility. For the remaining vials showing lower

solubility in either phases, the vials were vortexed until solubilized. It is noted that for the mixture of water + A0, it required to cooled down in the fridge to be fully solubilized and that for the mixture of A4 + styrene, the macro-CTA did not solubilized.

### 1.5- Standard procedure for the formation of styrene miniemulsion by simple hand shaking (A0-A4) - Molar Ratio

Procedure 1.2 was followed by only modifying the mass of macro-CTA from 19 mg (A0), 22.4 mg (A1), 25 mg (A2), 30.2 mg (A3) to 36.7 mg (A4) to maintain a molar ratio constant of [macro-CTA] : [STY] : [SDS] = 1 : 108 : 0.3.

## 1.6- Synthesis of P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (B0, B1, B2, B3 and B4 - 0, 10, 18, 30 and 40 % HPMA) utilized as macro-chain transfer agent (macro-CTA)- M<sub>n</sub>, copolymer constant

For the polymerization of B0-B4, procedure 1.1 was followed by only modifying the molar ratio between ECT, DEGMA and HPMA and by monitoring the reaction time and conversion by <sup>1</sup>H-NMR. For B0, the molar ratio was maintained to [ECT]: [DEGMA] : [HPMA]= 1: 50: 0 (5.45 h), for B1 to [ECT]: [DEGMA] : [HPMA]= 1: 40: 9 (8h30), for B2 to [ECT]: [DEGMA] : [HPMA]= 1: 40: 20 (7.5 h), for B3 to [ECT]: [DEGMA] : [HPMA]= 1: 30: 30 (9 h), for B4 to [ECT]: [DEGMA] : [HPMA]= 1: 30: 45 (7 h). It is noted that for polymer B0, the random copolymer was purified by precipitating in only petroleum benzene instead of the 1: 1 mixture with diethyl ether.

#### 1.7- RAFT miniemulsion in situ <sup>1</sup>H-NMR kinetic study of styrene for macro-CTAs A2 - Mass ratio

The macro-CTA (6.25 mg) was added in an NMR tube and was dissolved with an aqueous solution of SDS (0.06 mg of SDS in 0.5 mL of deuterium oxide). The NMR tube was then sealed and degassed for 15 minutes. In parallel, a degas stock solution was prepared containing 2 mg of AIBN dissolved in 1166  $\mu$ L of styrene. From this degas stock solution, 8.75  $\mu$ L (0.015 mg of AIBN) was transferred into the

NMR tube under a nitrogen blanket. The tube was, then, shaken for 10 seconds by hand at room temperature. Next, the tube was place in a preheated 400 MHz solid-state NMR spectrometer (Bruker Avance III 400 MHz triple-resonance spectrometer) for 2 hours and the polymerization was monitored *in situ* by <sup>1</sup>H-NMR. Conversion was calculated by the integral area of a peak at 5.8 ppm ( $I_{5.8}$ ) and a peak in the range of 6.5 to 7.7 ppm ( $I_{6.5-7.7} - I_{5.8}$ )]).

### 1.8- RAFT miniemulsion polymerization of styrene for macro-CTAs A0-A6, B0-B4 and for F0 -Mass ratio

The macro-CTA (25 mg) was added in a 2 mL glass vial and was dissolved with an aqueous solution of SDS (0.25 mg of SDS in 2 mL of deionized water). In parallel, a stock solution was prepared containing 2 mg of AIBN dissolved in 1166  $\mu$ L of styrene. From this stock solution, 35  $\mu$ L (0.06 mg of AIBN) was transferred on the top of the SDS and macro-CTA solution. The vial was closed with a cap and shaken for 10 seconds by hand at room temperature. Then, the vial was place in a preheated oven (70 °C). Polymerization was stopped, after 6 hours (unless specified otherwise), by exposing the latex to air. Aliquots of the latex were analyzed by <sup>1</sup>H-NMR and SEC to determine conversion, molecular weight and dispersity. Conversion was calculated by the integral area of a peak at 5.8 ppm (I<sub>5.8</sub>) and a peak in the range of 6.5 to 7.7 ppm (I<sub>6.5-7.7</sub>) using the following equation: Conversion of Styrene=100 x (1-[(5 x I<sub>5.8</sub>)/(I<sub>6.5-7.7</sub> – I<sub>5.8</sub>)]). In parallel, the hot latex (70 °C) was analyzed by DLS to determine the particle size and polydispersity.

#### 1.9- RAFT miniemulsion polymerization of styrene for macro-CTAs A0 to A4 - Molar ratio

Procedure 1.7 was followed by keeping the molar ratio between [macro-CTA] : [STY] : [AIBN] : [SDS] to 1: 108 : 0.1 : 0.3 and thus, varying the mass of macro-CTA as followed : 19 mg for A0, 22.4 mg for A1, 25 mg for A2, 30.2 mg for A3 and 36.7 mg for A4.

1.10- Synthesis of P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>, A5 and A6, utilized as macro-chain transfer agent (macro-CTA) -  $M_n$ , copolymer vary while the % of HPMA is kept constant to ~ 20 %.

Procedure 1.1 was followed by only modifying the molar ratio between ECT, DEGMA and HPMA and monitoring the conversion and reaction time and conversion by <sup>1</sup>H-NMR. For A5, the molar ratio was maintained to [ECT]: [DEGMA] : [HPMA]= 1: 20: 10 (8h), and for A6 to [ECT]: [DEGMA] : [HPMA]= 1: 80: 40 (8h).

# 1.11- Synthesis of P(TEGMA-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> utilized as macro-CTA – C0 (19 % TEGMA)

DEGMA (2 g, 0.010 mol, 50 equiv.), ECT (56 mg, 0.0002 mol, 1 equiv.), TEGMA (0.59 g, 0.0026 mol, 12 equiv.), and ACPA (5.61mg, 0.00002 mol, 0.1 equiv.) were dissolved in dioxane (10 mL) and placed in a 25 mL round bottom flask. After closing the flask with a septum, the solution was degassed with nitrogen for one hour and placed in a preheated oil bath (70 °C) at 300 rpm. After 8.5 hours, the reaction was cooled down in an ice bath, exposed to air and sampled to determine the DEGMA and TEGMA conversion by <sup>1</sup>H-NMR. The solution was then dialyzed against acetone (500 mL) for 1 hour to remove dioxane from the solution. Then, the solution was precipitated in petroleum ether, isolated by centrifugation, and re-dissolved in acetone. This step was repeated three times to remove unreacted monomers. The product was dried in a vacuum oven for 48 h and analyzed by SEC and <sup>1</sup>H-NMR. Conversion of DEGMA and TEGMA were calculated by the integral area of a peak at 6.0 ppm (I<sub>6.0</sub>) and a peak in the range 3.8-4.3 (I<sub>3.9-4.3</sub>) using the following equation: Conversion =  $100 \times [1-(2 \times I_{6.0}/I_{3.9-4.3})]$ 

## 1.12- Synthesis of P(PEGMA-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> utilized as macro-CTA – D0 (19 % PEGMA)

DEGMA (2 g, 0.010 mol, 50 equiv.), ECT (56 mg, 0.0002 mol, 1 equiv.), PEGMA (0.76 g, 0.0026 mol, 12 equiv.), and ACPA (5.61mg, 0.00002 mol, 0.1 equiv.) were dissolved in dioxane (10 mL) and placed in a 25 mL round bottom flask. After closing the flask with a septum, the solution was degassed with nitrogen for one hour and placed in a preheated oil bath (70 °C) at 300 rpm. After 8 hours, the reaction was cooled down in an ice bath, exposed to air and sampled to determine the DEGMA and PEGMA conversion by <sup>1</sup>H-NMR. The solution was then dialyzed against acetone (500 mL) for 1 hour to remove dioxane from the solution. Then, the solution was precipitated in petroleum ether, isolated by centrifugation, and re-dissolved in acetone. This step was repeated three times to remove unreacted monomers. The product was dried in a vacuum oven for 48 h and analyzed by SEC and <sup>1</sup>H-NMR. Conversion of DEGMA and PEGMA were calculated by the integral area of a peak at 6.0 ppm (I<sub>6.0</sub>) and a peak in the range 3.8-4.3 (I<sub>3.9-4.3</sub>) using the following equation: Conversion=  $100 \times [1-(2 \times I_{6.0}/I_{3.9-4.3})]$ 

#### 1.13- Synthesis of P(HEMA-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> utilized as macro-CTA – E0 (19 % HEMA)

DEGMA (2 g, 0.010 mol, 50 equiv.), ECT (56 mg, 0.0002 mol, 1 equiv.), HEMA (0.44 g, 0.0034 mol, 16 equiv.), and ACPA (5.61mg, 0.00002 mol, 0.1 equiv.) were dissolved in DMSO (10 mL) and placed in a 25 mL round bottom flask. After closing the flask with a septum, the solution was degassed with nitrogen for one hour and placed in a preheated oil bath (70 °C) at 300 rpm. After 6 hours, the reaction was cooled down in an ice bath, exposed to air. The solution was then dialyzed against acetone (500 mL) for 1 hour to remove DMSO from the solution. Then, the solution was precipitated in petroleum ether: diethyl ether (1:1, v/ v), isolated by centrifugation, and re-dissolved in a vacuum oven for 48 h and analyzed by SEC and <sup>1</sup>H-NMR. The ratio of DEGMA and HEMA was calculated by the integral area of a peak at 4.7 ppm (I<sub>4.7</sub>) and a peak in the range 3.8–4.3 (I<sub>3.8–4.3</sub>) using the following equation: Ratio HEMA/DEGMA=  $100 \times [I_{4.7}/(I_{3.8-4.3}-4I_{4.7})+I_{4.7}]$ .

### 1.14- Synthesis of P(MAAm-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> utilized as macro-CTA – F0 (23 % MAAm), F1(14 % MAAm), and F2 (35 % MAAm)

DEGMA (2 g, 0.010 mol, 60 equiv.), ECT (46 mg, 0.0002 mol, 1 equiv.), MAAm (0.71 g, 0.0083 mol, 47 equiv.), and ACPA (4.67 mg, 0.0002 mol, 0.1 equiv.) were dissolved in DMSO (10 mL) and placed in a 25 mL round bottom flask. After closing the flask with a septum, the solution was degassed with nitrogen for one hour and placed in a preheated oil bath (70 °C) at 300 rpm. After 7 hours, the reaction was cooled down in an ice bath, exposed to air. The solution was then dialyzed against acetone (500 mL) for 1 hour to remove DMSO from the solution. Then, the solution was precipitated in petroleum ether: diethyl ether (1:1, v/ v), isolated by centrifugation, and re-dissolved in a vacuum oven for 48 h and analyzed by SEC and <sup>1</sup>H-NMR. Conversion of DEGMA and MAAm were calculated by the integral area of a peak at 6.0 ppm (I<sub>6.0</sub>) and a peak in the range 3.8–4.3 (I<sub>3.8–4.3</sub>) using the following equation: Conversion of DEGMA =  $100 \times [1-(2 \times I_{6.0}/I_{3.8–4.3})]$ . Conversion of MAAm was calculated by the integral area of a peak at 5.3 ppm (I<sub>6.8-7.8</sub>) and a peak in the range 4.6–4.7 (I<sub>5.4</sub>) using the following equation: Conversion of MAAm =  $100 \times [1-(2 I_{5.4}/I_{6.8-7.8})]$ .

For F1 (14 % MAAm) and F2 (35 % MAAm), the same procedure was followed by only modifying the molar ratio between ECT, DEGMA and MAAm and monitoring the polymerization by <sup>1</sup>H-NMR. For F1 the molar ratio was maintained at [ECT]: [DEGMA] : [MAAm]= 1: 40: 10 (6 h30) and, for F2 at [ECT]: [DEGMA] : [MAAm]= 1: 40: 30 (7h).

#### 1.15- Extraction experiment for macro-CTAs C0,D0,E0 and F0

The macro-CTA (25 mg) was dissolved in the water phase (1 mL) and top up with styrene (0.5 mL). Then, the solution was shaken for 10 seconds by hand, followed by centrifugation for 30 minutes at 8000 rpm to observe phase separation. Subsequently, the top layer and bottom layer (50  $\mu$ L) were dissolved in 1 mL of DMAC and analyzed by SEC to quantify how much macro-CTA were dissolved in each phase.

### 1.16- RAFT miniemulsion polymerization of styrene with P(MAAm-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F0) as macro-CTA resulting in nanoparticles with different morphologies

The macro-CTA (F0, 25 mg) was added in a 2 mL glass vial and was dissolved with an aqueous solution of SDS (0.25 mg of SDS in 2 mL of deionized water). In parallel, a stock solution was prepared containing 2 mg of AIBN dissolved in 1166  $\mu$ L of styrene. From this stock solution, 35  $\mu$ L (0.06 mg of AIBN) was transferred on the top of the SDS and macro-CTA solution. The vial was closed with a cap and shaken for 10 seconds by hand at room temperature. Then, the vial was place in a preheated oven (70 °C). Polymerization was stopped, after 6 or 7 hours, by exposing the latex to air. Aliquots of the latex were analyzed by <sup>1</sup>H-NMR and SEC to determine conversion, molecular weight and dispersity. Conversion was calculated by the integral area of a peak at 5.8 ppm ( $I_{5.8}$ ) and a peak in the range of 6.5 to 7.7 ppm  $(I_{6.5-7.7})$  using the following equation: Conversion of Styrene=100 x  $(1-[(5 \times I_{5.8})/(I_{6.5-7.7} - I_{5.8})])$ . In parallel, the hot latex (70 °C) was analyzed by DLS to determine the particle size and polydispersity. After polymerization and cooling down to room temperature, 100 µL of latex was transferred in a 1.5 mL vials together with a small amount of toluene (10 µL) to induce the shape transformation from emulsion spheres to vesicles. To obtain worms balls and worms like morphologies, other DP's for the polystyrene blocks were targeted by simply varying the amount of styrene to 10 uL (DP(STY)=38), 14 uL (DP(STY)=54) and adjusting the amount of added toluene (1 µL).

Table S1. SEC, <sup>1</sup>H-NMR, DLS, and inverse pendant drop tensiometry data of macro-CTA P(HPMA*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>, A0, A1, A2, A3, and A4 corresponding to 0, 10, 20, 30 and 43 % HPMA respectively.

|       |           | SE             | С    |        | <sup>1</sup> H-NMF | R    | DLS             | Inverse pendant drop tensiometry             |
|-------|-----------|----------------|------|--------|--------------------|------|-----------------|----------------------------------------------|
| Entry | macro-CTA | <b>M</b> n,exp | Ð    | Repeat | unit               | НРМА | T <sub>cp</sub> | IFT between styrene and water +<br>macro-CTA |
|       |           |                |      | DEGMA  | HPMA               | [%]  | [ °C ]          | [ mN/m ]                                     |
| 1     | A0        | 6700           | 1.19 | 31     | 0                  | 0    | 24              | 11.72 (+/-0.85)                              |
| 2     | A1        | 7900           | 1.17 | 31     | 3.5                | 10   | 30              | 4.29 (+/-0.10)                               |
| 3     | A2        | 8900           | 1.19 | 32     | 8                  | 20   | 38              | 0.49 (+/-0.06)                               |
| 4     | A3        | 10700          | 1.19 | 30     | 13                 | 30   | 46              | 1.15 (+/-0.11)                               |
| 5     | A4        | 13000          | 1.17 | 31     | 24                 | 43   | 54              | 3.46 (+/-0.25)                               |



A0, A1, A2, A3 and A4 - 0, 10, 20, 30 and 43 % HPMA respectively.



Figure S2. Digital pictures of macro-CTA P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> A0, A1, A2, A3 and A4 - 0, 10, 20, 30 and 43 % HPMA respectively disolved in water at room temperature and after 10 seconds of manual shaking

Table S2. DLS data for styrene miniemulsion prepared simply by handshaking (10 seconds) with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg : 35  $\mu$ L : 0.25 mg in 2 mL of deionized water using as macro-CTAs A0 (entry 1), A1 (entry 2), A2 (entry 3), A3 (entry 4) and A4 (entry 5).

|       |     |      |                | DLS -    | - 25 °C   |      |      |                | DL     | S – 70 °C |     |      |
|-------|-----|------|----------------|----------|-----------|------|------|----------------|--------|-----------|-----|------|
| Entry | CTA | НРМА | Number<br>Mean | σ        | Z-average | σ    | Pdl  | Number<br>Mean | σ      | Z-average | σ   | Pdl  |
|       |     | [%]  |                | d [nm]   |           |      |      |                | d [nm] |           |     |      |
| 1     | A0  | 0    | 642            | 26       | 689       | 2    | 0.11 | 650            | 14     | 725       | 28  | 0.16 |
| 2     | A1  | 10   | 321            | 7        | 373       | 6    | 0.15 | 296            | 7      | 416       | 22  | 0.17 |
| 3     | A2  | 20   | 180            | 7        | 235       | 4    | 0.21 | 191            | 4      | 249       | 7   | 0.23 |
| 4     | A3  | 30   | 169, 3332      | 51, 1583 | 4413      | 1469 | 0.71 | 351            | 105    | 2939      | 994 | 0.96 |
| 5     | A4  | 43   | 3700           | 1868     | 3554      | 2656 | 0.27 | 435            | 15     | 613       | 1   | 0.27 |



Figure S3. DLS size (number mean) of a styrene miniemulsion formed by handshaking (10 seconds) at room temperature (yellow) or at 70 °C (purple) with the following formulation (mass ratio constant):  $[macro-CTA] : [STY] : [SDS] = 25 mg : 35 \mu L : 0.25 mg$ , in 2 mL of water where A0(0 % HPMA), A1(10 % HPMA), A2(20 % HPMA), A3(30 % HPMA) and A4(43 % HPMA) were utilized as macro-CTAs. It is noted that there are two size distributions for samples prepared at room temperature using A3.



Figure S4. Digital pictures of the phase separation after 0, 2, and 8 days of the miniemulsions formed with macro-CTA P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> A0, A1, and A2 - 0, 10 and 20 % HPMA respectively.

## Table S3. Summary of macro-CTAs (A0, A1, A2, A3, and A4) solubility in water (12.5 mg/ml) and in styrene (12.5 mg/ml).

| Entry |         |             | r       | nacro-CTA | <b>k</b> |          |
|-------|---------|-------------|---------|-----------|----------|----------|
|       |         | A0          | A1      | A2        | A3       | A4       |
| 1     | Water   | V> 5 min ** | V 2 min | V 2 min   | Soluble  | Soluble  |
| 2     | Styrene | Soluble     | Soluble | V 2 min   | V> 5 min | V> 5 min |

\*V= vortex \*\* The sample was put in the fridge for 5 min



Figure S5. Digital picture of macro-CTAs A0, A1, A2, A3, and A4 dissolved in water (12.5 mg/ml, blue caps) and in styrene (12.5 mg/ml, red caps) before any vortexing. The green boxes represent the vials with immediate solubility in the phases.

Table S4. DLS data for styrene miniemulsion formed by handshaking (10 seconds) with the following formulation (molar ratio constant): [macro-CTA] : [STY] : [SDS] = 1 : 108 : 0.3 in 2 mL of

deionized water using as macro-CTAs A0 (entry 1), A1 (entry 2), A2 (entry 3), A3 (entry 4) and A4 (entry

5).

|       | maara |      |                | DLS –   | 25 °C         |     |      |                | DL    | S – 70 °C     |    |      |
|-------|-------|------|----------------|---------|---------------|-----|------|----------------|-------|---------------|----|------|
| Entry | CTA   | HPMA | Number<br>Mean | σ       | Z-<br>average | σ   | Pdl  | Number<br>Mean | σ     | Z-<br>average | σ  | Pdl  |
|       |       | [%]  |                | d [nm]  |               |     |      |                | d [nm | ן]            |    |      |
| 1     | A0    | 0    | 690            | 65      | 741           | 29  | 0.13 | 688            | 20    | 726           | 3  | 0.10 |
| 2     | A1    | 10   | 322            | 7       | 377           | 1   | 0.13 | 312            | 17    | 414           | 3  | 0.19 |
| 3     | A2    | 20   | 173            | 3       | 241           | 3   | 0.30 | 187            | 6     | 251           | 5  | 0.26 |
| 4     | A3    | 30   | 61, 514        | 41, 503 | 2231          | 281 | 0.91 | 350            | 15    | 808           | 97 | 0.51 |
| 5     | A4    | 43   | 3800           | 1200    | 6400          | 222 | 0.29 | 633            | 37    | 882           | 22 | 0.46 |



Figure S6. DLS size (number mean) of a styrene miniemulsion formed by handshaking (10 seconds) at room temperature (yellow) or at 70 °C (purple) with the following formulation (molar ratio constant): [macro-CTA] : [STY] : [SDS] = 1 : 108 : 0.3, in 2 mL of deonized water where A0 (0 % HPMA), A1(10 % HPMA), A2(20 % HPMA), A3(30 % HPMA) and A4(43 % HPMA) were utilized as macro-CTAs.

Table S5. SEC, <sup>1</sup>H-NMR, DLS, and inverse pendant drop tensiometry data of macro-CTAs  $P(HPMA-co-DEGMA)-SC(=S)SC_2H_5$ , B0, B1, B2, B3, and B4 corresponding to 0, 10, 18, 30, and 40 % HPMA respectively. The  $M_n$  was maintained to approximately ~ 8000.

|       |           | SE             | С    |        | <sup>1</sup> H-NMF | र    | DLS             | Inverse pendant drop tensiometry             |
|-------|-----------|----------------|------|--------|--------------------|------|-----------------|----------------------------------------------|
| Entry | macro-CTA | <b>M</b> n,exp | Ð    | Repeat | tunit              | НРМА | T <sub>cp</sub> | IFT between styrene and water +<br>macro-CTA |
|       |           |                |      | DEGMA  | HPMA               | [%]  | [ °C ]          | [ mN/m ]                                     |
| 1     | B0        | 7700           | 1.22 | 38     | 0                  | 0    | 24              | 11.26 (+/-0.35)                              |
| 2     | B1        | 7900           | 1.17 | 31     | 3                  | 10   | 30              | 4.29 (+/-0.10)                               |
| 3     | B2        | 8200           | 1.18 | 27     | 6                  | 18   | 34              | 0.86 (+/-0.07)                               |
| 4     | B3        | 8300           | 1.19 | 22     | 10                 | 30   | 46              | 1.20 (+/-0.18)                               |
| 5     | B4        | 8100           | 1.19 | 19     | 12.5               | 40   | 50              | 2.95 (+/-0.21)                               |



Figure S7. <sup>1</sup>H-NMR spectrum in DMSO-d6 of macro-CTAs P(HPMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> B0, B1, B2, B3, and B4 - 0, 10, 18, 30, and 40 % HPMA respectively.



Figure S8. a) Example pictures of interfacial tension measured by inverse pendant drop of a styrene droplet in deionized water + macro-CTA B0 (red), B1 (blue), B2 (yellow), B3 (green), and B4 (purple, 12.5 mg/mL). The pictures were flipped before analyzing with the MATLAB code. b) Digital picture of styrene miniemulsion formed by handshaking (10 seconds) at room temperature with the following formulation (molar/mass ratio constant): [macro-CTA] : [STY] : [SDS] = 1 (25 mg): 97 (35  $\mu$ L) : 0.3 (0. 25 mg), in 2 mL of deionized water. From left to right, B0 (0 % HPMA), B1 (10 % HPMA), B2 (18 % HPMA), B3 (30 % HPMA) and B4 (40 % HPMA) were utilized as macro-CTAs.

Table S6. DLS data of a styrene miniemulsion formed by handshaking (10 seconds), at room temperature (yellow) or at 70 °C (purple), with the following formulation (molar/mass ratio constant):

[macro-CTA] : [STY] : [SDS] = 1 (25 mg): 97 (35  $\mu$ L) : 0.3 (0. 25 mg), in 2 mL of deonized water where B0 (entry 1), B1 (entry 2), B2 (entry 3), B3 (entry 4) and B4 (entry 5) were utilized as macro-CTAs.

|       |     |      |                | DLS   | 6 – 25 °C |     |      |                | DL    | S – 70 °C |    |      |
|-------|-----|------|----------------|-------|-----------|-----|------|----------------|-------|-----------|----|------|
| Entry | CTA | НРМА | Number<br>Mean | σ     | Z-average | σ   | Pdl  | Number<br>Mean | σ     | Z-average | σ  | Pdl  |
|       |     | [%]  |                | d [nn | n]        |     |      |                | d [nm | 1]        |    |      |
| 1     | BO  | 0    | 563            | 31    | 599       | 29  | 0.10 | 566            | 10    | 637       | 8  | 0.14 |
| 2     | B1  | 10   | 321            | 7     | 373       | 6   | 0.15 | 296            | 7     | 416       | 22 | 0.17 |
| 3     | B2  | 18   | 194            | 22    | 295       | 7   | 0.28 | 228            | 13    | 364       | 29 | 0.40 |
| 4     | B3  | 30   | 140,2620       | 3400  | 3200      | 446 | 0.78 | 189, 401       | 112   | 660       | 45 | 0.45 |
| 5     | B4  | 40   | 2088           | 63    | 7535      | 219 | 0.08 | 501            | 34    | 875       | 38 | 0.53 |



Figure S9. DLS size (number mean) of a styrene miniemulsion formed by handshaking (10 seconds) at room temperature (yellow) or at 70 °C (purple) with the following formulation (molar/mass ratio constant): [macro-CTA] : [STY] : [SDS] = 1 (25 mg): 97 (35  $\mu$ L) : 0.3 (0. 25 mg), in 2 mL of deonized water where B0 (0 % HPMA), B1 (10 % HPMA), B2 (18 % HPMA), B3 (30 % HPMA) and B4 (40 % HPMA) were utilized as macro-CTAs.



Figure S10. Example picture of IFT measured by inverse pendant drop of a styrene droplet in deionized water. The picture was flipped before analyzing with the MATLAB code.

Table S7. <sup>1</sup>H-NMR data of RAFT miniemulsion *in situ* kinetic study of styrene using A2 as macro-CTAs. Polymerization conditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 6.25 mg : 8.75  $\mu$ L : 0.015 mg : 0.06 mg in 0.5 mL of deuterium oxide. The polymerization was carried out in a 70 °C preheated NMR for 2 hours.

| 52    |       | NIME       |
|-------|-------|------------|
| Entry | Time  |            |
| Linuy | Time  | Conversion |
|       | [min] | [%]        |
| 1     | 1     | 0.0        |
| 2     | 5     | 0.5        |
| 3     | 10    | 3.3        |
| 4     | 15    | 6.2        |
| 5     | 20    | 9.0        |
| 6     | 25    | 10.4       |
| 7     | 30    | 11.8       |
| 8     | 35    | 15.9       |
| 9     | 40    | 17.2       |
| 10    | 45    | 21.3       |
| 11    | 50    | 24.0       |
| 12    | 55    | 25.3       |
| 13    | 60    | 29.2       |
| 14    | 70    | 34.4       |
| 15    | 80    | 38.2       |
| 16    | 90    | 44.4       |
| 17    | 100   | 49.3       |
| 18    | 110   | 55.3       |
| 19    | 120   | 57.7       |
|       |       |            |



Figure S11. <sup>1</sup>H-NMR traces of RAFT miniemulsion *in situ* kinetic study of styrene using A2 as macro-CTA. Polymerization conditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] =  $6.25 \text{ mg} : 8.75 \mu\text{L} : 0.015 \text{ mg} : 0.06 \text{ mg}$  in 0.5 mL of deuterium oxide. The polymerization was carried out in a 70 °C preheated NMR for 2 hours.

Table S8.SEC, <sup>1</sup>H-NMR, and DLS data of RAFT miniemulsion polymerization of styrene using A0(entry 1), A1 (entry 2), A2 (entry 3), A3 (entry 4), and A4 (entry 5) as macro-CTAs. Polymerizationconditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg :

 $35 \ \mu\text{L}$  : 0.06 mg : 0.25 mg in 2 mL of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours.

|       | maara | M (maara |      | Maara CTALLETYL |                          | SE                        | с    | NMR        |                | DLS    | – 70 °C       |   |      |
|-------|-------|----------|------|-----------------|--------------------------|---------------------------|------|------------|----------------|--------|---------------|---|------|
| Entry | CTA   | -CTA)    | HPMA | [AIBN] : [SDS]  | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð    | Conversion | Number<br>mean | σ      | Z-<br>average | σ | Pdl  |
|       |       |          | [%]  |                 |                          |                           |      | [%]        |                | d [nm] |               |   |      |
| 1     | A0    | 6700     | 0    | 1:81:0.1:0.2    | 10800                    | 9500                      | 1.21 | 48         | 467            | 9      | 564           | 6 | 0.13 |
| 2     | A1    | 7900     | 10   | 1:96:0.1:0.3    | 14400                    | 11500                     | 1.30 | 65         | 272            | 31     | 395           | 8 | 0.24 |
| 3     | A2    | 8900     | 20   | 1:108:0.1:0.3   | 19700                    | 19400                     | 1.33 | 96         | 183            | 2      | 232           | 1 | 0.10 |
| 4     | A3    | 10700    | 30   | 1:130:0.2:0.4   | 17700                    | 14300                     | 1.66 | 52         | 290            | 23     | 390           | 7 | 0.24 |
| 5     | A4    | 13000    | 43   | 1:158:0.2:0.4   | 19500                    | 17200                     | 2.40 | 40         | 85             | 16     | 255           | 9 | 0.45 |



Figure S12. SEC traces (RI detector) of RAFT miniemulsion polymerization of styrene using a) A0, b) A1, c) A2, d) A3 and e) A4 as macro-CTAs. Polymerization conditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg in 2 ml of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours. In panels d and e, SEC traces using UV detectors were compared with RI showing the high molecular weight distributions have little to no UV signals.

Table S9. SEC, <sup>1</sup>H-NMR, and DLS data of RAFT miniemulsion polymerization of styrene using A0 (entry 1) and A1 (entry 2) as macro-CTAs. Polymerization conditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg, in 2 mL of deionized water. The polymerizations were carried out in a 70 °C preheated oven for 9 hours (entry 1) and 8 hours (entry 2).

|       | maara | M (maara |      | Maara CTAL (STV)                       |       |                          | SE                        | с    | NMR |                | DLS    | – 70 °C       |   |      |
|-------|-------|----------|------|----------------------------------------|-------|--------------------------|---------------------------|------|-----|----------------|--------|---------------|---|------|
| Entry | CTA   | CTA)     | HPMA | [Macro-CTA] [[STT]<br>: [AIBN] : [SDS] | Time  | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð    | с   | Number<br>mean | σ      | Z-<br>average | σ | PDI  |
|       |       |          | [%]  |                                        | [ h ] |                          |                           |      | [%] |                | d [nm] |               |   |      |
| 1     | A0    | 6700     | 0    | 1:81:0.1:0.2                           | 9     | 14600                    | 11700                     | 1.34 | 94  | 337            | 13     | 483           | 1 | 0.18 |
| 2     | A1    | 7900     | 10   | 1:96:0.1:0.3                           | 8     | 17200                    | 13400                     | 1.24 | 94  | 262            | 12     | 345           | 1 | 0.16 |



Figure S13. SEC traces of RAFT miniemulsion polymerization of styrene using a) A0 and b) A1 as macro-CTA. Polymerization conditions are the following (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg , in 2 ml of deionized water. The polymerizations were carried out in a 70 °C preheated oven for a) 9 hours and b) 8 hours.

Table S10.SEC, <sup>1</sup>H-NMR and DLS data of RAFT miniemulsion polymerization of styrene using A0(entry 1), A1 (entry 2), A2 (entry 3), A3 (entry 4) and A4 (entry 5) as macro-CTAs. Polymerization23

conditions are the following (molar ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 1 : 108 : 0.1 : 0.3 in 2 ml of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours.

|       | maara | M (maara |      | Maara CTALLISTVL              |                          | SE                        | с    | NMR |                | DL | S – 70 °C     |    |      |
|-------|-------|----------|------|-------------------------------|--------------------------|---------------------------|------|-----|----------------|----|---------------|----|------|
| Entry | CTA   | CTA)     | HPMA | [AIBN] : [SDS]                | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð    | с   | Number<br>mean | σ  | Z-<br>average | σ  | Pdl  |
|       |       |          | [%]  |                               |                          |                           |      | [%] | d [nm]         |    | d [nm]        |    |      |
| 1     | A0    | 6700     | 0    | 1 (19 mg) : 108 : 0.1 : 0.3   | 10700                    | 10500                     | 1.74 | 43  | 490            | 29 | 599           | 9  | 0.19 |
| 2     | A1    | 7900     | 10   | 1 (22.4 mg) : 108 : 0.1 : 0.3 | 14800                    | 10700                     | 1.37 | 62  | 280            | 13 | 359           | 3  | 0.19 |
| 3     | A2    | 8900     | 20   | 1 (25 mg) : 108 : 0.1 : 0.3   | 19700                    | 19400                     | 1.33 | 96  | 183            | 2  | 232           | 1  | 0.10 |
| 4     | A3    | 10700    | 32   | 1 (30 mg) : 108 : 0.1 : 0.3   | 10700                    | 15800                     | 1.60 | 62  | 271            | 3  | 390           | 12 | 0.22 |
| 5     | A4    | 13000    | 43   | 1 (37 mg) : 108 : 0.1 : 0.3   | 13000                    | 19600                     | 3.2  | 63  | 79             | 17 | 239           | 7  | 0.38 |



Figure S14. SEC traces (RI detector) of RAFT miniemulsion polymerization of styrene using a) A0, b) A1, c) A2, d) A3 and e) A4 as macro-CTA. Polymerization conditions are the following (molar ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 1 : 108 : 0.1 : 0.3, in 2 ml of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours. Small figures show SEC traces comparing UV and RI detectors indicating the high molecular weight distributions have little to no UV signals.

Table S11. SEC, <sup>1</sup>H-NMR, and DLS data of RAFT miniemulsion polymerization of styrene using B0 (entry 1), B1 (entry 2), B2 (entry 3), B3 (entry 4), and B4 (entry 5) as macro-CTA. Polymerization conditions are the following (molar/mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 1 (25 mg) : 97 (35  $\mu$ l) : 0.1 (0.07 mg) : 0.3 (0.25 mg) in 2 ml of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours.

|       | maara     | M (maara |      | Maara CTALLETVI |                          | SE                        | С    | NMR |                | DL     | S – 70 °C     |     |      |
|-------|-----------|----------|------|-----------------|--------------------------|---------------------------|------|-----|----------------|--------|---------------|-----|------|
| Entry | CTA       | -CTA)    | HPMA | [AIBN] : [SDS]  | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð    | с   | Number<br>mean | σ      | Z-<br>average | σ   | Pdl  |
| -     |           |          | [%]  |                 |                          |                           |      | [%] | d [nm]         |        | d [nm]        |     |      |
| 1     | B0        | 7900     | 0    | 1:97:0.1:0.3    | 14800                    | 11500                     | 1.32 | 69  | 123, 379       | 4,2    | 458           | 5   | 0.14 |
| 2     | <b>B1</b> | 7900     | 10   | 1:97:0.1:0.3    | 15300                    | 11800                     | 1.26 | 74  | 263            | 15     | 357           | 7   | 0.19 |
| 3     | B2        | 8000     | 18   | 1:97:0.1:0.3    | 17000                    | 16500                     | 1.29 | 90  | 197            | 8      | 246           | 7   | 0.11 |
| 4     | B3        | 8000     | 30   | 1:97:0.1:0.3    | 13000                    | 10900                     | 1.88 | 53  | 356            | 54     | 446           | 3   | 0.15 |
| 5     | B4        | 8000     | 40   | 1:97:0.1:0.3    | 9100                     | 11000                     | 2.37 | 11  | 398, 67        | 207,25 | 2209          | 432 | 0.88 |



Figure S15. SEC traces (RI detector) of RAFT miniemulsion polymerization of styrene using a) B0, b) B1, c) B2, d) B3 and e) B4 as macro-CTAs. Polymerization conditions are the following (molar/mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 1 (25 mg) : 97 (35  $\mu$ l) : 0.1 (0.07 mg) : 0.3 (0.25 mg), in 2 ml of deionized water. All polymerizations were carried out in a 70 °C preheated oven for 6 hours. Small figures show SEC traces comparing UV and RI detectors indicating the high molecular weight distributions have little to no UV signals.

Table S12. SEC, <sup>1</sup>H-NMR, DLS, and inverse pendant drop tensiometry data of macro-CTA P(HPMAco-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>, A5 & A6, corresponding to  $\sim 20$  % HPMA and presenting increased molecular weight.

|       |           | SE             | С    | <sup>1</sup> H-NMR |      |      | DLS    | Inverse pendant drop tensiometry             |
|-------|-----------|----------------|------|--------------------|------|------|--------|----------------------------------------------|
| Entry | macro-CTA | <b>M</b> n,exp | Ð    | Repeat unit        |      | НРМА | LCST   | IFT between styrene and water +<br>macro-CTA |
|       |           |                |      | DEGMA              | HPMA | [%]  | [ °C ] | [ mN/m ]                                     |
| 1     | A5        | 5200           | 1.17 | 15                 | 3.8  | 20   | 32     | 1.65 (+/- 0.26)                              |
| 2     | A6        | 17100          | 1.17 | 61                 | 15   | 20   | 38     | 0.12 (+/- 0.03)                              |



Figure S16. <sup>1</sup>H-NMR spectrum in DMSO-d6 of macro-CTA P(HPMA-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>, A5 & A6, corresponding to  $\sim 20$  % HPMA and presenting increased molecular weight.



Figure S17. Digital pictures of miniemulsion formed with macro-CTAs A5, A2 and A6 by simple handshaking (10 seconds) with the following formulation (mass ratio constant): [macro-CTA] : [STY] :  $[SDS] = 25 \text{ mg} : 35 \mu\text{L} : 0.25 \text{ mg} \text{ in } 2 \text{ mL} \text{ of deonized water.}$ 

Table S13. DLS data for styrene miniemulsion prepared simply by handshaking (10 seconds) with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg : 35  $\mu$ L : 0.25 mg in 2 mL of deionized water using as macro-CTAs A5 (entry 1), A2(entry 2), A6 (entry 3).

|       |     |      |                | D  | LS – 25 °C    |     | DLS – 70 °C |                             |    |        |     |      |
|-------|-----|------|----------------|----|---------------|-----|-------------|-----------------------------|----|--------|-----|------|
| Entry | CTA | НРМА | Number<br>mean | σ  | Z-<br>average | σ   | Pdl         | Number Z-<br>mean σ average |    | σ      | Pdl |      |
|       |     | [%]  |                |    | d [nm]        |     |             |                             |    | d [nm] |     |      |
| 1     | A5  | 19   | 445            | 59 | 803           | 172 | 0.47        | 385                         | 21 | 816    | 235 | 0.46 |
| 2     | A2  | 20   | 180            | 7  | 235           | 4   | 0.21        | 191                         | 4  | 249    | 7   | 0.23 |
| 3     | A6  | 20   | 105            | 9  | 178           | 7   | 0.37        | 108                         | 9  | 176    | 5   | 0.30 |



Figure S18. DLS size (by number) of styrene miniemulsion prepared simply by handshaking (10 seconds) with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg :  $35 \mu$ L : 0.25 mg in 2 mL of deionized water using as macro-CTAs A5, A2, A6 at both 25°C and 70 °C.

Table S14. SEC, <sup>1</sup>H-NMR and DLS data of RAFT miniemulsion polymerizations of styrene using A5 (entries 1 & 2), A2 (entry 3), A6 (entry 4) as macro-CTAs with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg in 2 mL of deionized water. All polymerizations were conducted in a preheated oven (70 °C).

|       | maoro |                                   | Imagra CTA1: ISTVI |       |                          | SE                        | с       | NMR |                | DLS – 70 °C |           |     |      |  |  |
|-------|-------|-----------------------------------|--------------------|-------|--------------------------|---------------------------|---------|-----|----------------|-------------|-----------|-----|------|--|--|
| Entry | CTA   | <i>M</i> <sub>n</sub> (macro-CTA) | : [AIBN] : [SDS]   | Time  | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð       | С   | Number<br>mean | σ           | Z-average | σ   | PDI  |  |  |
|       |       |                                   |                    | [ h ] |                          |                           | [%] d[n |     | n]             |             |           |     |      |  |  |
| 1     | A5    | 5200                              | 1:63:0.1:0.2       | 6     | 7800                     | 6400                      | 1.19    | 39  | 369            | 20          | 749       | 189 | 0.37 |  |  |
| 2     | A5    | 5200                              | 1:63:0.1:0.2       | 9     | 10000                    | 7300                      | 1.20    | 74  | 289            | 22          | 386       | 8   | 0.20 |  |  |
| 3     | A2    | 8900                              | 1:108:0.1:0.3      | 6     | 16600                    | 19400                     | 1.26    | 96  | 183            | 3           | 232       | 1   | 0.11 |  |  |
| 4     | A6    | 17100                             | 1:208:0.2:0.6      | 3.45  | 38200                    | 33200                     | 1.33    | 98  | 110            | 5           | 150       | 1   | 0.08 |  |  |



Figure S19. SEC traces of RAFT miniemulsion polymerization of styrene using a) A5, b) A2, c) A6 as macro-CTAs with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg in 2 mL of deionized water.

Table S15. SEC, <sup>1</sup>H-NMR, DLS, and inverse pendant drop tensiometry data of macro-CTA P(TEGMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>, D0 (C0, entry 1), P(PEGMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (D0, entry 2), P(HEMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (E0, entry 3) and, P(MAAm-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F0, entry 4).

| Entry | macro-CTA | monomer 1 | monomer 2 | SE                   | C    | <sup>1</sup> H-NMR | DLS             | Inverse pendant drop tensiometry             |
|-------|-----------|-----------|-----------|----------------------|------|--------------------|-----------------|----------------------------------------------|
|       |           |           |           | M <sub>n,exp</sub> Đ |      | monomer 1          | T <sub>cp</sub> | IFT between styrene and water +<br>macro-CTA |
|       |           |           |           |                      |      | [%]                | [°C]            | mN/m                                         |
| 1     | CO        | TEGMA     | DEGMA     | 8700                 | 1.17 | 19                 | 28              | 10.52 (+/-0.19)                              |
| 2     | D0        | PEGMA     | DEGMA     | 9000                 | 1.19 | 19                 | 34              | 9.27 (+/-0.33)                               |
| 3     | EO        | HEMA      | DEGMA     | 11000                | 1.19 | 19                 | 24              | 2.6 (+/- 0.08)                               |
| 4     | FO        | MAAm      | DEGMA     | 11000                | 1.10 | 23                 | 38              | 0.18 (+/-0.03)                               |



Figure S20. SEC traces of macro-CTA a) P(TEGMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub>(C0), b) P(PEGMA*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (D0), c) P(HEMA-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (E0) and, d) P(MAAm-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F0) and digital pictures of the miniemulsion formed with the following conditions (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg : 35  $\mu$ L : 0.25 mg in 2 mL of deionized water.



Figure S21. <sup>1</sup>H-NMR trace of macro-CTA P(TEGMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (C0).



Figure S22. <sup>1</sup>H-NMR trace of macro-CTA P(PEGMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (D0).



Figure S23. <sup>1</sup>H-NMR trace of macro-CTA P(HEMA-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (E0).



Figure S24. <sup>1</sup>H-NMR trace of macro-CTA P(MAAm-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F0).

Table S16. DLS data for styrene miniemulsion prepared simply by handshaking (10 seconds) with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg :  $35 \mu$ L : 0.25 mg in 2 mL of deionized water using as macro-CTA C0 (entry 1-4), D0 (entry 5-8), E0 (entry 9-12) and F0 (entry 13-16).

|       | maara | _       |                | DLS –    | 25 °C     |    |      |                | DLS    | – 70 °C   |    |      |
|-------|-------|---------|----------------|----------|-----------|----|------|----------------|--------|-----------|----|------|
| Entry | CTA   | Repeat  | Number<br>Mean | σ        | Z-average | σ  | Pdl  | Number<br>Mean | σ      | Z-average | σ  | Pdl  |
|       |       |         |                | d [nm]   | d [nm]    |    |      |                | d [nm] |           |    |      |
| 1     | С0    | 1       | 561, 128       | 59, 15   | 510       | 5  | 0.25 | 400, 174       | 223    | 550       | 7  | 0.28 |
| 2     | С0    | 2       | 526, 195       | 72       | 509       | 1  | 0.42 | 361, 165       | 238    | 481       | 4  | 0.27 |
| 3     | С0    | 3       | 598, 309       | 309, 3   | 549       | 10 | 0.39 | 333, 131       | 206    | 501       | 15 | 0.28 |
| 4     | С0    | Average | 561,210        | 261, 200 | 525       | 21 | 0.35 | 364, 157       | 22, 31 | 511       | 31 | 0.28 |
| 5     | D0    | 1       | 484            | 5        | 540       | 13 | 0.16 | 494            | 19     | 565       | 15 | 0.14 |
| 6     | D0    | 2       | 468            | 30       | 523       | 1  | 0.18 | 467            | 2      | 512       | 3  | 0.15 |
| 7     | D0    | 3       | 488            | 13       | 553       | 4  | 0.18 | 459            | 57     | 587       | 18 | 0.18 |
| 8     | D0    | Average | 492            | 32       | 536       | 12 | 0.17 | 473            | 31     | 555       | 35 | 0.17 |
| 9     | EO    | 1       | 263            | 34       | 393       | 1  | 0.19 | 341            | 56     | 566       | 5  | 0.28 |
| 10    | EO    | 2       | 278            | 8        | 493       | 15 | 0.32 | 358            | 13     | 456       | 3  | 0.24 |
| 11    | EO    | 3       | 344            | 29       | 499       | 1  | 0.29 | 289            | 14     | 424       | 1  | 0.19 |
| 12    | EO    | Average | 299            | 43       | 470       | 48 | 0.27 | 300            | 79     | 502       | 74 | 0.23 |
| 13    | FO    | 1       | 145            | 10       | 316       | 78 | 0.39 | 201            | 3      | 271       | 8  | 0.32 |
| 14    | FO    | 2       | 139            | 3        | 215       | 35 | 0.30 | 177            | 5      | 226       | 5  | 0.20 |
| 15    | FO    | 3       | 146            | 3        | 278       | 37 | 0.41 | 191            | 4      | 263       | 8  | 0.33 |
| 16    | FO    | Average | 144            | 6        | 270       | 63 | 0.36 | 190            | 11     | 252       | 21 | 0.28 |



Figure S25. Miniemulsion formed by simple handshaking (10 seconds) with the following formulation: [macro-CTA] : [Water] : [Styrene]= 25 mg : 1 mL : 0.5 mL which has been dephased by centrifugation and the corresponding SEC traces not normalized of an aliquot of the styrene phase (50  $\mu$ L).

Table S17. SEC, <sup>1</sup>H-NMR, DLS, and inverse pendant drop tensiometry data of macro-CTA P(MAAm-*co*-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F1 & F2).

| Entry | macro-CTA | monomer 1 | monomer 2 | SE                        | с    | <sup>1</sup> H-NMR | DLS             | Inverse pendant drop tensiometry             |  |  |  |  |
|-------|-----------|-----------|-----------|---------------------------|------|--------------------|-----------------|----------------------------------------------|--|--|--|--|
|       |           |           |           | <b>M</b> <sub>n,exp</sub> | Ð    | monomer 1          | T <sub>cp</sub> | IFT between styrene and water +<br>macro-CTA |  |  |  |  |
|       |           |           |           |                           |      | [%]                | [ °C ]          | mN/m                                         |  |  |  |  |
| 1     | F1        | MAAm      | DEGMA     | 7100                      | 1.17 | 14                 | 30              | 1.43 (+/- 1.43)                              |  |  |  |  |
| 2     | F2        | MAAm      | DEGMA     | 8800                      | 1.18 | 35                 | 44              | 1.32 (+/- 0.12)                              |  |  |  |  |



Figure S26. SEC traces and of macro-CTAs a) F1 and b) F2.



Figure S27. <sup>1</sup>H-NMR of macro-CTA P(MAAm-co-DEGMA)-SC(=S)SC<sub>2</sub>H<sub>5</sub> (F1 & F2).

Table S18. DLS data of styrene miniemulsion formed by handshaking (10 seconds) at room temperature with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [SDS] = 25 mg : 35  $\mu$ L : 0. 25 mg, in 2 mL of deionized water with macro-CTA F1 (entry 1-4) and F2 (entry 5-8).

|       |     |         |                | DLS -                    | - 25 °C |      |      |                | D      | LS – 70 °C    |      |      |
|-------|-----|---------|----------------|--------------------------|---------|------|------|----------------|--------|---------------|------|------|
| Entry | CTA | Repeats | Number<br>Mean | Number Ζ-<br>Mean σavera |         | σ    | Pdl  | Number<br>Mean | σ      | Z-<br>average | σ    | Pdl  |
|       |     |         |                | d [nm]                   |         |      |      |                | d [nm] |               |      |      |
| 1     | F1  | 1       | 253            | 32                       | 480     | 39   | 0.33 | 312            | 5      | 500           | 117  | 0.34 |
| 2     | F1  | 2       | 377            | 35                       | 429     | 13   | 0.20 | 343            | 31     | 466           | 11   | 0.21 |
| 3     | F1  | 3       | 300            | 21                       | 389     | 25   | 0.24 | 270            | 15     | 398           | 19   | 0.25 |
| 4     | F1  | Average | 352            | 50                       | 433     | 50   | 0.25 | 310            | 42     | 455           | 69   | 0.28 |
| 5     | F2  | 1       | 171, 3789      | 39, 63                   | 6192    | 775  | 0.30 | 460            | 26     | 1041          | 124  | 0.52 |
| 6     | F2  | 2       | 188, 937       | 183, 999                 | 714     | 86   | 1    | 183            | 18     | 433           | 25   | 0.52 |
| 7     | F2  | 3       | 159, 1360      | 75, 1357                 | 6174    | 1006 | 0.63 | 266            | 48     | 2823          | 195  | 0.95 |
| 8     | F2  | Average | 172, 2028      | 14, 1539                 | 4360    | 3157 | 0.64 | 303            | 142    | 1432          | 1242 | 0.66 |

Table S19. SEC, <sup>1</sup>H-NMR and DLS data of RAFT miniemulsion polymerization of styrene using F0 as macro-CTA with the following formulation (mass ratio constant): [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg in 2 mL of deionized water. The polymerization was conducted in a preheated oven (70 °C) for 7 hours.

| Entry | maara | <i>М</i> <sub>n</sub> (macro-CTA) | Imagro CTAL: ISTVI | Time |                          | SEC                       |      | NMR | DLS – 70 °C    |      |           |   |      |
|-------|-------|-----------------------------------|--------------------|------|--------------------------|---------------------------|------|-----|----------------|------|-----------|---|------|
|       | -CTA  |                                   | : [AIBN] : [SDS]   |      | <b>M</b> <sub>n,th</sub> | <b>M</b> <sub>n,exp</sub> | Ð    | С   | Number<br>Mean | σ    | Z-average | σ | PDI  |
|       |       |                                   |                    | [h]  |                          |                           |      | [%] |                | ı] b | าm]       |   |      |
| 1     | FO    | 11000                             | 1: 134: 0.1: 0.2   | 7    | 24600                    | 21700                     | 1.22 | 98  | 197            | 2    | 260       | 3 | 0.16 |

Table S20. SEC, <sup>1</sup>H-NMR, DLS and morphologies data of RAFT miniemulsion polymerization of styrene using F0 as macro-CTA with the following formulation: [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : vary (10, 14 and 35  $\mu$ L) : 0.06 mg : 0.25 mg in 2 mL of deionized water, entry 1) worms balls, entry 2) worms and 3) vesicles.

| Entry | macro- | M <sub>n</sub> (macro | M <sub>n</sub> (macro | [macro-CTA] : [STY] : | [macro-CTA] : [STY] :<br>[AIBN1 : [SDS1 | Time                      |      | SEC |    | NMR         | Amount of<br>added<br>toluene | Morphologies |           | D  | 0LC - 70 °C |  |  |
|-------|--------|-----------------------|-----------------------|-----------------------|-----------------------------------------|---------------------------|------|-----|----|-------------|-------------------------------|--------------|-----------|----|-------------|--|--|
|       | CIA    | -CTA)                 |                       |                       | <b>M</b> <sub>n,th</sub>                | <b>M</b> <sub>n,exp</sub> | Ð    | с   |    |             | Number<br>mean                | σ            | Z-average | σ  | PDI         |  |  |
|       |        |                       |                       | [h]                   |                                         |                           |      | [%] | μL |             |                               |              |           |    |             |  |  |
| 1     | FO     | 11000                 | 1:38:0.1:0.4          | 6                     | 14000                                   | 13200                     | 1.23 | 76  | 0  | Worms balls | 146                           | 9            | 186       | 2  | 0.19        |  |  |
| 2     | FO     | 11000                 | 1:54:0.1:0.4          | 6                     | 15300                                   | 14000                     | 1.30 | 70  | 1  | Worms       | 201                           | 14           | 232       | 1  | 0.12        |  |  |
| 3     | FO     | 11000                 | 1:134:0.1:0.4         | 6                     | 21400                                   | 19700                     | 1.29 | 80  | 10 | Vesicles    | 197                           | 17           | 309       | 42 | 0.25        |  |  |



Figure S28. TEM pictures of the latex directly after polymerization with the following conditions: [macro-CTA] : [STY] : [AIBN] : [SDS] = 25 mg : 35  $\mu$ L : 0.06 mg : 0.25 mg in 2 mL of deionized water for 6 hours with a final of  $M_n$ = 19700, D= 1.29.