Supporting Information

Ductile Gas Barrier Poly(ester-amide)s Derived from Glycolide

Yoon-Jung Jang, Leire Sangroniz, and Marc A. Hillmyer*

Department of Chemistry, University of Minnesota, Minneapolis, MN55455-0431

*Corresponding author (e-mail:hillmyer@umn.edu)

Materials:

Glycolide (Alasorb), Ethylene diamine (Fisher), 1,4-Diaminobutane (Sigma Aldrich), 1,6-Diaminohexane (Sigma Aldrich), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide•hydrochloride (Oakwood chemical), 4-Dimethylaminopyridine (Oakwood chemical) were purchased and used as received. Succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid were purchased from Sigma-Aldrich and recrystallized from acetone/water. Dichloromethane was obtained from Fisher Scientific and used after drying via the Pure Process Technology Glass Contour Solvent Purification System (Solvent Column). 1,1,1,3,3,3-Hexafluoro-2-isopropanol was purchased from Oakwood chemical and used as received.

Characterization Methods:

¹H NMR and ¹³C NMR spectra were obtained from Bruker Advance III HD 400MHz Spectrometer and Bruker Advance III HD 500MHz. Molar mass of poly(ester-amide)s were estimated using a size exclusion chromatography (SEC) with HFIP (0.35 mL.min⁻¹ at 40 °C) using an EcoSEC system HLC-8240GPC series liquid chromatograph. Size exclusion was conducted with two Tosoh TSKgel SuperAWM-H. Chromatograms were collected using a refractive index detector and. Molecular masses and dispersity were reported by conventional calibration vs. polymethyl methacrylate (PMMA) standards. The polymer solutions were filtered through a 0.2 μm filter (Whatman) before injection into the column. Fourier transform infrared (FTIR) spectra were obtained using a Bruker Alpha Platinum ATR-FTIR instrument with a diamond single bounce crystal. Differential scanning calorimetry (DSC) was recorded on a TA Instruments Q-1000 DSC using hermetically sealed aluminum Tzero pans under nitrogen with heating and cooling rate of 10 °C/min. Thermogravimetric analysis (TGA) was recorded on a TA Instruments Q500 under nitrogen atmosphere at a heating rate of 10 °C.min⁻¹. WAXS experiments were performed at the Sector 5 of the Advanced Photon Source at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at Argonne National Laboratory. Polymer films to measure mechanical properties and gas permeability were obtained using Compact Tape Casting Coater and Doctor Blade-MSK-AFA-H200A at room temperature. Mechanical properties were recorded using Shimadzu Autograph AGS-X Tensile Tester. Oxygen transmission rates of the films were measured with OxTran (Mocon, USA) according to ASTM D3985-02 standard at 0% humidity level with oxygen gas at atmospheric pressure and 23 °C test temperature. The carrier gas was 98% of nitrogen gas and 2% of hydrogen gas. The films of TOC measurements were prepared using Compact Tape Casting Coater with around 0.2 mm thickness. The resulting films were dried overnight at ambient conditions and overnight under vacuum. The films were punched out using a circular die cut (9 mm inner diameter). TOC measurements were performed using a Shimadzu TOC-L analyzer. 50 µL aliquots at various time points were diluted with 9950 µL DI water. The single crystal diffraction data were obtained using a Bruker PHOTON-III diffractometer at 125 K using MoKa radiation (parabolic mirrors) with a frame time of 30 seconds and a detector distance of 5.0 cm. The intensities were corrected for absorption and decay (SADABS). The crystal structures were solved and refined using SHELXT 2014/5 (Sheldrick, 2014) and SHELXL-2018/3 (Sheldrick, 2018), respectively.

Synthetic methods:

Synthesis of N,N'-(ethane-1,2-diyl)bis(2-hydroxyacetamide) (2G): In a 100 ml round bottom flask, ethylene diamine (5.5 ml, 82 mml) was stirred at 0 °C and glycolide (9.5 g, 82 mml) was slowly added, then warm up to room temperature. After reaction is completed, the crude product was

purified by recrystallization from acetone and water to afford the **2G** as yellowish solid (11 g, 78%). ¹H NMR (500 MHz, DMSO-*d*) δ 7.86 (s, 2H), 5.48 (s, 2H), 3.78 (s, 4H), 3.23 – 3.14 (m, 4H). ¹³C NMR (125 MHz, DMSO-*d*) δ 172.2, 61.4, 38.2.

Synthesis of N,N'-(butane-1,4-diyl)bis(2-hydroxyacetamide) (**4***G*): In a 100 ml round bottom flask, 1,4-diaminobutane (7.6 g, 86 mmol) was stirred at 40 °C and glycolide (10 g, 86 mmol) was slowly added. After reaction is completed, the crude product was purified by recrystallization from acetone and water to afford the **4G** as white solid (14 g, 80% yield). ¹H NMR (500 MHz, DMSO-*d*) δ 7.70 (t, *J* = 6.0 Hz, 2H), 5.43 (s, 2H), 3.77 (s, 4H), 3.10 – 3.06 (m, 4H), 1.40 – 1.37 (h, *J* = 3.3 Hz, 4H). ¹³C NMR (125 MHz, DMSO-*d*) δ 171.6, 61.4, 37.7, 26.8.

Synthesis of N,N'-(hexane-1,6-diyl)bis(2-hydroxyacetamide) (**6***G*): In a 500 ml round bottom flask, 1,6-diaminohexane (50 g, 434 mmol) was stirred at 60 °C and glycolide (50 g, 434 mmol) was slowly added. After reaction is completed (30 min), the crude product was purified by recrystallization from acetone and water to afford the **6G** as white solid (75 g, 75% yield). ¹H NMR (500 MHz, DMSO-*d*) δ 7.67 (t, *J* = 6.1 Hz, 2H), 5.41 (t, *J* = 5.8 Hz, 2H), 3.77 (d, *J* = 5.7 Hz, 4H), 3.07 (dt, *J* = 7.2, 6.2 Hz, 4H), 1.50 – 1.34 (m, 4H), 1.25 – 1.22 (m, 4H). ¹³C NMR (125 MHz, DMSO-*d*) δ 171.5, 61.4, 37.9, 29.2, 26.1.¹

General procedures for the synthesis of poly(ester-amide)s: A round bottom flask was charged with diamidodiol (11)mmol), diacid (11)mmol). 1-ethyl-3-(3dimethylaminopropyl)carbodiimide•hydrochloride (6.2 32 mmol), and 4g,

S4

dimethylaminopyridine (0.9 g, 6 mmol) under an argon atmosphere. Dichloromethane (32 ml) was added at room temperature under Ar. The reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with 1,1,1,3,3,3-hexafluoroisopropanol, precipitated in methanol twice and dried for a minimum of 1 day at room temperature in a vacuum oven.

¹H NMR and ¹³C NMR characterization of poly(ester-amide)s:

6G-2

¹H NMR (400 MHz, TFA-*d*) δ 4.97 (s, 4H), 3.51 (t, *J* = 7.6 Hz, 4H), 3.00 (s, 4H), 1.72 (bs, 4H), 1.49 (bs, 4H). ¹³C NMR (100 MHz, TFA-*d*) δ 176.3, 173.2, 64.6, 42.8, 30.4, 30.3, 28.0.

6G-3

¹H NMR (400 MHz, TFA-*d*) δ 4.84 (s, 4H), 3.39 (t, *J* = 7.3 Hz, 4H), 2.63 (t, *J* = 7.3 Hz, 4H), 2.07 (t, *J* = 7.3 Hz, 2H), 1.60 (s, 4H), 1.37 (s, 4H). ¹³C NMR (100 MHz, TFA-*d*) δ 177.4, 173.2, 64.7, 42.7, 34.5, 30.3, 27.9, 21.1.

6G-4

¹H NMR (400 MHz, TFA-*d*) δ 4.83 (s, 4H), 3.40 (s, 4H), 2.57 (s, 4H), 1.74 (s, 4H), 1.60 (s, 4H), 1.37 (s, 4H). ¹³C NMR (100 MHz, TFA-*d*) δ 178.2, 173.2, 64.7, 42.7, 35.1, 30.3, 28.0, 25.6.

6G-5

¹H NMR (400 MHz, TFA-*d*) δ 4.83 (s, 4H), 3.39 (t, *J* = 7.5 Hz, 4H), 2.53 (t, *J* = 7.7 Hz, 4H), 1.70 (p, *J* = 7.6 Hz, 4H), 1.58 (s, *J* = 7.6 Hz, 4H), 1.44 – 1.36 (m, 6H). ¹³C NMR (100 MHz, TFA-*d*) δ 178.8, 173.2, 64.8, 42.7, 35.4, 30.3, 30.0, 27.9, 25.9.

6G-6

¹H NMR (400 MHz, TFA-*d*) δ 4.82 (d, *J* = 2.9 Hz, 4H), 3.38 (t, *J* = 7.0 Hz, 4H), 2.52 (t, *J* = 7.4 Hz, 4H), 1.68 (d, *J* = 8.9 Hz, 4H), 1.59 (s, 4H), 1.37 (s, 8H). ¹³C NMR (100 MHz, TFA-*d*) δ 179.1, 173.3, 64.7, 42.7, 35.6, 30.3, 30.3, 27.9, 26.2.

6G-8

¹H NMR (400 MHz, TFA-*d*) δ 4.83 (s, 4H), 3.40 (t, *J* = 7.4 Hz, 4H), 2.52 (t, *J* = 7.6 Hz, 4H), 1.67 (s, 4H), 1.59 (s, 4H), 1.37 (s, 4H), 1.32 (s, 6H). ¹³C NMR (100 MHz, TFA-*d*) δ 179.5, 173.3, 64.7, 42.6, 35.8, 30.7, 30.7, 30.3, 27.9, 26.5.

2G-4

¹H NMR (400 MHz, TFA-*d*) δ 4.91 (s, 4H), 3.73 (s, 4H), 2.68 (s, 4H), 1.84 (s, 4H). ¹³C NMR (100 MHz, TFA-*d*) δ 178.2, 174.0, 64.9, 41.3, 35.2, 25.6.

4G-4

¹H NMR (400 MHz, TFA-*d*) δ 4.92 (s, 4H), 3.53 (s, 4H), 2.66 (s, 4H), 1.83 (s, 4H), 1.75 (s, 4H). ¹³C NMR (100 MHz, TFA-*d*) δ 178.3, 173.3, 64.8, 42.0, 35.2, 27.7, 25.6.

Table S1. Synthesis of 6G-4

^aDetermined by HFIP SEC (0.025 M KTFA) at 40 °C calibrated by using PMMA standards. ^bObtained after purification from methanol.

Figure S1. SEC trace of 6G-4 synthesized from adipoyl chloride and 6G. HFIP SEC (0.025 M KTFA) at 40 °C calibrated by using PMMA standards.

Figure S2. Possible intramolecular hydrogen bonding between amide and alcohol in diamidodiols

Figure S3. Possible intramolecular hydrogen bonding between amide and alkoxide in deprotonated diamidodiols

Table S2. Synthesis of Different Molar Mass 2G-4

Entry	Time (h)	$M_{\rm n}{}^{\rm a}({\rm kg/mol})$	$M_{ m w}{}^{ m a}(m kg/mol)$	Ða	Yield ^b (%)
1	4.5	12	23	1.9	59
2	8	15	27	1.8	52
3	14	17	34	2.0	74
4	24	31	62	2.0	67

^aDetermined by HFIP SEC (0.025 M KTFA) at 40 °C calibrated by using PMMA standards. ^bObtained after purification from methanol.

Figure S4. (A) $M_{n, SEC}$ vs reaction time. (B) SEC traces of different molar mass 2G-4. Molar mass data were determined by HFIP SEC (0.025 M) at 40 °C calibrated by using PMMA standards.

Table S3. Summary of Thermal Properties of Different Molar Mass 2G-4

Polymer	$M_{ m n}{}^{ m a}$	T_{g}^{b}	$T_{ m m}{}^{ m b}$	ΔH_{m}^{b}	T _c ^c	ΔH_{c}^{c}
	(kg/mol)	(°C)	(°C)	(J / g)	(°C)	(J / g)
2G-4	12	21	180	39	56	36
	15	20	180	43	64	51
	17	33	181	46	67	47
	31	52	186	52	128	54

^aDetermined by HFIP SEC (0.025 M) at 40 °C calibrated by using PMMA standards. ^bDetermined by DSC analysis of powders under N₂ atmosphere starting from -20 °C at a heating rate of 10 °C/min based on the first heating cycle. ^cDetermined by DSC analysis under N₂ atmosphere starting from -20 °C at a heating and cooling rate of 10 °C/min based on the first cooling cycle.

Figure S5. Effect of molar mass of 2G-4 on (A) glass transition temperature (T_g) in the first heating cycle starting from -20 °C at a heating rate of 10 °C/min, (B) melting temperature (T_m) and enthalpy of melting (ΔH_m) in the first heating cycle starting from -20 °C at a heating rate of 10 °C/min, and (C) crystallization temperature (T_c) and enthalpy of crystallization (ΔH_c) in the first cooling cycle starting from -20 °C at a heating and cooling rate of 10 °C/min.

Figure S6. Effect of isotherm experiments at 200 °C on crystallization temperature starting from -20 °C at a heating and cooling rate of 10 °C/min.

Polymer	$M_{\rm n, SEC}$	Elastic	Yield	Ultimate	Elongation at	Toughness ^a
	(kg/mol)	modulus, E ^a	strength, $\sigma_{\rm y}^{\rm a}$	strength, $\sigma_{\rm b}^{\rm a}$	break,	(MJ m ⁻³)
	_	(GPa)	(MPa)	(MPa)	$\varepsilon_{b}{}^{a}$ (%)	
6G-2	15	1.1 ± 0.4	ND ^b	11 ± 4	1.4 ± 0.6	0.11 ± 0.08
6G-3	19	0.37 ± 0.05	14 ± 2	12 ± 5	130 ± 60	17 ± 7
6G-4	14	0.41 ± 0.16	12 ± 2	10 ± 2	39 ± 15	4 ± 2
6G-5	17	0.25 ± 0.05	ND ^b	10 ± 1	15 ± 1	1.4 ± 0.3
6G-5	27	0.24 ± 0.03	11 ± 2	24 ± 3	342 ± 40	59 ± 11
6G-6	16	0.39 ± 0.09	13 ± 2	10 ± 4	100 ± 40	13 ± 6
6G-8	10	0.7 ± 0.2	ND ^b	8 ± 2	2.1 ± 0.9	0.12 ± 0.08
6G-8	32	0.53 ± 0.10	15 ± 2	21 ± 5	310 ± 70	60 ± 20
2G-4	17	_ ^c	_ ^c	_ ^c	_c	_ ^c
2G-4	36	0.9 ± 0.2	19 ± 2	18 ± 4	133 ± 40	25 ± 8
4G-4	11	0.29 ± 0.04	ND ^b	4 ± 3	2.7 ± 1.5	0.12 ± 0.09

Table S4. Summary of Mechanical Properties of Poly(ester-amide)s

^aAverage values and standard deviations are reported for tensile tests of at least 5 samples extended at 1 mm min⁻¹; toughness was calculated as area under the stress–strain curve. ^bYield point was not detected. ^cIt was too brittle to make the film.

Figure S7. The effect of methylene groups of 6G-y on elastic modulus. The extension rate was 1 mm min^{-1} .

Figure S8. Representative stress-strain curve of 6G-5 (27 kg/mol) and 6G-8 (32 kg/mol). The extension rate was 1 mm min⁻¹ up to its break point indicated by X.

Figure S9. 1^{st} heating cycle of 6G-5 before and after elongation (extension rate of 1 mm min⁻¹) with the heating rate of 10 °C/min.

Polymer	Oxygen permeability ^a (cc.mil.m ⁻² d ⁻¹ .atm ⁻¹)	Water vapor permeability ^b (g.mil.m ⁻² d ⁻¹ .kPa ⁻¹)
6G-4	48, 43	31 ± 3
6G-5	276, 244	30 ± 5
6G-6	93, 92	29 ± 7
6G-8	272, 200, 176, 138	41 ± 32

Table S5. Summary of oxygen and water vapor permeability of poly(ester-amide)s

^aOxygen permeability of at least 2 samples at 23 °C, 0% relative humidity, $5 - 10 \text{ cm}^2$ of test area (masked) according to ASTM D3985-02 standard. ^bAverage values and standard deviations are reported for water vapor permeabilities of 5 samples measured at around 19 °C and 51% relative humidity, 15 cm² of test area according to ASTM E96 standard.

Figure S10. ¹H NMR analysis (DMSO-*d*) of hydrolyzed products from 6G-8 in DI water

Figure S11. ¹H NMR analysis (1 M NaOH in D₂O) of hydrolyzed products from 6G-8

References

 Vera, M.; Admetlla, M.; Rodríguez-Galán, A.; Puiggalí, J. Synthesis, Characterization and Degradation Studies on the Series of Sequential Poly(Ester Amide)s Derived from Glycolic Acid, 1,6-Hexanediamine and Aliphatic Dicarboxylic Acids. *Polym. Degrad. Stab.* 2005, 89 (1), 21–32.

NMR Spectra:

Figure S12. ¹H NMR spectra (500 MHz, DMSO-*d*) of 2G

Figure S13. ¹³C NMR spectra (125 MHz, DMSO-d) of 2G

Figure S14. ¹H NMR spectra (500 MHz, DMSO-*d*) of 4G

Figure S15. ¹³C NMR spectra (125 MHz, DMSO-d) of 4G

Figure S16. ¹H NMR spectra (500 MHz, DMSO-*d*) of 6G

Figure S17. ¹³C NMR spectra (125 MHz, DMSO-*d*) of 6G

Figure S18. ¹H NMR spectra (400 MHz, TFA-*d*) of 6G-2

Figure S19. ¹³C NMR spectra (100 MHz, TFA-*d*) of 6G-2

Figure S20. ¹H NMR spectra (400 MHz, TFA-*d*) of 6G-3

Figure S21.¹³C NMR spectra (100 MHz, TFA-d) of 6G-3

Figure S22. ¹H NMR spectra (400 MHz, TFA-*d*) of 6G-4

Figure S23. ¹³C NMR spectra (100 MHz, TFA-d) of 6G-4

Figure S24. ¹H NMR spectra (400 MHz, TFA-*d*) of 6G-5

Figure S25. ¹³C NMR spectra (100 MHz, TFA-*d*) of 6G-5

Figure S26. ¹H NMR spectra (400 MHz, TFA-d) of 6G-6

Figure S27.¹³C NMR spectra (100 MHz, TFA-d) of 6G-6

Figure S28. ¹H NMR spectra (400 MHz, TFA-*d*) of 6G-8

Figure S29. ¹³C NMR spectra (100 MHz, TFA-d) of 6G-8

Figure S30. ¹H NMR spectra (400 MHz, TFA-d) of 2G-4

Figure S31.¹³C NMR spectra (100 MHz, TFA-*d*) of 2G-4

Figure S32. ¹H NMR spectra (400 MHz, TFA-*d*) of 4G-4

Figure S33.¹³C NMR spectra (100 MHz, TFA-d) of 2G-4

X-ray crystallography data:

2G

Empirical formula	$C_{6}H_{12}N_{2}O_{4}$	
Formula weight	176.18	
Temperature	125(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 20.8643(19) Å	$\alpha = 90^{\circ}$
	b = 4.5307(4) Å	$\beta = 102.292(4)^{\circ}$
	c = 8.7480(7) Å	$\gamma=90^\circ$
Volume	807.99(12) Å ³	
Ζ	4	
Density (calculated)	1.448 Mg/m^3	
Absorption coefficient	0.122 mm^{-1}	
<i>F</i> (000)	376	
Crystal color, morphology	colorless, plate	
Crystal size	0.230 x 0.130 x 0.025 mm	3 1
Theta range for data collection	3.998 to 30.596°	
Index ranges	$-29 \le h \le 29, -6 \le k \le 6, -20$	$12 \le l \le 10$
Reflections collected	4006	
Independent reflections	1241 [<i>R</i> (int) = 0.0368]	
Observed reflections	994	
Completeness to theta = 25.242°	99.5%	
Absorption correction	multi-scan	
Max. and min. transmission	0.7461 and 0.6404	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	1241 / 2 / 61	
Goodness-of-fit on F^2	1.093	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0392, wR2 = 0.109	93
R indices (all data)	R1 = 0.0496, wR2 = 0.117	70
Largest diff. peak and hole	0.442 and -0.247 e.Å $^{-3}$	

Table S6. Crystal data and structure refinement for 2G

1.2468(12)
1.3294(14)
1.4550(14)
0.907(3)
1.525(2)
0.9900
0.9900
1.4112(13)
0.841(3)
1.5159(15)
0.9900
0.9900
122.79(9)
118.6(9)
118.5(9)
111.62(11)
109.3
109.3
109.3
109.3
108.0
107.1(10)
123.33(10)
120.60(10)
116.06(9)
113.71(9)
108.8
108.8
108.8
108.8
107.7

Table S7. Bond lengths [Å] and angles [°] for 2G

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

Table S8. Torsion angles [°] for 2G

77.71(15)
-1.26(17)
177.66(9)
-168.58(10)
12.47(14)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

Table S9. Hydrogen bonds for 2G $\,[{\rm \AA}$ and $^\circ]$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N1-H1AO1#2	0.907(3)	2.079(7)	2.9132(12)	152.4(12)	
O2-H2AO1#3	0.841(3)	1.904(3)	2.7445(12)	178.2(15)	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 x,-y+1,z-1/2 #3 x,-y,z-1/2

Empirical formula	$C_8 H_{16} N_2 O_4$	
Formula weight	204.23	
Temperature	125(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 8.1288(6) Å	$\alpha = 90^{\circ}$
	b = 7.5360(6) Å	$\beta = 113.285(2)^{\circ}$
	c = 8.5510(6) Å	$\gamma=90^\circ$
Volume	481.16(6) Å ³	
Ζ	2	
Density (calculated)	1.410 Mg/m^3	
Absorption coefficient	0.113 mm^{-1}	
<i>F</i> (000)	220	
Crystal color, morphology	Colourless, Block	
Crystal size	0.250 x 0.230 x 0.200 mm	3 1
Theta range for data collection	2.728 to 30.494°	
Index ranges	$-11 \le h \le 11, -10 \le k \le 10$, $-12 \le l \le 12$
Reflections collected	7826	
Independent reflections	1473 [<i>R</i> (int) = 0.0437]	
Observed reflections	1376	
Completeness to theta = 25.242°	100.0%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.7461 and 0.6915	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	1473 / 0 / 68	
Goodness-of-fit on F^2	1.072	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0347, wR2 = 0.092	28
R indices (all data)	R1 = 0.0367, wR2 = 0.095	50
Largest diff. peak and hole	0.333 and -0.297 e.Å ⁻³	

Table S10. Crystal data and structure refinement for 4G

01-C1	1.4103(10)	O2-C2	1.2467(9)
O1-H1A	0.8400	C3-C4	1.5242(11)
N1-C2	1.3315(10)	СЗ-НЗА	0.9900
N1-C3	1.4652(10)	C3-H3B	0.9900
N1-H1B	0.840(13)	C4-C4#1	1.5234(15)
C1-C2	1.5169(11)	C4-H4A	0.9900
C1-H1C	0.9900	C4-H4B	0.9900
C1-H1D	0.9900		
C1-O1-H1A	109.5	N1-C3-C4	112.59(6)
C2-N1-C3	122.10(7)	N1-C3-H3A	109.1
C2-N1-H1B	118.6(9)	C4-C3-H3A	109.1
C3-N1-H1B	119.3(9)	N1-C3-H3B	109.1
O1-C1-C2	114.38(6)	C4-C3-H3B	109.1
O1-C1-H1C	108.7	НЗА-СЗ-НЗВ	107.8
C2-C1-H1C	108.7	C3-C4-C4#1	113.28(8)
01-C1-H1D	108.7	C3-C4-H4A	108.9
C2-C1-H1D	108.7	C4#1-C4-H4A	108.9
H1C-C1-H1D	107.6	C3-C4-H4B	108.9
O2-C2-N1	123.51(7)	C4#1-C4-H4B	108.9
O2-C2-C1	119.48(7)	H4A-C4-H4B	107.7
N1-C2-C1	117.02(7)		

Table S11. Bond lengths [Å] and angles [°] for 4G

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table S12. Torsion angles [°] for 4G

C3-N1-C2-O2	-1.12(12)
C3-N1-C2-C1	178.54(7)
01-C1-C2-O2	177.39(7)
O1-C1-C2-N1	-2.29(10)
C2-N1-C3-C4	-104.79(8)
N1-C3-C4-C4#1	-70.02(10)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table S13. Hydrogen bonds for 4G [Å and $^\circ]$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O1-H1AO2#2	0.84	1.90	2.7339(9)	170.2	
N1-H1BO2#3	0.840(13)	2.276(13)	3.0866(9)	162.4(12)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1 #2 -x+1,y-1/2,-z+3/2 #3 x,-y+1/2,z-1/2

Empirical formula	$C_{10}H_{20}N_2O_4$		
Formula weight	232.28		
Temperature	125(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 25.3633(17) Å	$\alpha = 90^{\circ}$	
	$b = 5.2161(3) \text{ Å}$ $\beta = 103.025(3)$		
	c = 8.9982(4) Å	$\gamma=90^\circ$	
Volume	1159.81(12) \AA^3		
Ζ	4		
Density (calculated)	1.330 Mg/m^3		
Absorption coefficient	0.102 mm^{-1}		
<i>F</i> (000)	504		
Crystal color, morphology	colourless, needle		
Crystal size	0.210 x 0.060 x 0.040 mm ³		
Theta range for data collection	3.298 to 30.757°		
Index ranges	$-36 \le h \le 30, -5 \le k \le 7, -12 \le l \le 12$		
Reflections collected	5679		
Independent reflections	1794 [$R(int) = 0.0425$]		
Observed reflections	1439		
Completeness to theta = 25.242°	99.8%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7461 and 0.6446		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	1794 / 2 / 79		
Goodness-of-fit on F^2	1.088		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0429, wR2 = 0.1093		
R indices (all data)	R1 = 0.0551, wR2 = 0.1191		
Largest diff. peak and hole	$0.319 \text{ and } -0.363 \text{ e.Å}^{-3}$		

Table S14. Crystal data and structure refinement for 6G

01-C4	1.2493(12)	O2-H2A	0.863(16)	
N1-C4	1.3322(13)	C2-C3	1.5173(14)	
N1-C3	1.4582(13)	C2-H2B	0.9900	
N1-H1A	0.909(2)	C2-H2C	0.9900	
C1-C2	1.5221(15)	C3-H3A	0.9900	
C1-C1#1	1.524(2)	C3-H3B	0.9900	
C1-H1B	0.9900	C4-C5	1.5120(14)	
C1-H1C	0.9900	C5-H5A	0.9900	
O2-C5	1.4100(12)	C5-H5B	0.9900	
C4-N1-C3	120.66(8)	N1-C3-C2	112.26(8)	
C4-N1-H1A	118.4(9)	N1-C3-H3A	109.2	
C3-N1-H1A	120.7(9)	С2-С3-НЗА	109.2	
C2-C1-C1#1	113.16(10)	N1-C3-H3B	109.2	
C2-C1-H1B	108.9	С2-С3-Н3В	109.2	
C1#1-C1-H1B	108.9	НЗА-СЗ-НЗВ	107.9	
C2-C1-H1C	108.9	O1-C4-N1	122.20(9)	
C1#1-C1-H1C	108.9	O1-C4-C5	120.26(9)	
H1B-C1-H1C	107.8	N1-C4-C5	117.54(9)	
С5-О2-Н2А	105.7(9)	O2-C5-C4	113.29(9)	
C3-C2-C1	110.78(8)	O2-C5-H5A	108.9	
C3-C2-H2B	109.5	C4-C5-H5A 108.9		
С1-С2-Н2В	109.5	O2-C5-H5B	108.9	
С3-С2-Н2С	109.5	C4-C5-H5B	108.9	
C1-C2-H2C	109.5	H5A-C5-H5B	107.7	
H2B-C2-H2C	108.1			

Table S15. Bond lengths [Å] and angles [°] for 6G

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1

Table S16. Torsion angles [°] for 6G

-179.40(12)
168.56(10)
-177.53(9)
0.07(16)
179.79(9)
-173.38(9)
6.89(14)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1

Table C17	II	handa fan	(Ly and	01
1 able 51/.	Hydrogen	Donas Ior	0G	LA and	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N1-H1AO1#2	0.909(2)	2.277(7)	3.1164(11)	153.4(12)	
O2-H2AO1#3	0.863(16)	1.871(16)	2.7334(11)	176.9(14)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+1 #2 x,-y+1,z+1/2 #3 x,-y,z+1/2